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Abstract 

Skilled mechanical arms of consanguine relationship formed by joints the relative motion of the 
adjacent interfaces enable, have been connected. Ability to perform a variety of pre-programmed 
robotic manipulator in various industries. Skilled mechanical arms in recent years as a significant 
progress has been completed. House repair and easier to work with them as well and fit and 
optimal relationship between power, controllability and skill building. In this respect, there are a 
variety of skilled mechanical arms and a wide variety of different industrial applications and also 
to cover investigative. These applications perform various activities including construction, 
underwater cutting and welding production lines to perform various operations - such as the 
installation of underwater robots - such as the pursuit of a cable or wire, or locked objects in 
complex samples such as establishing connections or electrical or hydraulic lines .The mechanical 
arms that what matters is the simplest example may be assigned to duty at the desired time to do 
the selection. Robot design complexity while increasing performance capabilities can be difficult 
to control, guidance and ensuring the accuracy and maintenance of the cause. Selection and 
completion of the complex and sophisticated robotic manipulator robot designer should consider 
the many points. Number of arms required, location, type of controller, the access point and the 
maximum and minimum access point, space and arms control by the user, including the following. 

Keywords: Skilled mechanical arms, End-effector, Robot joint. 
 

1. Introduction 

Mechanical arms rigid form of relationship 
that Mfslhayy by the relative motion of 
adjacent interfaces enable the connection 
each task. A variety of pre-programmed 
robotic arms capable of operating in various 
industries. Skilled mechanical arms in recent 
years has been substantially completed and 
have progressed. As well as repair and 
feeding them easier to work with and fit and 
optimal relationship between power, 
controllability and skills they have been 

created. At the end of a relationship chain 
end-forming and mechanical arm that can be 
expected in terms of applications of robots or 
other tools such as clamps or hooks for 
cutting, welding and like it. In this respect, 
there are various types of skilled mechanical 
arms wide variety of industrial applications 
and also cover investigative. These 
applications include assembly of diverse 
activities, diverse underwater cutting and 
welding production lines to operate - such as 
the installation of underwater robot - like 
getting and looking a cable or wire or 
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imprisonment or of sophisticated objects such 
as electric or hydraulic lines are connections 
Contact .Analytical solutions for inverse 
kinematics there are different methods and 
practices as they are with DOF. In practice, 
the consent of the three-dimensional 
orientation of the feature vector and the host 
is quite logical. For example, when the 
machine is used for welding, welding tube 
along the tip it should be good values. If the 
machine is installed on the robot fluid, the 
fluid robots that can act as the fluid machine 
and free status and robot end-fluid along the 
fluid off. This fundamental to the overall 
number DOF, five are controlled. 

2. Analysis Frameworks 

The PArm is an accessory for the family of 
Pioneer Mobile Robots, as shown in Fig.1. It 
is a 5-DOF manipulator driven by six open-
loop servomotors and has a gripper as an end- 
effector. The gripper has foam- lined fingers 
for firm grasping and manipulation of objects 
as large as a soda can and as heavy as 150 
grams throughout the arm’s envelope of 
operation. 

 
Fig.1 Robot arm PArm 5-DOF. 

Coordinate frames for the PArm are 
assigned as shown in Fig.2. They are 

established using the principles of the 
Denavit - Hartenbarg (D-H) convention. 
Frame O5 is an auxiliary frame attached to 
the end- effector at the place of joint 5, whose 
coordinate directions are the same as O6. 
Using the auxiliary frame O5 to maintain 
consistency in the orientation for the last link 
of the manipulator keeps frames O0 to O5 in 
the same plane and this allows us to apply the 
geometric projection method to the derivation 
of the inverse kinematics. 
 

 

Fig.2. Coordinate Frames for the PArm 

3. Forward kinematics for the Parm 

 3.1 Forward kinematics 

The forward kinematics is a set of equations 
that calculates the position and orientation of 
the end- effector in terms of given joint 
angles. This set of equations is generated by 
using the D-H parameters obtained from the 
frame assignation. The parameters for the 
PArm are listed in Table 1, where θi 
represents rotation about the Z-axis, αi 
rotation about the X - axis, di transition along 
the Z-axis, and ai transition along the X -axis. 
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 𝐴𝐴𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑅𝑅(𝑧𝑧,  𝜃𝜃1)𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(0,0,  𝑑𝑑𝑖𝑖)𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇( 𝑇𝑇𝑖𝑖, 0,0)𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥,  𝑇𝑇𝑖𝑖)

= �

cos (𝜃𝜃𝑖𝑖) −sin (𝜃𝜃𝑖𝑖)cos ( 𝑇𝑇𝑖𝑖) sin (𝜃𝜃𝑖𝑖)sin ( 𝑇𝑇𝑖𝑖)  𝑇𝑇𝑖𝑖cos (𝜃𝜃𝑖𝑖)
sin (𝜃𝜃𝑖𝑖) cos (𝜃𝜃𝑖𝑖)cos ( 𝑇𝑇𝑖𝑖) −cos (𝜃𝜃𝑖𝑖)sin  ( 𝑇𝑇𝑖𝑖  𝑇𝑇𝑖𝑖sin  (𝜃𝜃𝑖𝑖)

0 sin ( 𝑇𝑇𝑖𝑖) cos ( 𝑇𝑇𝑖𝑖  𝑑𝑑𝑖𝑖
0 0 0 1

� 

 
(1) 

 

The forward kinematics describe the 
transformation from one frame to another, 
starting at the base and ending at the end-
effector. The transformation matrix Ai 
between two neighboring frames  Oi−1 and  
Oi  is expressed as (1), found at the bottom of 
the page .By substituting the D-H parameters 
in Table 1 into (1), we can obtain the 
individual transformation matrices A1 to 
A6, and a global matrix of transformation 
0T6 as in (2) 

