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         Abstract 

Nano-scale technology has brought more susceptibility to soft errors for the generation of complicated and state-of-

the-art devices. These soft errors are the impacts of radiation of the particles like a neutron, alpha, and ions on the surface 

of the circuits. To tackle the system malfunctions and provide a reliable device, studying the transient fault effects on the 

logic circuits can be a more significant issue. This paper presents a new approach based on Recurrent Neural Networks 

(RNNs) to estimate ICs' Soft Errors Rate (SER). As RNN can be deployed for signal processing and time series, we 

applied it to investigate transient fault effects while propagating through the combinational and sequential parts of a test 

chip with computing its SER by simulating and analyzing the circuit outputs. In this paper, the proposed RNN model's 

use to estimate the SER of ISCAS-85 standard circuits is investigated. 

     Keywords: Recurrent neural networks, Circuit modeling, Transient fault, Soft error rate.  

 

1.Introduction 

Since technologies related to the VLSI circuits 

downscaled, the circuits' susceptibility to transient 

faults, induced by high energy particle strikes, has 

increased [1]. When a particle hits a transistor, a 

charge is disposed of which can cause a transient 

voltage pulse to be created at the output of the 

related component [1]. The pulse can result from 

single/multiple event transient (SET/MET) faults. 

The transient faults can propagate through the 

circuits, and if masking factors do not mask them, 

they are finally liable to be observed in the circuit 

outputs or latched in the memory elements. When 

a bit of the memory is flipped by the transient 

faults, the soft error occurs. Due to the increase in 

the circuit vulnerability against the soft errors [1] 

[2] [3], it is valuable for an oriented method to be 

proposed to tackle the challenge of soft error rate 

computation. This is beneficial particularly for 

complicated and very large-scale circuits. Since 

HSPICE is commonly devoted to analyzing 

circuits, it takes a long simulation time for devices 

with a high quantity of components [14]. 

Therefore, in this paper, we have presented a 

method that relied on RNN to model and obtained 

the SER of an under-investigated electronic chip. 

The proposed RNN can learn the electronic 

element's behavior, like logic gates, and predict 

changes of the glitches that might occur and 

propagate through a circuit. Moreover, the model 

considers triple masking effects as well as re-

convergent path effects to provide an accurate 

estimation of SER. By making RNN models of 
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the base gates and training them by the data 

obtained from their simulations in the HSPICE, 

we could predict the injected signals' output 

shape. Then, the SER has been computed by 

running a simulation based on the circuit layout 

and injected faults. To verify the proposed model, 

we calculated the SER for the small circuits like 

C17 and Invchain and compared the results with 

the HSPICE outputs. The results demonstrate 

12.08x and 15.65x speed-up with the %4.49 and 

%5.27 penalty accuracy. Additionally, we applied 

the proposed RNN method to compute the SER of 

the ISCAS-85 benchmark circuits. 

The rest of the paper is organized as follows: 

Section 2 provides related works. Section 3 

describes the methodology of RNN deployed for 

analyzing transient faults. Section 4 represents 

some sample circuits and illustrates the results of 

utilizing RNN for modeling them. Moreover, this 

section provides a prediction of SER for the 

ISCAS-85 benchmark circuits. Finally, section 5 

concludes the paper. 

      2.Literature Review 

To estimate a device's vulnerability against 

soft errors, occasionally, two types of software-

based fault injection techniques are applied [4]. In 

one category, software like HSPICE is deployed 

to set up glitches and compute the rate of the 

faults observed at the output of an under-test unit 

[4], and the other applies mathematical and 

probabilistic techniques to the model and 

approximates the rate of the soft errors [3]. 

