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Abstract 
 

Lung cancer is a major global cause of cancer-related deaths, emphasizing the importance of early detection through chest 

imaging. Accurate reconstruction of computed tomography (CT) lung images plays a crucial role in the diagnosis and 

treatment planning of lung cancer patients. However, noise in CT images poses a significant challenge, hindering the precise 

interpretation of internal tissue structures. Low-dose CT, with reduced radiation risks, has gained popularity. Nonetheless, 

inherent noise compromises image quality, potentially impacting diagnostic performance. Denoising autoencoder and 

unsupervised deep learning algorithms offer a promising solution. A dataset of CT images from patients suspected of lung 

cancer was categorized into four disease groups to evaluate different autoencoder models. Results showed that designed 

autoencoders effectively reduced noise, enhancing overall image quality. The semi-supervised autoencoder exhibited superior 

performance, preserving fine details and enhancing diagnostic information. This research underscores autoencoder models' 

potential in improving lung cancer diagnosis accuracy by reconstructing CT lung images, emphasizing the importance of 

noise reduction techniques in enhancing image quality and diagnostic performance. 
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1-Introduction 
 

The analysis of medical images about cancer poses 

significant challenges due to limitations in sample 

collection, along with various issues such as noise, 

incomplete annotation, data dispersion, and the high 

dimensionality of images (characterized by a large number 

of variables). Consequently, the development of integrated 

computing approaches to effectively handle such data 

remains an intricate task. In recent times, numerous 

machine learning methodologies have been put forth as 

potential solutions to tackle these complex datasets (Reel 

et al., 2021). Unsupervised learning techniques play a 

pivotal role in identifying latent patterns within complex 

data while effectively overcoming inherent challenges. 

Notably, among the unsupervised evaluation methods, 

neural network-based approaches, such as Autoencoders 

(AEs) and Variational Autoencoders (VAEs) (Kingma & 

Welling, 2013, Rezende et al., 2014), have demonstrated 

promising performance across diverse datasets and 

contexts, including cancer diseases (Simidjievski et al., 

2019), bacterial infection (Deng et al., 2019), and the 

identification of healthy patient tissues (Christopher Heje 

Grønbech et al., 2020). 

 

 

 

The autoencoder is a powerful neural network architecture 

that learns to extract a concise representation of the input 

data, gradually reducing the dimensionality through its 

layers. As the information is processed, it converges to a 

bottleneck layer, which captures the most intrinsic features 

of the input data. The reconstruction process then proceeds 

in the reverse direction to recreate the original data. 

Through this compression-decompression mechanism, the 

algorithm gains a more refined data representation, 

effectively capturing the inherent relationships between the 

data variables. As a result, downstream analyses can 

benefit from a more precise and accurate understanding of 

the data structure (Belkin & Niyogi, 2003). 

The primary objective of this research article is to assess 

and compare the performance of various autoencoder 

reconstruction models using computed tomography (CT) 

images from lung cancer patients. The ultimate aim is to 

offer valuable insights into selecting the most suitable 

reconstruction technique that can enhance the diagnostic 

accuracy for lung cancer patients. 
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2.Artificial Intelligence Methods for Medicine 

For several years, machine learning and deep learning 

techniques have been extensively employed in the realm of 

medical image recognition. These models can be broadly 

categorized into three main types: supervised, 

unsupervised, and semi-supervised learning approaches. 

In supervised learning methods, algorithms are trained 

using "labeled" data, wherein the input data is paired with 

corresponding labels or outcomes. During the training 

process, the algorithm learns to infer a function that can 

classify data accurately or predict results based on the 

provided labeled examples. This type of approach is 

commonly used in tasks such as identifying diseases in 

medical images or predicting patient outcomes based on 

their clinical data (Cunningham et al., 2008).The primary 

objective of unsupervised learning is to discern 

underlying structures and features within a training 

dataset without the use of data labels or annotations. This 

type of learning is particularly useful when dealing with 

unlabeled data. Unsupervised methods encompass a range 

of techniques, including clustering algorithms such as 

hierarchical clustering and k-means clustering, as well as 

dimensionality reduction approaches like principal 

component analysis (PCA), t-distributed Stochastic 

Neighbor Embedding (t-SNE), and uniform manifold 

approximation and projection (UMAP) (Com & Hinton, 

2008, McInnes et al., 2018). 