 
𝑇𝑇6 =  𝐴𝐴1 𝐴𝐴2 𝐴𝐴3 𝐴𝐴4 𝐴𝐴5 𝐴𝐴6

= �

𝑇𝑇𝑥𝑥 𝑅𝑅𝑥𝑥 𝑇𝑇𝑥𝑥 𝑝𝑝𝑥𝑥
𝑇𝑇𝑦𝑦 𝑅𝑅𝑦𝑦 𝑇𝑇𝑦𝑦 𝑝𝑝𝑦𝑦
𝑇𝑇𝑧𝑧 𝑅𝑅𝑧𝑧 𝑇𝑇𝑧𝑧 𝑝𝑝𝑧𝑧
0 0 0 1

� (2) 

Where (px, py, pz ) represents the position, 
and ({nx, ny, nz }, {ox, oy, oz },{ax, ay, az }) 
the orientation of the end-effector. The 
orientation and position of the end-effector 
can be calculated in terms of joint angles and 
the D-H parameters of the manipulator, as 
shown in (3) to (14) 
 

𝑇𝑇𝑥𝑥 =  𝑐𝑐1𝑇𝑇23𝑐𝑐4𝑐𝑐5 + 𝑇𝑇1𝑇𝑇4𝑇𝑇5
+ 𝑐𝑐1𝑐𝑐23𝑇𝑇5 

(3) 

𝑇𝑇𝑦𝑦 = 𝑇𝑇1𝑇𝑇23𝑐𝑐4𝑐𝑐5 −  𝑐𝑐1𝑇𝑇4𝑇𝑇5
+ 𝑇𝑇1𝑐𝑐23𝑇𝑇5 

(4) 

𝑇𝑇𝑧𝑧 = 𝑐𝑐23𝑐𝑐4𝑐𝑐5 − 𝑇𝑇23𝑇𝑇5 (5) 

𝑅𝑅𝑥𝑥 = −𝑐𝑐1𝑇𝑇23𝑇𝑇4 + 𝑇𝑇1𝑐𝑐4 
(6) 

𝑅𝑅𝑦𝑦 = −𝑇𝑇1𝑇𝑇23𝑇𝑇4 − 𝑐𝑐1𝑐𝑐4 (7) 

𝑅𝑅𝑧𝑧 =  −𝑐𝑐23𝑇𝑇4 (8) 

𝑇𝑇𝑥𝑥 = −𝑐𝑐1𝑇𝑇23𝑐𝑐4𝑇𝑇5 − 𝑇𝑇1𝑇𝑇4𝑇𝑇5 + 𝑐𝑐1𝑐𝑐23𝑐𝑐5 (9) 

𝑇𝑇𝑦𝑦 = −𝑇𝑇1𝑇𝑇23𝑐𝑐4𝑇𝑇5 + 𝑐𝑐1𝑇𝑇4𝑇𝑇5
+ 𝑇𝑇1𝑐𝑐23𝑐𝑐5 

(10) 

𝑇𝑇𝑧𝑧 = −𝑐𝑐23𝑐𝑐4𝑇𝑇5 −  𝑇𝑇23𝑇𝑇5 (11) 

𝑝𝑝𝑥𝑥 =  − 𝑑𝑑6𝑐𝑐1𝑇𝑇23𝑐𝑐4𝑇𝑇5 −  𝑑𝑑6𝑇𝑇1𝑇𝑇4𝑇𝑇5
+  𝑑𝑑6𝑐𝑐1𝑐𝑐23𝑐𝑐5
+  𝑑𝑑4𝑐𝑐1𝑇𝑇23 +  𝑇𝑇2𝑐𝑐1𝑐𝑐2
+  𝑇𝑇1𝑐𝑐1 

(12) 

𝑝𝑝𝑦𝑦 = − 𝑑𝑑6𝑇𝑇1𝑇𝑇23𝑐𝑐4𝑇𝑇5 −  𝑑𝑑6𝑐𝑐1𝑇𝑇4𝑇𝑇5
+  𝑑𝑑6𝑇𝑇1𝑐𝑐23𝑐𝑐5
+ 𝑑𝑑4𝑇𝑇1𝑇𝑇23 +  𝑇𝑇2𝑇𝑇1𝑐𝑐2
+  𝑇𝑇1𝑇𝑇1 

(13) 
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𝑝𝑝𝑧𝑧 = − 𝑑𝑑6𝑐𝑐23𝑐𝑐4𝑇𝑇5 −  𝑑𝑑6𝑇𝑇23𝑐𝑐5
− 𝑑𝑑4𝑇𝑇23 −  𝑇𝑇2𝑇𝑇2
+  𝑑𝑑1 

(14) 

where ci = cos(θi), si = sin(θi), c23 = cos(θ2 + θ3), 
and s23 = sin(θ2 + θ3) 

3.2 Discussion of the singular position 
problem 

It should be noted that if joint angle θ4 
equals zero, frames O1, O2, and O4 
would rotate around parallel axes, 
which means that all links of the arm 
would be on the same plane. A singular 
position problem might emerge in this 
case. This has to be checked for, before 
deriving the inverse kinematics. If θ4 = 
0, then 

 𝐴𝐴4 = �

1 0 0 0
0 0 −1 0
0 1 0 𝑑𝑑4
0 0 0 1

� (15) 

and the transform frame O2 to O5 
and O1 to O5, are as follows: 

2T5 = 𝐴𝐴3 𝐴𝐴4 𝐴𝐴5

= �

𝑇𝑇35 0 𝑐𝑐35 𝑐𝑐3𝑑𝑑4
−𝑐𝑐35 0 𝑇𝑇35 𝑇𝑇3𝑑𝑑4

0 −1 0 0
0 0 1 1

� (16) 

Obviously, the solutions for joint angles θ1  to 
θ5  can be determined for a given desired 
matrix 0T6. In other words, there exists no 
singular problem in the PArm in the case of 
θ4 = 0. 