Dynamic and static methods are the names given 

to these two strategies [5]. In the dynamic 

technique, some nodes of a circuit are affected by 

a set of transient faults; then, the circuit is 

simulated for a variety of input vectors to obtain 

the related SER. On the other hand, in the 

analytical process, models based on mathematical 

equations are provided to calculate the rate of soft 

errors stemming from transient faults [5]. Each of 

the techniques has advantages and drawbacks. For 

instance, in some cases of analytical estimation of 

SER, there is a 7x overestimation in SER analysis 

[3]. Moreover, most dynamic techniques have not 

considered all masking factors in their approaches 

or even demand for large input vectors and have a 

significant challenge in dealing with the re-

convergent paths [6]. Thus, maybe they have a 

time overhead problem during a circuit simulation 

[6]. Given that the proposed RNN model is based 

on circuit simulations in the neural network 

environments, we mostly concentrate on dynamic 

investigations. In addition, [6] produces a 

framework, named MASKit, which computes 

SER of the circuits using signal probabilities, 

heuristic simulation techniques, and backward-

traversing algorithm. Compared to the traditional 

fault injection-based methods, like Monte Carlo, 

the model is twice faster with the low time 

overhead. Moreover, it provides %96 accuracy in 

SER estimating.  In [7], to achieve the SER, 

logical and flip-flop descriptions are applied. In 

this approach, a complicated signal is considered 

as several pulses that are independent. It has been 

done due to the challenges of re-convergent paths 

leading to a remarkable loss of accuracy in 

evaluating transient fault effects. In [8], initially, 

by making gate simulations for a variety of input 

vectors, the SER of each gate of a circuit is 

computed. Then, the soft error rate for circuit 

paths (from the gate to the memory elements) is 

obtained. The circuit SER is calculated by 

combining the SER of some paths to the nearest 

one. Reference [4] deployed HSPICE tools to 

extract transient pulse width probability 

distributions and compute device SER. In [9] 

graph theory and HSPICE simulation are applied 

to analyze SER of combinational circuits and 

memory elements. 

Furthermore, the reference performs heuristic 

algorithms to reduce simulation time. Reference 

[10] has utilized random input vectors based on 

the simulation method to compute the soft error 

rate for a given circuit. In the end, there are plenty 

of techniques proposed in diverse references to 

address the SER computation challenge, which 

has been ignored due to paper constraints.  

However, since circuit simulation tools like 

HSPICE demand a long simulation time to 

analyze SER of complicated devices [1], we 

proposed RNN based method for evaluating 

circuits and obtaining their SER. Training RNN 

units perform this by the transient faults' 

characteristics, attitudes, and behavior that 

occurred in the electronic component. Providing 

fast and accurate analysis of a circuit and 

considerations of other constraints like 

performance, area, and the supply voltage can 

help designers adopt powerful optimized 

techniques to decline overall SER. This can be 

achieved by applying the introduced RNN model 

process. In the next section, the methodology of 
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deploying the RNN technique will be entirely 

detailed.  

      3. Methodology 

Extensive usage of artificial neural networks, 

like RNNs, in fields of machine translation, 

speech recognition, natural language processing, 

time series prediction, and many other areas [11], 

gave us enough incentive to handle RNN for 

estimating a circuit SER. By the reference that 

there are numerous approaches to manipulating 

neural networks and machine learning in the 

system reliability evaluations [2], we proposed a 

method that exploited RNN to estimate SER of a 

circuit by learning interactions of the circuit 

elements against transient faults. To develop the 

idea, we generated RNN models of some basic 

gates like NOT, AND, NAND, NOR, etc. The 

network training data has been obtained by 

simulating circuits involving a chain of gates in 

the HSPICE environment. The extracted data 

changed to a time-discrete one for feeding to the 

RNN. During the learning process, the network 

learns how the glitches at the output will be when 

passing through a certain gate. Therefore, 

attributes of the faults like width, amplitude, and 

delay will be estimated. Once the glitches' 

attenuation was determined, it is possible to 

evaluate the rate of faults reaching the circuit 

outputs or latching in the memory elements. As a 

transient pulse propagates through the logic gates, 

it is attenuated by width and height. Thus, it is 

more likely for an attenuated pulse to be 

prohibited from propagating due to a lack of 

power. Therefore, if the power of a pulse is less 

than a certain value, it will be masked based on 

the electrical making effect. Besides, if the 

transient pulse occurs in a non-controlling input 

of a gate, it would still be masked by a logical 

masking factor. For instance, the output value of a 

2-input AND gate consistently is zero when at 

least one of the inputs stays on zero. Even if a 

transient fault can pass through the mentioned 

masks, another masking part can be eliminated 

named the latching window. This factor prevents 

glitches to be captured in the memory elements. 

The cover item emerges when the fault arrives at 

the input of a memory component out of the clock 

cycle set up and hold time [5]. Fig 1 presents the 

timing mask effect in both masked and latched 

Single Event Transient (SET). 