Among the unsupervised methods, artificial neural 

networks (ANNs), particularly auto-encoders (AEs) and 

variational auto-encoders (VAEs), have emerged as 

highly efficient tools for addressing diverse medical 

challenges and integrating different types of medical data 

(Munir et al., 2019). These neural network-based methods 

excel at extracting meaningful representations from 

complex medical data and have shown promise in various 

applications, including medical image analysis, disease 

classification, and patient clustering. 

3.The Basis of Autoencoder Algorithm and Its Types 

Autoencoders are a prominent unsupervised learning 

method in neural networks that aim to learn a lower-

dimensional feature representation from input data. The 

primary structure of autoencoders consists of an input 

layer, a hidden layer, and an output layer (Ng, n.d.) .The 

dimensionality reduction in autoencoders results in the 

model retaining high-variance features while discarding 

low-variance ones. To achieve this, autoencoders are 

often combined with denoising methods to remove 

unimportant variations. This is achieved through a loss 

function that measures the distance between the 

compressed data and the reconstructed data, with common 

loss functions being mean squared error and relative 

entropy (Eraslan et al., 2019).Since the introduction of 

autoencoders, various variants have been proposed to 

address limitations, enhance models, and make 

improvements. Notable examples include Denoising 

Autoencoders (DAEs), Sparse Autoencoders (SAEs), and 

the more recent Variational Autoencoders (VAEs). DAEs 

are a class of autoencoders that introduce corruptions into 

some fields of the input matrix and use the corrupted data 

as input. This type of autoencoder has found significant 

application in image-related tasks (Vincent et al., 2008). 

VAEs, on the other hand, are probabilistic generative 

models that make assumptions about the distribution of 

hidden layer features. They learn the true distribution of 

input features by using a Bayesian approach to 

approximate the latent space defined by mean "μ" and 

standard deviation "σ" of the latent variables. This feature 

allows VAEs to calculate probability distributions and 

generate new data instances (Baird et al., 1988). The key 

difference between traditional autoencoders and VAEs 

lies in the continuous nature of the latent space in the 

latter. VAEs are scalable to large datasets and can handle 

intractable posterior distributions by fitting an 

approximate inference or detection model, utilizing a 

parameterized change lower bound estimator. Their 

adaptability and capability to handle non-linear behaviors 

make VAEs particularly suitable for complex data 

analysis, such as data compression and dimensionality 

reduction (Hawkins et al., 2014). Recent benchmark 

studies have indicated VAEs as the superior method for 

detecting cancer subtypes in comparison to other types of 

autoencoders (Pratella et al., 2021). 

4.AE Application in Cancer 

Autoencoders (AEs) have found valuable applications in 

cancer data analysis, with several tools adopting different 

strategies and goals in this field. Specifically, these 

methods focus on two main areas: predicting drug 

response (Ladislav Rampášek et al., 2019, Chiu et al., 

2019) and cancer diagnosis and classification (Franco et 

al., 2021, Way & Greene, 2017).The classification of 

cancer plays a crucial role in selecting appropriate 

treatment methods based on the cancer subtype or 

facilitating early diagnosis. Accurate cancer staging is 

closely associated with the prognosis and survival of 

cancer patients. To address these tasks, various tools have 

been proposed. For instance, Thibault et al. introduced a 

VAE-based learning method that classifies cancer types 

by capturing tissue-specific patterns and successfully 

identifies high-grade serous ovarian cancer (Way & 

Greene, 2017). 

By leveraging the power of AEs and VAEs, researchers 

have made notable strides in understanding cancer 

heterogeneity and discovering valuable insights for 

personalized medicine and improved patient outcomes. 

These models enable the extraction of meaningful 

representations from complex cancer data, facilitating 

accurate classification and prediction tasks. 

5.Data Description and Preprocessing 

Two primary categories are recognized in lung cancer: 

non-small cell lung cancer (NSCLC) and small cell lung 

cancer (SCLC). Non-small cell lung cancer constitutes the 

majority, affecting approximately 80-85% of patients. 

This type of lung cancer is further divided into three 
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subgroups, the subgroups differ based on the type of cells 

that initiate cancer in the patient's lung. Despite their 

distinctions, these subgroups share similarities in their 

treatment approach, which is why they are grouped 

together. 

On the other hand, small cell lung cancer is less common, 

accounting for about 15-20% of cases (Rodriguez-Canales 

et al., 2016). Given the greater significance of non-small 

cell lung cancer in this study, the focus has been primarily 

on this subgroup. 