4. Inverse kinematics for the Parm 

4.1 Solutions for θ1 to θ3 

It can be observed that the origins of frames 
O0 to O5 are all in the same plane, as shown 

in Fig.3 (b). Based on this observation, in 
order to simplify the derivation of the inverse 
kinematics, an auxiliary frame O5 is added, 
which is a rotation of the frame O4. The 
geometric projection that relates frame O5 to 
frame O1 is shown in Fig.3(a). 

 

a)The sketch of links in the same plane 

 

)b) The sketch of links in the same plane 

Fig.3. The sketch of coordinate projection for 
the PArm 

 

Obviously, the transformation matrix from 
frame O0 to O5 is as follows: 

𝑇𝑇5 = 𝑇𝑇0 6𝐴𝐴6−1

= �

𝑇𝑇𝑥𝑥 𝑅𝑅𝑥𝑥 𝑇𝑇𝑥𝑥 −𝑇𝑇𝑥𝑥  𝑑𝑑6 + 𝑝𝑝𝑥𝑥
𝑇𝑇𝑦𝑦 𝑅𝑅𝑦𝑦 𝑇𝑇𝑦𝑦 −𝑇𝑇𝑦𝑦 𝑑𝑑6 + 𝑝𝑝𝑦𝑦
𝑇𝑇𝑧𝑧 𝑅𝑅𝑧𝑧 𝑇𝑇𝑧𝑧 −𝑇𝑇𝑧𝑧 𝑑𝑑6 + 𝑝𝑝𝑧𝑧
0 0 0 1

� (17) 
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And from Fig.3(a) it is easy to find and 
solution frame O0 to O5 is as flow:   

 

�
 𝜃𝜃11 = 𝑇𝑇𝑇𝑇𝑐𝑐𝑅𝑅𝑇𝑇𝑇𝑇2(−𝑇𝑇𝑦𝑦 𝑑𝑑6 + 𝑝𝑝𝑦𝑦,−𝑇𝑇𝑥𝑥 𝑑𝑑6 + 𝑝𝑝𝑥𝑥 )

 𝜃𝜃12 = 𝑇𝑇𝑇𝑇𝑐𝑐𝑅𝑅𝑇𝑇𝑇𝑇2(𝑇𝑇𝑦𝑦 𝑑𝑑6 + 𝑝𝑝𝑦𝑦,𝑇𝑇𝑥𝑥 𝑑𝑑6 + 𝑝𝑝𝑥𝑥 )  
(18) 

 

 

Where the positive sign on the right hand side 
of the second equation is for the front 
arm orientation, and the negative sign 
for the rear arm orientation. In other 

words, the positive corresponds to θ11 
and the negative to θ12. For the sake of 
convenience, (19) is rewritten as(20)

⎩
⎪
⎨

⎪
⎧
𝑑𝑑4𝑇𝑇23 = 𝑇𝑇𝑧𝑧 𝑑𝑑6 + 𝑝𝑝𝑧𝑧 +  𝑑𝑑1 −  𝑇𝑇2𝑇𝑇2 =  𝐵𝐵1 −  𝑇𝑇2𝑇𝑇2

𝑑𝑑4𝑐𝑐23 = ±�(−𝑇𝑇𝑥𝑥 𝑑𝑑6 + 𝑝𝑝𝑥𝑥)2 + �−𝑇𝑇𝑦𝑦 𝑑𝑑6 + 𝑝𝑝𝑦𝑦�
2

− 𝑇𝑇1 −  𝑇𝑇2𝑐𝑐2
=  𝐵𝐵2 −  𝑇𝑇2𝑐𝑐2

 (20) 

Where 

�
 𝐵𝐵1 = 𝑇𝑇𝑧𝑧 𝑑𝑑6 + 𝑝𝑝𝑧𝑧 +  𝑑𝑑1

 𝐵𝐵2 = ±�(−𝑇𝑇𝑥𝑥 𝑑𝑑6 + 𝑝𝑝𝑥𝑥)2 + �−𝑇𝑇𝑦𝑦 𝑑𝑑6 + 𝑝𝑝𝑦𝑦�
2 −  𝑇𝑇1

 (21) 

 

By applying a square sum to the two 
equations in (20), a new equation that 
contains θ2  alone can be  
formed as follows: 

 B1s2 +  B2c2 =
B12 + B2

2 + a22 − d42

2 a2
 (22) 

It is easy to establish that the values of 
B1 and B2 are not zero at the same 
time. Otherwise (22) would not hold 

because of the different values of a2 and 
d4. Therefore, it is reasonable to 
introduce an auxiliary angle γ which is 
defined by: 
γ = arctan2( B2,  B1) (23) 
 

By combining (23) and (22), a solution 
for θ2  can be derived as follows: 

 

�
 𝑑𝑑1 −  𝑇𝑇2𝑇𝑇2 − 𝑑𝑑4𝑇𝑇23 = −𝑇𝑇𝑧𝑧 𝑑𝑑6 + 𝑝𝑝𝑧𝑧

 𝑇𝑇1 +  𝑇𝑇2𝑐𝑐2 + 𝑑𝑑4𝑐𝑐23 = ±�(−𝑇𝑇𝑥𝑥 𝑑𝑑6 + 𝑝𝑝𝑥𝑥)2 + (−𝑇𝑇𝑦𝑦 𝑑𝑑6 + 𝑝𝑝𝑦𝑦)2 
(19) 
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⎩
⎪
⎨

⎪
⎧  θ21 = arcsin �

B12 + B2
2 + a22 − d42

2 a2�B12 + B2
2

� − γ

 θ22 = π − arcsin�
B12 + B2

2 + a22 − d42

2 a2�B12 + B2
2

� − γ
 (24) 

 

 

where θ21 and θ22 are two candidate 
values for θ2. From (20), we can obtain 
a solution for θ3: 
 

θ3 =  arctan 2(B1 −  a2s2, B2 
−  a2c2)  −  θ2 

(25) 