 

Fig 1. Timing mask effects on the SETs [5]. 

The proposed RNN model has been 

constructed by investigating the influences of high 

energy particle-induced transient faults in the base 

logic circuits. The process carried on by modeling 

a transient pulse with an independent current 

resource, formulated in Eq.     ) and described in 

[12]. 
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Where                   are collected 

charges stemming from high energy particle 

strikes, rising, and falling times, respectively [12]. 

A voltage waveform can be generated by injecting 

a current pulse into the electrical component like a 

logic gate if the pulse has met desired magnitude 

and width conditions [1]. We gathered data of the 

gates by injecting various current pulses into the 

inputs of the gates and tracking their behavior 

during simulation in HSPICE. Once the 

information is obtained, they are converted to the 

discrete-time value feeding as datasets to the 

RNN, later. Indeed, data achieved from the gate's 

simulations compose supervised RNN training, 

evaluating, and testing data. Then, the network 

can estimate fault distributions of a device by 

learning the gate responses to the different voltage 

pulse inputs. This constructs the RNN model of a 

gate. Once the models of electrical components 

are created, it enables us to evaluate the SER. The 

circuit applied to obtain a gate attitude contains a 
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design of connecting a chain of the gate. For 

instance, to create the RNN model of AND gate, 

initially, a circuit involves a number of the gate, 

connected consecutively, designed, and simulated 

in the HSPICE for a variety of fault signals, 

obtained by changing parameters of Eq.     . 

Then, the simulation data are extracted and 

normalized to feed to the RNN. Finally, the RNN 

is trained, evaluated, and tested by the data. If the 

results of the testing are in an acceptable range of 

accuracy, then the structure of trained RNN, 

containing internal parameters like link weights, 

is stored as the AND gate RNN model. By 

performing the process for other logic gates, it is 

possible to achieve the architectures and attributes 

of non-linear electronic elements. Then by 

applying the models and creating software, based 

on the circuit layout, one can analyze an under-

test device for a fault effect and SER estimation. 

We verified the models for some small circuits by 

computing SER and comparing the RNN outputs 

and HSPICE simulation results. Moreover, we 

developed our experiments for other complicated 

devices like ISCAS-85 benchmark circuits to 

demonstrate proposed model scalability. The 

structure of method and training strategies are 

explained as follows. 

      3.1. Descriptions of Proposed RNN Model 

The architecture of described RNN model is 

depicted in Fig. 2. As the picture illustrates, the 

model is composed of the input layer, two hidden 

layers, and one output layer. Variables    ) 

and    ) displays primitive waveforms of the 

input and output, obtained from the component 

simulations in HSPICE. The proposed network 

accepts an input vector that contains a history of 

previous input and output signals.  

 

Fig. 2. Diagram of supposed RNN model 
 

The outputs are fed back to the input by the 

straight connections. While   shows a device 

simulation time, the network output is denoted 

by    ), which is relied on    current state 

inputs,                      ) where   

is the steps of the input histories,     output 

archive signals,                      ) 

where   displays the buffered outputs, and      

RNN internal parameters, like weights supposed 

as  

Table 1 descriptions and denoted by   
                . The     variable of the table 

shows the number of neurons applied in layer   
computed by Eq.   

). 

                          

                  

(2) 

  

   

  

 

Table 1 

 Parameters of proposed RNN model 

Description Vector 

Weights between layer m, l 
                                

Weights of neurons 
             

           

     

Biases of layer l bl= [b1l b2l… b8l] 

Output shape Based on simulation time 

Number of neurons in the input layer 8 

Number of neurons in the hidden layer 32 
 

Safari/ Soft Error Rate Estimation of Logic Circuits Using Recurrent Neural Networks



 

 

   

53
 

 

Where               represent the quantity 

of input and output neurons. The output value of 

the network can be formulated by Eq. (3). 

         (                   

              

              ) 

(3) 

 

            

                           
               

 

Where      denotes the function that generates 

the output. 

      3.2. Training and Testing Phases 

In this subsection, the process of training and 

evaluation as well as testing for the RNN, 

designed based on previous descriptions, will be 

explained. By computing error rates for all of the 

datasets, the network performance is evaluated. 

