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Abstract 
Many real systems are among underactuated stimulation systems. The number of actuators in such 

systems is less than their freedom degree. Translational oscillator with rotational actuator (TORA) is an 
underactuated system in cascaded form. In the present paper, this system has been investigated as a case 
study and then a sliding mode controller has been designed for it. This is due to the fact that among non-
linear controlling methods, sliding mode control is appropriate to achieve global stabilization. Also it is 
robust against external disturbances and parametric uncertainties in the system under control. In this 
paper the efficiency of simulation has been investigated. 
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1. Introduction 
Over the last decade, there has been a 

strong interest in underactuated systems. The 
control of underactuated systems is a 
challenging issue. The fact is, the irritability 
of these systems is less than the degrees of 
freedom that there is need to control. Due to 
the large use of underactuated systems in 
recent decades, efforts have been made to 
design controllers for these types of systems. 
The underactuated systems have very 
important applications, such as robotic 
rockets, marine robots, and underwater 
boats, weight reduce and significant cost 
saving and energy savings from these 
systems. Some advantages of underactuated 
systems, including their resistance to 
actuator defects, are noteworthy. In 
underactuated systems, the use of smooth 
feedback to stabilize around equilibrium 
points is entirely impossible even in 

localized conditions. In [1] there is limited 
provision for a stabilizer feedback law. In 
some underactuated systems, these 
conditions may not be satisfactory. For 
example, if a linear system has 
uncontrollable mode and positive 
eigenvalues, then the main system with the 
feedback control rule cannot be stabilized, 
even locally. In the reference [2] there is a 
stabilizer continues controller for a class of 
local controllable systems, even if the linear 
system has non-controllable modes 
(eigenvalues with positive real parts). In the 
reference [3], Global stabilizer non-Lipchitz 
continuous controller is proposed to satisfy 
two systems that may not provide the 
required Brockett conditions. These results 
indicate that continuous stabilizing feedback 
may overcome the difficulties of stabilizing 
smooth feedback. Researchers in Control 
Science have paid much attention to many 
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control issues in relation to mechanical 
systems, and various control strategies such 
as backstepping control technology 
techniques [4], energy  based technique[3] or 
comparative control, intelligent control, 
hybrid control [5]  have  been suggested for 
this purpose . 

The main discussion of this article is to 
develop sliding mode control method that 
can global stabilize all degrees of freedom in 
the under control system. This underactuated 
systems class can be described as external 
disturbance cascade forms. Since the slider 
model control is not smooth, the proposed 
sliding mode controllers can stabilize 
systems that they do not meet Brockett's the 
necessary conditions. Advantages of sliding 
mode control are the lack of sensitivity to 
errors of model and parametric uncertainty 
and other disturbances. When the system 
modes are on the sliding surface, the system 
behavior is determined by the structure of 
the sliding surface, this advantage gives us 
little freedom in controller design. So that 
we can modify the system model with virtual 
disturbances. 

2. The Statement of Problem 

The underactuated system is written as 
follows: 
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Where Tqqq ],[ 21=  and qq ,  are the states 

of under controlled system, and τ is input 
control, hi include Coriolis centrifugal, 
centrifugal, and gravitational. In the 

reference [6], a systematic approach is 
proposed (1) for transforming an 
underactuated system to normal cascade 
form (2) as follows:  
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where )4,3,2,1( =∈ iRx n
i system states, 

nRu∈  is input control and 
nnnnn RRbRRff ×→→ 44

21 :,:,  is 
nonlinear vector functions and b is inverse 
able and )3,2,1( =∈ iRd n

i  represents 
disturbances. Many of the underactuated 
systems are convertible to relationship 2. 
Examples are: reverse pendulum [7], N-
Transitional oscillator Rotary actuator 
(TORA) for example in [3] [7], airplane with 
vertical Takeoff capability [9] 

In this paper, our control goal is to stabilize 
all case in relation (2) and converge it to 
zero with relation (2), we have the following 
assumptions: 

Assumption 1: 0)0,0,0,0(1 =f  

Assumption 2:  if 31 / xf ∂∂  is reversible or 

41 / xf ∂∂ is reversible 

Assumption 3: 0),,0,0( 431 =xxf  is 
asymptotic stable for example x3 and x4 
converges to 0 if 0),,0,0( 431 =xxf . 