4.2 Solutions for θ4 and θ5 

After obtaining solutions for  𝜃𝜃1 ,  𝜃𝜃2 , and 
 𝜃𝜃3 , it should be straightforward to obtain 
solutions for θ4 and 𝜃𝜃5 by using the 
equations for the forward kinematics 
However, various conditions with 

different values for solved joint angles 
have to be considered. This paper 
proposes a useful strategy to solve θ4 
time obtain useful criteria for checking 
the correctness of solutions. From (2), 
we have 

𝐴𝐴3−1𝐴𝐴2−1𝐴𝐴1−1 𝑇𝑇0 6𝐴𝐴6−1 = 𝐴𝐴4𝐴𝐴5 (26) 
 

𝐴𝐴4𝐴𝐴5 = �

𝑐𝑐4𝑐𝑐5 −𝑇𝑇4 −𝑐𝑐4𝑇𝑇5 0
𝑇𝑇4𝑐𝑐5 𝑐𝑐4 −𝑇𝑇4𝑇𝑇5 0
𝑇𝑇5 0 𝑐𝑐5 𝑑𝑑4
0 0 0 1

� (27)  

 

𝐴𝐴3−1𝐴𝐴2−1𝐴𝐴1−1 𝑇𝑇0 6𝐴𝐴6−1

= �
𝑇𝑇𝑥𝑥𝑐𝑐1𝑇𝑇23 + 𝑇𝑇𝑦𝑦𝑇𝑇1𝑇𝑇23 + 𝑇𝑇𝑧𝑧𝑐𝑐23 𝑅𝑅𝑥𝑥𝑐𝑐1𝑇𝑇23 + 𝑅𝑅𝑦𝑦𝑇𝑇1𝑇𝑇23 + 𝑅𝑅𝑧𝑧𝑐𝑐23 𝑇𝑇𝑥𝑥𝑐𝑐1𝑇𝑇23 + 𝑇𝑇𝑦𝑦𝑇𝑇1𝑇𝑇23 + 𝑇𝑇𝑧𝑧𝑐𝑐23

𝑇𝑇𝑥𝑥𝑇𝑇1 − 𝑇𝑇𝑦𝑦𝑐𝑐1 𝑅𝑅𝑥𝑥𝑇𝑇1 − 𝑅𝑅𝑦𝑦𝑐𝑐1 𝑇𝑇𝑥𝑥𝑇𝑇1 − 𝑇𝑇𝑦𝑦𝑐𝑐1
𝑇𝑇𝑥𝑥𝑐𝑐1𝑐𝑐23 + 𝑇𝑇𝑦𝑦𝑇𝑇1𝑐𝑐23 + 𝑇𝑇𝑧𝑧𝑇𝑇23 𝑅𝑅𝑥𝑥𝑐𝑐1𝑐𝑐23 + 𝑅𝑅𝑦𝑦𝑇𝑇1𝑐𝑐23 + 𝑅𝑅𝑧𝑧𝑐𝑐23 𝑇𝑇𝑥𝑥𝑐𝑐1𝑐𝑐23 + 𝑇𝑇𝑦𝑦𝑇𝑇1𝑐𝑐23 + 𝑇𝑇𝑧𝑧𝑇𝑇23

 

 

 

 (28) 

 

𝐴𝐴3−1𝐴𝐴2−1𝐴𝐴1−1 𝑇𝑇0 6𝐴𝐴6−1

=

⎣
⎢
⎢
⎡
𝑇𝑇𝑥𝑥𝑐𝑐1𝑇𝑇23 + 𝑇𝑇𝑦𝑦𝑇𝑇1𝑇𝑇23 + 𝑇𝑇𝑧𝑧𝑐𝑐23 𝑅𝑅𝑥𝑥𝑐𝑐1𝑇𝑇23 + 𝑅𝑅𝑦𝑦𝑇𝑇1𝑇𝑇23 + 𝑅𝑅𝑧𝑧𝑐𝑐23 𝑇𝑇𝑥𝑥𝑐𝑐1𝑇𝑇23 + 𝑇𝑇𝑦𝑦𝑇𝑇1𝑇𝑇23 + 𝑇𝑇𝑧𝑧𝑐𝑐23 0

𝑇𝑇𝑥𝑥𝑇𝑇1 − 𝑇𝑇𝑦𝑦𝑐𝑐1 𝑅𝑅𝑥𝑥𝑇𝑇1 − 𝑅𝑅𝑦𝑦𝑐𝑐1 𝑇𝑇𝑥𝑥𝑇𝑇1 − 𝑇𝑇𝑦𝑦𝑐𝑐1 0
𝑇𝑇𝑥𝑥𝑐𝑐1𝑇𝑇23 + 𝑇𝑇𝑦𝑦𝑇𝑇1𝑇𝑇23 + 𝑇𝑇𝑧𝑧𝑐𝑐23 𝑅𝑅𝑥𝑥𝑐𝑐1𝑇𝑇23 + 𝑅𝑅𝑦𝑦𝑇𝑇1𝑇𝑇23 + 𝑅𝑅𝑧𝑧𝑐𝑐23 𝑇𝑇𝑥𝑥𝑐𝑐1𝑇𝑇23 + 𝑇𝑇𝑦𝑦𝑇𝑇1𝑇𝑇23 + 𝑇𝑇𝑧𝑧𝑐𝑐23 𝑑𝑑4

0 0 0 1 ⎦
⎥
⎥
⎤
 (29

) 

 