Computing the optimal value of the RNN internal 

parameters is the training phase's goal until 

achieving a minimum error value. Associated 

training data are presented by (           ) as an 

original signal, where   is the index of     

training sample. When the network error is less 

than 10e-4, the process of training ends. The 

optimization process is considered as Eq. Error! 

Reference source not found.). 

 

   
 

 

   

∑ ∑              

  

   

  

   

 (4) 

Where       respectively represent the total 

number of dataset samples (n=1, 2...  ), and a 

circuit simulation time like how it is executed in 

HSPICE. The equation related to error 

computation, for the proposed RNN, is formulated 

as Eq. Error! Reference source not found.). 

     
 

  

∑        

  

   

 (5) 

Where 

                  (6) 

 

Eq. (6) gives the error of    sample of a test 

signal at the point t. To make it feasible for 

selecting an optimal value of training rate, we 

considered Adam optimizer elaborated in [13]. 

The iteration of each training model is supposed 

to be 3000. In addition, 1000 epochs are fed to the 

network in every repetition. As mentioned, the 

input vector contains a buffer of prior steps of 

loaded and result waveforms. The hidden layers 

include the activation function of the log-

sigmoid      
 

          
  . Moreover, the 

activation function of input and output layers is 

linear. Details of training and testing phases of 

some basic gates are provided in          Table 2. 

 

         Table 2  

        Details of training and testing RNN model of the basic gates 

Gate Type Mean error of total 

test samples 

Max Error Number of 

training samples 

Number of testing 

samples 

Mean Learning Time 

(Hour) 

AND 0.7170 2.3762 1552 388 0.45 

NAND 2.4132 3.8260 1972 493 0.75 

NOT 1.61790 3.8387 564 141 0.5 

NOR 2.0112 2.8240 2316 579 0.79 
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As the table illustrates, the test datasets' mean and 

maximum errors are displayed in the columns 2 and 3. 

Whereas the error of each signal is computed by Eq. 

Error! Reference source not found. and Eq. (6), the 

mean error of total testing samples are denoted in 

column 2, achieved through Eq. Error! Reference 

source not found.. Indeed, each waveform's error is 

calculated based on Eq. Error! Reference source not 

found., Eq. (6), and mean squared error of point-to-

point comparison of the RNN results and original 

signals. The circuit simulation was performed in the 

HSPICE environment for each chip separately. In this 

approach, the value of time is considered to be 500 

picoseconds. As mentioned above, the process is 

performed for each type of the base gates, with single-

cycle simulations and diverse values of pulse widths 

and amplitude, varying by changing            , and 

      parameters. At the end of the HSPICE 

simulation, we attained         . It is a sequence 

of data corresponding to the gate   with inputs  , 

outputs  , and  as the interval duration of simulation 

time. By constructing the RNN models of a circuit, 

based on its gate-level layout, and simulating the 

circuit in a neural network platform, like Python, we 

analyzed the SER of the circuits. This is done by 

using a variety of faults injected into the device nodes 

and evaluating the portions of transient glitches 

captured by the memory elements. 

To further explore the described model and 

evaluate its performance for assorted devices, in the 

next section, we have provided an estimation of SER 

for a variety of circuits. Initially, SER of some small 

chips like C17 and Invchain are computed; then, to 

examine the model's scalability, we applied designed 

RNN to estimate the SER of ISCAS-85 benchmark 

circuits. 

   4. Modelling Instances and Results 

When the RNN models of simple components 

are generated, they can be exploited to estimate a 

circuit SER. This is performed by analyzing 

transient fault impacts on a circuit while passing 

through it. To explain the proposed model, SER 

of diverse circuits were computed and tested by 

injecting random pulses in their nodes and 

tracking the number of faults causing erroneous 

outputs or bit flips in the memory elements. At 

first, the SER of two small designs C17 and 

Invchain, presented in  

Fig 3 and Fig 4, are calculated. Then, the 

models have been applied to estimate the SER of 

complicated ISCAS-85 benchmark circuits. For 

the first test benches, random pulses are injected 

into the arbitrarily selected nodes of the circuits. 