This study’s dataset comprises CT scan images of the 

lung, specifically related to non-small cell lung cancer 

(Open Data Commons Open Database License (ODbL) 

V1.0 — Open Data Commons: Legal Tools for Open 

Data, 2019). As previously mentioned, non-small cell 

lung cancer encompasses three main categories. When 

considering one group as representing normal lung tissue, 

there are a total of four general groups. Figure 1 

demonstrates an example image from each of these four 

groups. 

 

Fig 1. Examples of CT scan images of different types of non-small cell 

lung cancer 

ⅰ) large cell carcinoma  

 ⅱ) adenocarcinoma  

 ⅲ) normal  

 ⅳ) squamous cell carcinoma 

 

5.1.Adding Noise to Images 

In this study, noise has been intentionally introduced to 

the existing images to thoroughly evaluate the 

performance of the autoencoder models in handling noisy 

images. Among various methods of adding noise to 

images, the study utilizes point noise. Point noise involves 

adding random noise to each pixel of the image, where the 

noise values are drawn from a standard distribution. In 

this particular study, the variance of the standard 

distribution is set to (0.5). 

To illustrate the effects of adding noise, Figure 2 displays 

examples of images from two classes before and after the 

noise addition process. The purpose of this 

experimentation is to examine how the autoencoder 

models can effectively denoise and reconstruct the 

original images despite the introduced noise. By 

subjecting the models to such tests, their robustness and 

ability to handle noisy data can be better assessed. The 

introduction of noise in image data is a crucial step in 

assessing the generalization and performance of 

autoencoders under realistic and noisy conditions, as real-

world medical images often encounter various sources of 

noise during acquisition and transmission. 

As depicted in Figure 2, black points have been 

deliberately added to all the images, effectively 

simulating the amount of noise introduced to each pixel of 

the image. These artificial noises have been intentionally 

incorporated into the images during this study to assess 

the performance of the models under conditions that 

resemble naturally occurring noise. 

 

Fig 2 . Comparison of lung images before and after adding noise 

 

6.Autoencoder Models 

6.1  Classic Autoencoder Model 
 

Indeed, measuring and evaluating the performance of the 

autoencoder model can be achieved by monitoring the 

loss function's value for each epoch during the training 

process. As depicted in Figure 3, the loss function 
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demonstrates a decreasing trend, indicating that the 

model's performance is improving as the number of 

epochs increases. The goal of the training process is to 

minimize the cost function, ultimately aiming to approach 

a value close to zero. 

The loss function quantifies the discrepancy between the 

original input data and the reconstructed output generated 

by the autoencoder. The downward trend of the cost 

function signifies that the model is effectively learning to 

encode meaningful features and representations from the 

input data and subsequently reconstructing it with 

minimal error. 

 

Fig 3 . loss function per epoch chart for the classic autoencoder model. 

In the mentioned model, the loss function shows a good 

convergence to zero value, but this case alone cannot 

indicate that the model is perfect in removing noise. 

Because by looking at the output images of this model, it 

can be seen that the model does not work perfectly as 

expected from its loss function. Figure 4 illustrates the 

network architecture of this classic autoencoder. 

 

Fig 4  .The architecture of the constructed autoencoder network 

 

6.2.Variational Autoencoder Model 

This constructed model, being one of the types of 

autoencoder models, exhibits a notable difference from 

simple autoencoder models in terms of data representation 

within the hidden space. Specifically, the output of this 

model in the hidden layer comprises the parameters of a 

statistical distribution, unlike basic autoencoder models 

where the output is a vector. 

The key distinction lies in the fact that, in this particular 

type of model, the hidden layer's output consists of both 

the mean and the logarithm of the variance. These 

parameters are indicative of a normal distribution 

function. By incorporating the logarithm of the variance, 

the model ensures that the predicted variance remains 

positive, as the logarithm of a negative value is undefined. 

In the cost function, this model follows two primary 

goals. The first objective is to enhance the quality of 

reconstructed images during the encoding and decoding 

processes. The second objective is to enforce the hidden 

space to conform to a normal distribution. 