Assumption 1 is essential condition for the 
origin to have the closed loop system reach 
equilibrium regardless of disturbances. 
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The assumptions 2, 3 are necessary to 
improve the overall control of the sliding 
mode controller. However, the existence of 
d2  in equation 2 gives us the freedom of 
choosing f1 and finally these assumptions are 
obtained 

3.  Slider Module Controller Design 

In this section, we will refer to a general 
sliding mode controller that controls all 
states simultaneously. First, the error 
variable is expressed as: 
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That E2 and E1 is just for analyzes of 
stability of the system. It is better to delete 
definitions and proofs of e4 or e3 from E2 or 
E1. The following assumptions present the 
required conditions for in the design of the 
sliding mode controller offer [10]: 

Assumption 4: If d1 ≠0, then the maximum 
absolute value of sum of the rows 11 / xf ∂∂  is 
finite. For example, 111 / β≤∂∂

∞
xf  in which 

β1 is a constant non-negative integer. 

Assumption 5: If d2 ≠0, then the maximum 
absolute value of sum of the rows 21 / xf ∂∂  

is finite. For example, 221 / β≤∂∂
∞

xf  in 

which β2 is constant non-negative integer. 
Assumption 6: If 03 ≠d , and if 31 / xf ∂∂  is 
inverse able, 

31 / xf ∂∂  is limited, for example, 

331 / β≤∞∂∂ xf  where 3β  is a positive 

integer. 

Assumption 7: If 03 ≠d , and 41 / xf ∂∂  is 
inverse able, so the maximum absolute value 
of the sum of the rows 41 / xf ∂∂  is limited, 

for example, 441 / β≤∞∂∂ xf  where 4β  is a 

positive integer 

Assumption 8: Disturbance id  are bounded. 

If 41 / xf ∂∂  is reversible then we will have: 

222222112433 ,,.)( EddEddxddd <<+< ξ  

If 31 / xf ∂∂  is reversible then we will have: 

212221112433 ,,)( EddEddxddd <<+< ξ  

 (i =1, 2, 3, 4)≥i are fixed numbers, and (ξ 
(x) is also the vector field for the states x = 
[x1, x2, x3, x4] T. If 0/ 41 =∂∂ xf  and 

31 / xf ∂∂  invers able. Therefore, the 
switching level is expressed as follows: 

4332211 eecececs +++=  

If 41 / xf ∂∂  is invers able therefore, the 
switching level is expressed as follows: 

,332211 ecececs ++=  

In which Ci (i=1,2,3) are constant positive 
integers, so that the dynamics of the system 
on the sliding manifold S = 0 is stabled 
asymptotically, then the conditions Ci will 
be expressed, because we use two different 
levels S should have a relative degree of 1 
with respect to the u control input. 
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Note that the system expressed in relation 
(2) and assumptions (1) to (8) will not meet 
the bracket requirements. 

For example, consider the underactuated 
system: 
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Which relates to an unstable two-degree 

freedom mechanical system of in this 
excitation region in which xi are system’s 
states and 𝑢𝑢 is input, 𝑔𝑔 is gravity 
acceleration and 𝑙𝑙 is length of the pendulum. 
It is clear that the linear system (3) has an 
uncontrollable mode around the origin. 

Therefore, this underactuated system is not 
stabilized by the smooth feedback, because it 
is opposite to the first requirement of the 
bracket. However, continuous state feedback 
law exists and the system (3) is global stable. 

If we include 3x  in equation 3 and reduce 

3x  from second equation of 3, then system 
(3) can be rewritten in the general form in 
which we will have: 
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We have defined the error variables before, 
so we have: 
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It is clear that assumptions 1 through 8 are 
met. 

First case: 31 / xf ∂∂   and 0/ 41 =∂∂ xf  are 
reversible: 

The switching level is defined as 

4332211 eecececs +++=  consider the 
following matrix: 
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Where in In is a n×n matrix and also 
)( 1nleft A−λ is the real part of the eigenvalues 

of the matrix -An1. The ci must be chosen in 
a way that the matrix An is a Hurwitz and: 

)(,,max{ 1221121 nleft Adddd −<+ λββ  

The slider mode controller has two parts: the 
ueq equivalent control section and the usw 
control switch section. Equation control on 
Manifold 𝑆𝑆=0 can be calculated by inserting 

0=s  since that's mean: 
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The switching control unit is designed to 
converge 𝑆𝑆 to Manifold 𝑆𝑆 =0: 
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Where in: 

 

And, λρ ,  are positive constants. Sliding 
mode controller is 

sweq uuu +=       (6) 
 

Theorem 1 

If 0/ 41 =∂∂ xf and the matrix 31 / xf ∂∂  is 
reversible, then in accordance with the 
control law (6), all states (2) converge 
asymptotically to zero. 