⎩
⎪
⎨

⎪
⎧ 𝑣𝑣𝑧𝑧31 = [𝑐𝑐1𝑐𝑐231        𝑇𝑇1𝑐𝑐231    − 𝑇𝑇231]𝑇𝑇 , 𝑓𝑓𝑅𝑅𝑇𝑇 𝜃𝜃11,  𝜃𝜃21,  𝜃𝜃231
𝑣𝑣𝑧𝑧32 = [𝑐𝑐1𝑐𝑐232          𝑇𝑇1𝑐𝑐232    − 𝑇𝑇232]𝑇𝑇 , 𝑓𝑓𝑅𝑅𝑇𝑇 𝜃𝜃11,  𝜃𝜃22,  𝜃𝜃232
𝑣𝑣𝑧𝑧33 = [−𝑐𝑐1𝑐𝑐233   − 𝑇𝑇1𝑐𝑐233    − 𝑇𝑇233]𝑇𝑇 , 𝑓𝑓𝑅𝑅𝑇𝑇 𝜃𝜃12,  𝜃𝜃21,  𝜃𝜃233
𝑣𝑣𝑧𝑧34 = [−𝑐𝑐1𝑐𝑐234  − 𝑇𝑇1𝑐𝑐234    − 𝑇𝑇234]𝑇𝑇 , 𝑓𝑓𝑅𝑅𝑇𝑇 𝜃𝜃12,  𝜃𝜃22,  𝜃𝜃234

 

 

(32) 
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and the left side is easily derived as (28). 
By substituting s1, c1, s23, and c23 
obtained from (18), (24), and (25) into 
the last column in (28), we have(29). 
By equating the first and second terms 
of the second column in (27) and (29) 
respectively, we can obtain a solution 
for θ4. Similarly, by equating the first 
and third terms of the third row in (27) 
and (29) respectively, we can obtain a 
solution for θ5. The solutions for θ4 and θ5 

are as follows: 

⎩
⎪
⎨

⎪
⎧  𝜃𝜃4 = 𝑇𝑇𝑇𝑇𝑐𝑐𝑅𝑅𝑇𝑇𝑇𝑇2(−𝑅𝑅𝑥𝑥𝑐𝑐1𝑇𝑇23 − 𝑅𝑅𝑦𝑦𝑇𝑇1𝑇𝑇23 −

𝑅𝑅𝑧𝑧𝑐𝑐23, 𝑅𝑅𝑥𝑥𝑇𝑇1𝑅𝑅𝑦𝑦𝑐𝑐1) 
 𝜃𝜃5 = 𝑇𝑇𝑇𝑇𝑐𝑐𝑅𝑅𝑇𝑇𝑇𝑇2(𝑇𝑇𝑥𝑥𝑐𝑐1𝑐𝑐23 + 𝑇𝑇𝑦𝑦𝑇𝑇1𝑐𝑐23 − 𝑇𝑇𝑧𝑧𝑇𝑇23

−𝑇𝑇𝑥𝑥𝑐𝑐1𝑐𝑐23 + 𝑇𝑇𝑦𝑦𝑇𝑇1𝑇𝑇23 − 𝑇𝑇𝑧𝑧𝑇𝑇23)

 (30
) 

 

4.3 The existence of correct solute 
ions 

It is evident that the inverse kinematics 
for a 5-DOF manipulator such as the 
PArm will have no solution for some 
given positions and orientations of the 
end- effector. How can we know in 
which cases there will be no solution to 
the inverse kinematics? We notice that 
the term in the third row and second 
column in (27) is zero and the 
corresponding term in (29) is 
determined by θ1 to θ3, so that we have 
the following criterion−the solutions for 
θ1, θ2, and θ3 have to satisfy: 

𝑅𝑅𝑥𝑥𝑐𝑐1𝑐𝑐23 + 𝑅𝑅𝑦𝑦𝑇𝑇1𝑐𝑐23 − 𝑅𝑅𝑧𝑧𝑇𝑇23 = 0 (31) 

Proof 
a) The necessity 

    

   b) The sufficiency 
If (31) is satisfied by any of the four 
groups of solutions given in (18), (24), 
and (25), then the solutions for θ4 and 
θ5 given by (30) will satisfy (26), 
because of the orthogonally of the 
rotation transformation matrix for the 
orientation.  That is, the desired position 
and orientation of the end-effector can be 
realized. There are four groups of 
candidate solutions given above. 
Although above criterion can be 
employed to check how many of those 
groups belong to correct solutions, an 
easier way is to predict the number of 
correct solutions in terms of the desired 
position and orientation of the end-
effector. The direction vector of the Z-axis 
of frame O3 can be indicated using 
different candidate solutions for θ1 and θ2 
as follows: 
Where vz31 to vz34 represent the 
direction of the Z-axis of frame O3 in 
frame O0. 

 

𝑣𝑣3𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑧𝑧3𝑖𝑖 × 𝑣𝑣𝑧𝑧3𝑖𝑖
= �−𝑇𝑇1𝑘𝑘𝑖𝑖𝑖𝑖    𝑐𝑐1𝑘𝑘𝑖𝑖𝑖𝑖    0�𝑇𝑇 

(33) 

𝑣𝑣3𝑖𝑖𝑖𝑖 × 𝑣𝑣𝑦𝑦5 = �𝑘𝑘𝑖𝑖𝑖𝑖𝑅𝑅𝑧𝑧𝑐𝑐1       𝑘𝑘𝑖𝑖𝑖𝑖𝑅𝑅𝑧𝑧𝑇𝑇1      

− 𝑘𝑘𝑖𝑖𝑖𝑖(𝑅𝑅𝑥𝑥𝑐𝑐1 + 𝑅𝑅𝑦𝑦𝑇𝑇1) �𝑇𝑇 
(34) 

�𝑅𝑅𝑥𝑥(𝑝𝑝𝑥𝑥 − 𝑇𝑇𝑥𝑥𝑑𝑑6) + 𝑅𝑅𝑦𝑦�𝑝𝑝𝑦𝑦 − 𝑇𝑇𝑦𝑦𝑑𝑑6� = 0
𝑅𝑅𝑧𝑧 = 0

 (35) 

 (𝑇𝑇2 −  𝑑𝑑4)2 ≤ 𝐵𝐵12 + 𝐵𝐵22

≤  (𝑇𝑇2 +  𝑑𝑑4)2 
(36) 

Condition (35) is derived from (34) and (31) 
under the condition that s1 and c1 are not zero 
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at the same time. To ensure that the solutions 
for θ1 to θ3 given in (18), (24), and (25) 
have real values, condition (36) must be 
satisfied. If conditions (35) and (36) are 
satisfied, there will be two or four 
solution groups that can achieve the 
desired position and orientation of the 
end-effector. More specifically, the 
following conclusions can be drawn: 

• In the case that (35) and (36) are atisfied 
for two selections of B2, four groups of 
correct solutions can be obtained. 