In the hidden layer of the modified autoencoder model, as 

shown in Figure 6, the compression of images during the 

encoding phase results in two outputs: the mean and the 

logarithm of the variance.  
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Fig 5 . The general structure of the hidden layer in the modified 

 VAE model 

 

As depicted in Figure 5, the encoding process involves 

extracting both the mean and variance from the latent 

space. The mean and variance serve as essential 

parameters for a statistical distribution. During the 

decoding process, a random sample is drawn from this 

distribution to initiate the decoding and reconstruction of 

the data. The subsequent decoding steps follow a similar 

procedure as basic models. To evaluate the performance 

of the model during the training process, the loss chart for 

each epoch is utilized.  

 

Fig 6 .Diagram of the loss function per epoch related to the 

modified VAE model 

Figure 6 displays the loss chart for the first 100 epochs, 

illustrating the trend of the loss function's value over the 

training iterations. As shown, the cost function exhibits a 

significant and steep downward slope around epoch 15, 

which indicates rapid improvement in the model's 

performance during the initial training phase. However, 

after epoch 42, the cost function starts to fluctuate around 

a value of approximately 0.23. This fluctuation suggests 

that the model has reached a state of convergence, where 

the training progress has stabilized, and further training 

iterations are not leading to substantial improvements. 

6.3.Semi-Supervised Autoencoder Model 

A semi-supervised autoencoder (SSAE) is a specialized 

type of autoencoder that combines both unsupervised and 

supervised learning techniques. Unlike traditional 

autoencoders that rely solely on unsupervised learning 

from unlabeled data, SSAEs leverage a small set of 

labeled data in addition to a larger set of unlabeled data 

during training. This unique approach enables SSAEs to 

effectively remove noise from both the labeled and 

unlabeled data samples. 

The encoder-decoder architecture of the SSAE learns 

relevant features from the labeled data and utilizes these 

learned features to denoise the unlabeled data. By 

incorporating labeled data, the SSAE can improve its 

denoising capabilities, leading to more accurate and 

reliable results. 

Figure 8 illustrates the graph of the cost function for each 

epoch during the training of the SSAE model. It is 

important to note that the error function in this model is 

notably higher compared to the previous two models. 

 

Fig 7 . Diagram of the loss function per epoch related to the semi-

supervised autoencoder model 

The higher error function in Figure 7 suggests that the 

denoising process in the SSAE model might be more 

challenging due to the use of labeled data. The model may 

be learning to generalize and denoise the unlabeled data 

effectively, but the additional complexity introduced by 

the labeled data might result in a higher overall cost 

function. However, the cost function alone may not 

accurately reflect the effectiveness of the model, as the 

reconstruction quality and denoising capabilities are 

equally important factors in assessing the model's 

performance. 

As shown in Figure 8, the model successfully removes 

noise from the input images and provides reconstructed 
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images of acceptable quality. The noisy images are 

effectively denoised, and the model retains important 

features, resulting in high-quality reconstructions. The 

removal of noise from the images contributes to better 

accuracy in detection tasks. 

The reconstructed images in Figure 8 indeed exhibit clear 

details and maintain the essential information present in 

the original images. This level of denoising and accurate 

reconstruction is critical for downstream applications, 

such as disease detection or image segmentation, where 

the quality and reliability of the reconstructed images play 

a significant role. 

 

Fig 8. Examples of noisy images versus reconstructed images 

In Figure 9, images with the highest loss function 

represent successful denoising, while Figure 10 shows 

challenging cases with the lowest loss function. 

Comparing images in Figures 9 and 10 reveals that the 
cost function is related to the color contrast of 

reconstructed images. 

 

Fig 10. Reconstructed images 

for each class with the lowest 

cost function 

 

 

Fig 9 . Reconstructed images 

for each class with the highest 

amount of cost function 

7.Conclusion 

This study demonstrates the successful application of an 

autoencoder-based approach to reconstructing noisy CT 

images in lung cancer patients. The trained autoencoder 

effectively reduced noise while preserving important 

anatomical details, thereby improving image quality. 

Quantitative evaluation criteria and qualitative analysis 

both confirmed the improvement of visual quality and 

diagnostic accuracy of reconstructed images. These 

findings highlight the potential of autoencoders to 

improve clinical decision-making and patient outcomes in 

lung cancer management and contribute to ongoing 

research on noise reduction in CT imaging. 

Considering that the implementation of self-encryption 

algorithms in the field of CT images still has many issues 

to learn and develop, we believe that this research 

provides valuable insights on the selection of appropriate 

reconstruction techniques to increase the diagnostic 

accuracy of lung cancer patients and inspires progress. 

The future will be in the understanding and diagnosis of 

cancer. 
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