Proof: First, we prove that there is a sliding 
mode. We consider the Lyapunov function 
as follows:  

2

2
1 s=ν  

Now, by derivation of V and with placement 
(6) to (4), we will have: 
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So, with the control rule (6), the system can 
reach the sliding surface of s = 0 and stay 
on it. In manifold, ,3322114 ececece −−= or 
S = 0, the main system can be reduced to 
the following system: 

1111

.
DEAE n +=    (8) 

where in: 

  D1  = [d1 , d2 , ( ∂ f1 /∂ x1 )d1  + ( ∂ f1 / 
T∂x2 )d2 ]  

.)()/(()/(
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This is a disrupted system with disturbance 
D1, which: 

2121 ED γ< , { }.,,max 221121 dddd ββγ +=  

by assuming 0>= TQQ , Lyapunov 

equation 011 >−=+ TT
nn QPAP  has unique 

response and 0>= TPP . Because matrix 

1nA  is a Horvitz. 

By using 111 PEEV T= as a Lyapunov 
function, we have: 

,)(2)( 2

21max
2

21min1 EPEQV γλλ +−≤  (9) 
 

Where )(max Pλ  is the largest and )(min Pλ  is 
the smallest eigenvalues of a definite 
positive matrix P. If ),(2/)( maxmin PQ λλγ <  

therefore 0
.
<V  and the main system is 

asymptotically stable. So ratio of
),(2/)( maxmin PQ λλ  is very important and 

should be so big that it will repel the big 
disturbances. In fact, this ratio can be 
maximized by selecting nIQ 3=  [11]. If 

nIQ 3= then 1)(min =Qλ  and 
))(2/(1)( 1max nlift Ap −= λλ . If )( nalift A−< λγ

then the reduced system at the origin is 
asymptotically stable, and 321 ,, eee , all three 
converge to zero. 

,)(()(
2433212231132211 ρξβββ ++++++= xddEdcdcdcdcM
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Since 04332211 =+++= eecececs  so 4e  

converges to zero. By recalling 13 fe =  and 
assumption 3, it can easily be proved that 
after stabilization ifexexe === 32211 ,, both 

3x and 4x  converge to zero. 

The switching level is defined as follows: 

32211 eececs ++=  

The constants ic  can be chosen according to 
the following matrix. 
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That's the 2nA matrix is Horvitz and

)(},max{ 221 nleft Add −< λ . Equivalent control 

and switching control are as follows: 
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Where: 
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Slider mode control is a combination of equ

and swu so we have 

sweq uuu +=  (12) 

Theorem 2 

If the matrix 41 / xf ∂∂  is reversible, and in 
accordance with the control rule (12), all 
states of system (2) converge asymptotically 
to zero. 

Proof: As in the proof of theorem (1) we can 
prove that the convergence to the sliding 
surface S = 0 will occur in a finite time, and 
in sliding manifold S = 0 or 22113 ecece −−= , 
the main system will be reduced to the 
following system. 

,2222 DEAE +=       (13) 

That: 

,],[ 12
TddD =   

222122 },max{ EddD <  

Since 2A  is Horvitz and 
)(},max{ 221 nleft Add −< λ , infiltration system 2E  

is asymptotically stable. So, 22 xe =  ، 11 xe =  
will converge to zero. Since 013 == fe and 

0=s  using the assumption (3) we conclude 
that all states of the original system converge 
to zero. 

4. TORA System 

The TORA rotary motion oscillator system 
as a benchmarking system is used to 
evaluate the performance of various 
nonlinear controllers in [12], [3] and [13]. A 
general outline of the TORA system can be 
found in [3]. Let 1Z  be the normal 
displacement of the platform from the 

balance position. 
.

121 , zz =θ  is the angle of 
the rotor, and θ2=θ1. The dynamics of the 
TORA system is expressed as follows: 
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Where v is input control and ε  is a constant 
parameter that depends on the mass of the 
rotor platform. All values have been 
normalized to non-dimensional units. Using 
the following coordinates: 
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We are now able to change the TORA system 
to the following cascading form: 
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In the second equation, we introduce 

33 1111 xx εε +−  in which 311 xε is the same 
disturbance as in assumptions 2 and 3. Then 
equation (15) can be expressed as equation 
(2). While: 
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There is only one answer, and it is x3=x4=0. 
Therefore, assumptions 1 to 3 are observed. 
Since this system has only one disturbance, 
and 32 11 xd ε=  and 0// 2111 =∂∂=∂∂ xfxf . 
Assumptions 6 and 8 are true. It is clear that: 

ε12/ 31 <∂∂ xf  

We remind that 11 xe =  and 

33113 11sin xxxfe εε −+==  so we have: 

.2.211210
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So the assumptions 6 and 8 are also well 
established. in the next section, the TORA 
system is simulated with the proposed 
controller in the simulink environment of 
MTLAB software, and then it will be shown 
that the proposed controller is capable of 
stabilizing the TORA system. 