• If (35)is satisfied, but(36) is true for only 
one selection of B2, then two groups of 
correct solutions can be obtained. 

• If (35) is satisfied, but (36) is false for 
two se- lections of B2, there will be no 
correct solutions, because of the 
mechanical constraints. 

• If (35) is not satisfied, but (31) is 
satisfied, there will be a unique group 
of solutions to realize the desired 
position and orientation of the end- 
effector. 

• If (35) and (31) are not satisfied, there 
will be no solution to realize the desired 
position and orientation of the end-
effector. 

5. Inverse Kinematics for the Parm 
with one Dof of the End-Effector 

Unsatisfied 

5.1 Solutions that satisfy the position 
and Z-axis orientation 

As discussed in Section 1, the position 
of the end-effector has to be controlled 
accurately, but only the desired Z-axis 
orientation should be matched in some 

applications, i.e. the X or Y -axis 
orientation is ignored. In this case, the 
solutions for θ1 to θ3 are the same as 
given in Section 4.1, because they are 
able to realize the desired position of the 
end-effector. 

To take only the Z-axis orientation 
into account, the terms in the third row 
and third column in (27) and (29) are 
used to obtain a solution for θ5 as 
follows: 

 𝜽𝜽𝟓𝟓 =  ±𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 (𝒂𝒂𝒙𝒙𝒄𝒄𝟏𝟏𝒄𝒄𝟐𝟐𝟐𝟐
+ 𝒂𝒂𝒚𝒚𝒔𝒔𝟏𝟏𝒄𝒄𝟐𝟐𝟐𝟐       
− 𝒂𝒂𝒛𝒛𝒔𝒔𝟐𝟐𝟐𝟐) 

(37) 

Then, the first and second terms in 
the third column in (27) and (29) can 
be used to solve θ4. Here three cases 
are presented: 
If s5 > 0 then the solution for θ4 is: 

 θ41 = arctan2(−axs1
+ ayc1,−axc1s23
− ays1s23 − azc23) 

(38) 

If s5 < 0 then the solution for θ4 is: 

 θ42 = arctan2(axs1
− ayc1, axc1s23
+ ays1s23 + azc23) 

(39) 

If s5 = 0, then ax and ay are independent 
of θ4, which can be checked in (9) and 
(10). Therefore, the solution of θ4 can 
be given arbitrarily in this case. 

5.2 Solutions to satisfy all orientations 

Now consider the situation where all 
orientations can be satisfied and the 
position coordinates in the Y and Z axes 
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are also taken into account. For 
example, if the manipulator is installed 
on a mobile robot, then the position 
coordinate on the X -axis could be 
realized by the mobile robot. 
It can be noted that the first term is 
the product of the second and third 
terms in (27). Therefore, an equation 
including only θ1 to θ3 can be formed 
as follows: 
𝑇𝑇𝑥𝑥𝑐𝑐1𝑇𝑇23 + 𝑇𝑇𝑦𝑦𝑇𝑇1𝑇𝑇23 + 𝑇𝑇𝑧𝑧𝑐𝑐23 
= (𝑅𝑅𝑥𝑥𝑇𝑇1 − 𝑅𝑅𝑦𝑦𝑐𝑐1)(𝑇𝑇𝑥𝑥𝑐𝑐1𝑐𝑐23

+ 𝑇𝑇𝑦𝑦𝑇𝑇1𝑐𝑐23 − 𝑇𝑇𝑧𝑧𝑇𝑇23) 
(40) 

Another equation including only θ1 to θ3 is 
(31). If oz ƒ= 0 then s23 can be expressed 
using c23, s1, and c1. Combining (31) and 
(40) leads to: 

𝑇𝑇𝑦𝑦𝑅𝑅𝑦𝑦(𝑅𝑅𝑧𝑧 − 1) + �𝑇𝑇𝑥𝑥𝑅𝑅𝑥𝑥 − 𝑇𝑇𝑦𝑦𝑅𝑅𝑦𝑦�(𝑅𝑅𝑧𝑧
− 1)𝑐𝑐12 

+�𝑇𝑇𝑥𝑥𝑅𝑅𝑦𝑦 + 𝑇𝑇𝑦𝑦𝑅𝑅𝑥𝑥�(𝑅𝑅𝑧𝑧 − 1)𝑐𝑐1𝑇𝑇1 = 0 

(41) 

 

If oz ƒ= 1, then the common term oz − 1 can be 
eliminated from (41). By applying a double 
angle formula to (41), a typical triangle 
equation can be obtained as follows: 

�𝑇𝑇𝑥𝑥𝑅𝑅𝑥𝑥 − 𝑇𝑇𝑦𝑦𝑅𝑅𝑦𝑦� cos(2 𝜃𝜃1)
+ �𝑇𝑇𝑥𝑥𝑅𝑅𝑦𝑦
+ 𝑇𝑇𝑦𝑦𝑅𝑅𝑥𝑥�𝑇𝑇𝑠𝑠𝑇𝑇(2 𝜃𝜃1)
= 𝑇𝑇𝑧𝑧𝑅𝑅𝑧𝑧 

(42) 

and possible solutions for θ1 derived as: 