The faults were injected by the current pulses with 

the charge of  t varying boundary of 100fc to 

200fc, as well as rise and fall times with the 

values of 1ns. Then the circuits are investigated 

and examined for the error occurred which are 

observed in their output. Furthermore, to compute 

the SER of the circuits that contain sequential 

parts, the state of the memory elements is checked 

for the bit flips. The error rate is computed by the 

division of observed errors in the circuit output to 

a total number of injected faults. For each of the 

two mentioned small circuits, the process of fault 

injection was repeated 1000 times in HSPICE and 

RNN environments, separately. Then, the attained 

errors are applied to compute the SERs. The 

results of the simulation are compared in table 3      

Table 3 By producing some transient current pulses 

and injecting them into random nodes of the 

circuits, for different values of the inputs, the rate 

of the errors observed in the circuit outputs can be 

obtained. 

 
 

Fig 3. Schematic of C17 circuit [15]. 
 

 

Fig 4. Block diagram of Invchain circuit
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Circuit

 

HSPICE

 

computed SER

 

RNN computed SER

 

Error

 

HSPICE

 

time(s)

 

RNN time(s)

 

Speed-up

 

C17

 

0.1489

 

0.1556

 

%4.49

 

5111

 

423

 

12.08x

 

In chain

 

0.0816

 

0.0859

 

%5.27

 

3240

 

207

 

15.65x

 

As table 3 illustrates, for the listed C17 and 

Invchain circuits, the SER computed by RNN 

models are respectively 12.08 and 15.65 times 

faster than the HSPICE simulator. Additionally, 

compared to the HSPICE results, there is a %4.49 

and %5.27 loss of accuracy in SER estimation by 

the RNN method which is negligible. Because, for 

the complicated circuits, the RNN can have an 

estimation in an acceptable time, while HSPICE 

takes a long duration for simulating a complex 

device. Therefore, applying the RNN model for 

the state of the art components can be remarkable. 

Column 5, 6 of the table displays the time for 

1000 iterations. To present the RNN model 

scalability, we did the SER estimation process for 

the ISCAS-85 circuits. All the benchmarks 

applied were much bigger than the small chips. 

Hence, HSPICE could not be applied for 

verification of RNN results since it takes a very 

long simulation time. All considerations were like 

the small ones which are executed on Intel(R) 

Core (TM) i7 with 8-Gbyte RAM system. The 

platform utilized to run RNN programs was the 

PyCharm community edition 2020.1.1 x64 

version. Also, Hspui H-2013.03-SP2 was the 

version of HSPICE applied to compute circuits 

SER in the HSPICE environment.           

         

     

  

  

  

  

  
  

  

  

 

 

       

 

Table 4

 

displays details of parameters

 

considered to design circuits

 

in HSPICE. 

Additionally, Table 5 shows estimated values of 

SER for the ISCAS-85 benchmark

 

circuits as well 

as the time

 

is

 

taken for 1000 iterations.

 
          

        Table 4 

         Parameters considered in the HSPICE simulator 

Parameter Value 

NMOS Transistors width 0.210U 

NMOS Transistors length 0.050U 

PMOS Transistors width 0.315U 

PMOS Transistors length 0.050U 
Vdd 0.6 v 

Temperature 25oc 

Lmin 45nm 

 

 

        Table 5 

        SER for ISCAS-85 benchmark circuits 

Circuit SER Time(s) 

C432 0.159 1552 

C499 0.51 1959 
C880 1.89 3715 

C1908 2.21 6213 

C2670 3.62 8536 
C3540 1.59 10572 

C5315 7.38 12189 

C6288 2.30 14378 
C7552 3.93 15338 
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     4. Conclusion 

In this paper, we have proposed a new 

paradigm based on RNN to estimate the SER of 

logic circuits. Designed RNN models take the 

gate-level layout of a circuit and compute the SER 

of the circuit for given transient faults. We 

verified the method using HSPICE simulation for 

small devices with random fault injections to 

arbitrary nodes. To demonstrate the proposed 

RNN model scalability, we applied it for ISCAS-

89 benchmark circuits. The results and time 

required to predict the SER of the circuits are 

provided in the paper. Consequently, as the 

HSPICE simulations for the complicated circuits 

take a long time, RNN can be an acceptable 

alternative method to analyzing and predicting 

circuits SER. Finally, since the RNN model was 

produced using Python and Tensor flow scripts, it 

can provide many optimizations, like applying 

GPU microprocessors, to make the method much 

faster and efficient than the current status. 
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