5. Numerical Simulations 

The fig 1 shows simulator program written 
in the simulinik environment of MATLAB 
Software. The blocks in this simulator are 
written in the environment of m-file 
programming. In the simulation done, five 
blocks have been designed that include: The 
first block is related to TORA robot system 
which its equations are mentioned in the 
previous section of this article. There is 4 
modes in this equation, so the simulator 
block will also have four outputs. The 
second block is defined as sliding surfaces 
and the error signals generator. The third and 
fourth blocks are related to the entrance 
control, which is a combination of two Ueq 

and Usw parts. The sum of these two parts 
gives us control system entrance which is 
sliding mode controller. The fifth block is 
related to given changed variable and is 
obtained θ and 𝑧𝑧 variables through it. further 
to examine the controller capabilities 
discussed in the previous section, we will 
examine the effect of changing the value of 
each of the controller parameters. 
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Fig.1. The Simulator 

Analysis of effect parameter c1:  

The nominal value of the parameter c1 is 
selected 20. To examine its effect on the 
closed loop system response and control 
signal, we increased its quantities to %100 
and then decreased its quantities to %100. 
According to Figures 2 and 3, choosing this 
nominal value is desirable because by its 
reduction to 10 fluctuation of plotted graphs 
are reduced while when it is increased to 30 
fluctuation of plotted graphs are increased. 
So C1 = 20 is more appropriate 
 

 
Fig.2. The normal displacement of the platform 

from the balance position: Z1 

 
Fig.3. behavior of θ_1 

Although the dynamic behavior of the 
sliding surface is appropriate for the value 
30 according to Fig. 4. Fig. 5 and 6 are 
drawn Ueq and Usw. Apparently, choosing 
value 30 for parameter C1 is better because 
the signal control range is low. But 
according the behavior of θ1 shown in Fig.3, 
the choice of nominal value 20 is 
conservative and appropriate. Sum result of 
the signals Ueq and Usw is plotted in Fig. 7. 
The υ(t) is also presented in Fig. 8. 

 

 
Fig.4. The dynamic behavior of the sliding 

surface: S(t) 
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Fig.5. The equivalent control: U_eq  

 

 
Fig.6. The control switch: U_sw  

 

 
Fig.7.Control signal: U(t) 

Analysis of effect parameter c2:  

The nominal value of parameter c2 is 
selected 25. To examine its effect on the 
closed loop system response and control 
signal, we increased its quantities to %60 
and then decreased its quantities to %40. 

 
Fig.8. The input control: υ(t) 

The nominal value of parameter c2 is 
selected 25. To examine its effect on the 
closed loop system response and control 
signal, we increased its quantities to %60 
and then decreased its quantities to %40. 
Then according to figures 9 and 10, 
choosing this nominal value is desirable 
because while decreasing it to 15 
fluctuations range are amplified although by 
decreasing it to 40 system response is 
slowed. So the selected nominal value is 
more suitable. However, according to figure 
11 the dynamic behavior of sliding surface is 
equal for all values and doesn’t show a 
significant difference. Graphs of Ueq and 
Usw was drawn in figures 12 and 13. In 
figure 12 when parameter c2 = 40, the Ueq 
signal control range is very high, when it 
decreases to 15 Ueq signal control range 
decreases too although no great difference is 
shown in graph Usw. Decrease or increase in 
the Usw signal control range makes increase 
the range of oscillations or slows down the 
charts plotted in figures 9 and 10. So 
choosing nominal value 25 seems to be 
appropriate. Sum result of the signals Ueq 

and Usw is plotted in Fig. 14. The υ(t) graph 
is also presented in Fig. 15. 
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Fig.9. The normal displacement of the 
 platform from the balance position: Z1 

 

 
Fig.10. Behavior of θ_1 

 

 
Fig.11. The dynamic behavior of the 

 sliding surface: S(t) 

 
Fig.12. The equivalent control: U_eq 

 

 
Fig.13. The control switch: U_sw 

 

 
Fig.14. Control signal: U(t) 
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Fig.15. The input control: υ(t) 

Analysis of effect parameter c3: 

The nominal value of c3 is selected 10. For 
examine its effect on the closed loop system 
response and control signal, we increased its 
quantities to 50 % and then decreased its 
quantities to 50 %. 