 𝛾𝛾1 = 𝑇𝑇𝑇𝑇𝑐𝑐𝑅𝑅𝑇𝑇𝑇𝑇2�𝑇𝑇𝑥𝑥𝑅𝑅𝑥𝑥 − 𝑇𝑇𝑦𝑦𝑅𝑅𝑦𝑦 ,𝑇𝑇𝑥𝑥𝑅𝑅𝑦𝑦 + 𝑇𝑇𝑦𝑦𝑅𝑅𝑥𝑥�

 𝛾𝛾2 = 𝑇𝑇𝑇𝑇𝑐𝑐𝑇𝑇𝑠𝑠𝑇𝑇
𝑇𝑇𝑧𝑧𝑅𝑅𝑧𝑧

�(1 − 𝑇𝑇𝑧𝑧2)(1 − 𝑅𝑅𝑧𝑧2)
 𝜃𝜃11 = ( 𝛾𝛾2 −  𝛾𝛾1)/2

 𝜃𝜃12 = (𝜋𝜋 −  𝛾𝛾2 −  𝛾𝛾1)/2
 𝜃𝜃13 = 𝜋𝜋 + ( 𝛾𝛾2 −  𝛾𝛾1)/2

 𝜃𝜃14 = 𝜋𝜋 + (𝜋𝜋 −  𝛾𝛾2 −  𝛾𝛾1)/2

 
(43

) 

where γ1 and γ2 are auxiliary angles, and 
θ11 to θ14 are four candidate solutions for 
θ1. 
By substituting θ1 in (31) using(43) the 

value of  θ23  can then be determined as 
follows: 

�
 𝜃𝜃231 = 𝑇𝑇𝑇𝑇𝑐𝑐𝑅𝑅𝑇𝑇𝑇𝑇2(𝑇𝑇𝑥𝑥𝑐𝑐1 + 𝑇𝑇𝑦𝑦𝑇𝑇1 − 𝑇𝑇𝑧𝑧)

 𝜃𝜃232 = 𝜋𝜋 +  𝜃𝜃231
 (44) 

 

�
𝑑𝑑1 − 𝑇𝑇2𝑇𝑇2 − 𝑑𝑑4𝑇𝑇23 = −𝑇𝑇𝑧𝑧𝑑𝑑6 + 𝑝𝑝𝑧𝑧

(𝑇𝑇1 + 𝑇𝑇2𝑐𝑐2 + 𝑑𝑑4𝑐𝑐23)𝑇𝑇1 = −𝑇𝑇𝑦𝑦𝑑𝑑6 + 𝑝𝑝𝑦𝑦
(𝑇𝑇1 + 𝑇𝑇2𝑐𝑐2 + 𝑑𝑑4𝑐𝑐23)𝑐𝑐1 = −𝑇𝑇𝑥𝑥𝑑𝑑6 + 𝑝𝑝𝑥𝑥

 (45) 

By submitting θ23 to the first equation 
in (45), then solutions for θ2 and θ3 can 
be obtained as (46) and (47): 

� 𝜃𝜃21 = 𝑇𝑇𝑇𝑇𝑐𝑐𝑇𝑇𝑠𝑠𝑇𝑇[(𝑑𝑑1 − 𝑑𝑑4𝑇𝑇23 + 𝑇𝑇𝑧𝑧𝑑𝑑6 + 𝑝𝑝𝑧𝑧)/
 𝜃𝜃22 = 𝜋𝜋 −  𝜃𝜃21                                                (46) 

 
θ3 = θ23 − θ2 (47) 

The solutions for θ4 and θ5 can be given 
as in (30). In this case, the reachable 
positions px and py can be calculated 
from the last two equations in (45), which 
may be far away from the desired 
positions. 
If oz = 1, then ox = 0 and oy  = 0. The 
result θ23 = 0 can be deduced from (31). 
By submitting θ23 in (45), the solutions 
for θ1 to θ3 can be obtained as in(48) and 
(49): 
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�
 𝜃𝜃21 = 𝑇𝑇𝑇𝑇𝑐𝑐𝑇𝑇𝑠𝑠𝑇𝑇�(𝑑𝑑1+𝑇𝑇𝑧𝑧𝑑𝑑6 − 𝑝𝑝𝑦𝑦)/𝑇𝑇2�

 𝜃𝜃22 = 𝜋𝜋 −  𝜃𝜃21
 𝜃𝜃3 = − 𝜃𝜃2

 (48) 

 

�
 𝛾𝛾4 = 𝑇𝑇𝑇𝑇𝑐𝑐𝑇𝑇𝑠𝑠𝑇𝑇�(−𝑇𝑇𝑦𝑦𝑑𝑑6 + 𝑝𝑝𝑦𝑦)/(𝑇𝑇1 + 𝑇𝑇2𝑐𝑐2 + 𝑑𝑑4𝑐𝑐23)�

 𝜃𝜃11 =  𝛾𝛾4
 𝜃𝜃12 = 𝜋𝜋 −  𝛾𝛾4

 

(49) 

where θ11 and θ12 are two candidate 
solutions for θ1. 

If oz = 0, then c23 = 0 or s4 = 0. If 
c23 = 0, then the solution of θ1 to θ3 
can be obtained from (45). If s4 = 0, 
θ1 can be resolved from (31), and θ2 
and θ3 deduced from (45). The solution 
of θ4 and θ5 can be given as (30). The 
processes of resolution in detail for 
these cases are omitted here. 

6. Experimental Results 

Several experiments were conducted to 
validate the derived inverse kinematics. An 
experiment was first conducted to check the 
correctness of the method de- rived in Section 
4, with reachable positions and ori- entations. 
The desired positions and orientations of the 
end-effector were created using forward 
kinematics with random joint angles. 
Therefore, these positions and orientations 
were reachable by the manipulator. 
Experiment results show that the derived 
inverse kinematics provide completely 
accurate solutions in this experiment. In 
addition, criteria 1 and 2 described by (31), 
(35), and (36) are also proved correct. 

6.1 Experiment of trajectory following 

In this experiment, desired positions and 
orientations of the end-effector were 
generated using: 

𝑇𝑇0 6 = �

1 0 0 𝑝𝑝𝑥𝑥
0 −1 0 𝑝𝑝𝑦𝑦
0 0 −1 𝑝𝑝𝑧𝑧
0 0 0 1

�      (50)  

 

�
𝑝𝑝𝑥𝑥 = 298 + 𝑅𝑅/5

𝑝𝑝𝑦𝑦 = 50 cos (𝜋𝜋𝑅𝑅/36)
𝑝𝑝𝑧𝑧 = 100 − 40𝑇𝑇𝑠𝑠𝑇𝑇 (𝜋𝜋𝑅𝑅/36)

 (51) 

 

Where t(=1,2,•••, 36) is an independent 
variable. The orientations were fixed, and the 
positions formed a smooth trajectory. 
Obviously, there were unreachable positions. 
This experiment was conducted to test 
solutions derived in both Sections 4 and 5.1. 

Experiment results for the simulated PArm 
are given in Fig. 4, and those for the real 
PArm in Fig.5. Figs.4(a) and 5(a) show 
desired positions with stars, and reached 
positions with circles. Coordinate units are in 
millimeters. Figs.4(b) and 5(b) show 
orientation errors in terms of Euler angles. 
Figs.4(c) and 5(c) il- lustrate orientation 
errors in terms of angles between desired and 
reached axis directions. Figs.4(d) and 5(d) 
display joint angles from the inverse 
kinematics. From Figs.4 and 5 it is clear that 
all desired positions match with mm accuracy 
and the Z-axis orientation is well satisfied. 
However, this is not the case with the X and 
Y -axis orientations, because the meth- ods 
applied here satisfy the positions and the Z-
axis orientation without considering the 
remained DOF in orientation. 

6.2 Experiment for unreachable positions and 
orientations near reachable ones 
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This simulation experiment was used to check 
if a group of reasonable solutions could be 
obtained for Positions and orientations near 
reachable ones. Reachable positions and 
orientations were generated using the forward 
kinematics with random joint angles, as 
conducted in experiment 1. Their Euler angles 
indicating orientations were calculated and 
then added using small random angles in the 
range [ −1.5 1.5 ] degrees. Positions were also 
added using random values, ranging between 
 [ −2 2 ] mm.  
In this way, positions and orientations in a 

small neighborhood of reachable ones were 
generated. The values of joint angles were 
strictly limited in their actual working range, 
and their accuracy set the same as for the real 
PArm, i.e. one degree. When values of 

solutions exceeded this range, a simple optimal 
search method using a grade-descent strategy 
was employed to find a group of approximate 
solutions in the range. It used the calculated 
solutions as initial starting points. It is clear 
that a group of satisfied approximate solutions 
can be found for any unreachable positions and 
orientations near reachable ones by using the 
inverse kinematics calculation combined with 
the grade-descent searching strategy. Inverse 
kinematics results are shown in Fig.6 for 
positions, and Fig.7 for errors of positions and 
the Z-axis orientation, respectively. It can be 
concluded that the three- dimensional positions 
and the Z-axis orientation can be effectively 
satisfied, whether the orientation of the end-
effector is reachable or not. 

 

 

 

 (a)Desired and reached position 
 

 
 (b)Orientation errors terms of Euler angles 
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 (c)Orientation errors in terms angles between 
desired and reached axis directions 

 

 
(d)Joint angles 

 

Fig.4 Experimental results using the simulated PArm 
 

 

 

 

 

 

 

 

 (a)Desired and reached position 

 

 

 (b)Orientation errors terms of Euler angles 
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 (c)Orientation errors in terms angles between 
desired and reached axis directions 

 

 

 

 
 

(d)Joint angles 
 

Fig.5.Experimental results using the real PArm 

 

6.3 comparison of methods described 
in Section 5 

The last experiment compared the 
methods derived in Sections 5.1 and 5.2 
with unreachable positions and 
orientations of the end-effector. 
Experiment results are provided below 
as Td, T1, and T2, where Td is the de- 
sired unreachable position and 
orientation, T1 is the reached position 
and orientation obtained by using the 
method in Section 5.1, and T2 is the 
reached position and orientation 
obtained by using the method in section 
5.2. It can be seen that the position and 
Z-axis orientation in T1 match Td very 
well and the remaining orientation is 
close to that in Td. The orientations in 
T2 are almost the same as those in Td, 
but the positions are far from those in 
Td. Therefore, the method in section 

5.1 provides advantages in comparison 
to the method in section 5.2. 

7. Conclusions and Future Work 

In this paper, a strategy based on 
geometric projection was proposed to 
resolve the inverse kinematics of a 5-
DOF manipulator. Sufficient and 
necessary criteria were provided to 
determine whether correct solutions 
existed without using forward 
kinematics. Once the four groups of 
candidate solutions were calculated for 
the first three joint angles, one criterion 
was employed to check which group 
was correct. In addition, it was possible 
using another criterion to check if there 
were multiple groups of correct 
solutions for a given position and 
orientation before resolving the inverse 
kinematics. Both criteria were derived 
for the first time in this paper. They 
provide significant convenience for the 
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resolving process of inverse kinematics. 
This is an im- portant advancement, 
since the singular problem often exists 
in 6-DOF manipulators. 

The effectiveness of the derived 
methods has been demonstrated 
through experiment results. For any 
reachable positions and orientations of 
the end-effector, correct solutions for 
the inverse kinematics of the PArm 
could be obtained from (18), (21), (23), 
(24), (25), and (30). Their correctness 
can be checked using criterion (31). 
For dealing with unreachable positions 
an orientations of an end-effector, 
solutions that satisfy the positions and 
the Z-axis orientation are preferred 
and can be used to satisfy applications 
such as those in [11] and [12]. We have 
currently focused on the problem 
associated with a mobile manipulator, 
i.e. a combination of a manipulator 
and a mobile robot. Although the 
manipulator has insufficient DOF, the 
addition of a 3-DOF mobile platform 
makes its DOF redundant; this in turn 
creates new problems for us to address 
in the future. 
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