 
Fig.16. The normal displacement of the 
 platform from the balance position: Z1 

 

 
Fig.17. Behavior of θ_1 

According to figures 16 and 17, choosing 
this nominal value is desirable, because by 
decreasing it to 5 the response  of system is 
slowed while increasing it to 15 fluctuations 
range are amplified. So the selected nominal 
value (c3 = 10) is more suitable. Although, 
the dynamic behavior of the slip surface for 
C3=10 is more suitable according to fig.18. 
Due to slow response, value c3 = 10 and 
greater is more suitable. Graphs are drawn 
for Usw and Ueq in fig 19 and 20. According 
to these graphs, it seems that selecting the 
value10 for C3 is good because the behavior 
of Usw and Ueq are better. Sum of the signals 
Usw and Ueq that is u(t) has been drawn in 
Fig. 21. The graph of υ(𝑡𝑡) is also presented 
in Fig. 22. 

 
Fig.18. The dynamic behavior of 

the sliding surface: S(t) 
 

 
Fig.19. The equivalent control: U_eq 
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Fig.20. The control switch: U_sw 

 

 
Fig.21. Control signal: U(t) 

 

 
Fig.22. The input control: υ(t) 

6. Results 

In this paper, the TORA robot was 
introduced as a class of underactuated 
nonlinear systems. Then, sliding mode-based 
control technique is introduced to investigate 
the stability of closed loop system, nonlinear 

control system in conjunction with the 
proposed controller, is simulated in the 
environment Simulink MATLAB software. 
To investigate the effect of the controller on 
the behavior of the closed loop system, the 
control parameters were changed and the 
resulting graphs were plotted and then 
examined. 
To continue the work, it is suggested to 
examine the robustness of the proposed 
control algorithm against the uncertainty and 
external disturbances entered into the robot. 
The part devoted to controller design 
includes fine points in adjusting controller 
gain and slider mode design coefficients, 
which makes it difficult to choose an 
optimally adjusts these coefficients and 
interest rates. It is suggested to use 
optimization techniques such as genetic 
algorithm to adjust these coefficients. 

Reference 

[1]  R. W. Brockett, “Asymptotic stability and 
feedback stabilization”, Differential geometric 
control theory, Boston: Birkhäuser,1983. 

[2] M. Kawski , “Stabilization of nonlinear 
systems in the plane”, Systems & Control 
Letters, 12, 169–175, 1989. 

[3] Jankovic, M., D. Fontaine and P. V. 
Kokotovic. TORA example: cascade- and 
passivity-based control designs. IEEE rans. 
Control Systems echnol., 4, 292-297, 1996. 

[4] Seto, D., & Baillieul, J. (1994). Control 
problems in super-articulated mechanical 
systems. IEEE Transactions on Automatic 
Control, 39(12-2442,2453). 

[5] Fierro, R., Lewis, F. L., & Lowe, A. (1999). 
Hybrid control for a class of underactuated 
mechanical systems. IEEE Transactions on 
Systems, Man, and Cybernetics—Part A: 
Systems and Humans, Vol. 29, No. 6, 649–
654. 



Journal of Artificial Intelligence in Electrical Engineering, Vol. 5, No. 20, March 2017 
 

51 
 

[6] Olfati-Saber, R. Normal forms for 
underactuated mechanical systems with 
symmetry. IEEE Transactions on Automatic 
Control, 47(2), 305–308, 2002. 

[7] Lozano, R., Fantoni, I., & Block, D. J.  
Stabilization of the inverted pendulum around 
its homoclinic orbit. System & Control Letter, 
Vol. 40, No. 3, pp. 197-204, 2000. 

[8] Freeman, R. A. and P. V. Kokotovic. Tracking 
controllers for systems linear in the 
unmeasured states. Automatica, Vol. 32, 735-
746. 1996 

[9] R. Olfati-Saber, “Global configuration 
stabilization for the VTOL aircraft with strong 
input coupling”, IEEE Transactions on 
Automatic Control, Vol. 47, No. 11, pp. 1949–
1952, 2002. 

[10] Utkin, V. I. Sliding modes in control and 
optimization. New York: Spinger. 1992. 

[11] Khalil, H. K. Nonlinear systems. third ed., 
Englewood Cliffs, NJ: Prentice-Hall. 2002 

[12] scorba, G., Ortega, R., & Sira-Ramirez, H. 
Output feedback global stabilization of a 
nonlinear benchmark system using a saturated 
passivitybased controller. IEEE Transaction on 
Control System Technology, Vol. 7, No. 2, pp. 
289-2931, 999. 

[13] ZHONG-PING JIANG,- DAVID J. HILL- and 
YI GUO. Stabilization and Tracking via 
Output Feedback for the Nonlinear Benchmark 
System. Automatica, Vol. 34, No. 7, pp. 907-
915, 1998  

 


