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Abstract: 

Regarding the daily increasing development of process and chemical industries and the 

requirement to improve energy consumption and increasing the output, advanced process control 

strategies are utilized effectively. Model predictive control as a successful developed process 

control has been proposed to deal with problems having constraints and multivariable systems. 

The successful administration of this strategy requires proper adjustment of its’ parameters. In this 

research, three reservoir system has been modeled as a laboratory plant and predictive control 

algorithm for first order system with delay has been designed in the form of an unlimited case. The 

delayed first order model has been achieved though the implementation of a white noise signal into 

the plant to recognize the system. Then parameters were adjusted using an analytic method. Results 

of simulations showed that model predictive control has represented an optimal performance 

through proper adjustment of the parameters.  
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Introduction 

During the latest two decades there has been 

a great deal of interest on the part of industry 

and academic environments towards 

advanced process control [1]. Considering the 

growth and spread of process industries a 

need is felt to access products with higher 

qualities, products with better performance, 

rapid adjustment with changes in the market, 

and a need to access successful control design 

which can work strongly in theory and 

practice [2]. Model predictive control has 

been extensively used in process industries 

such as oil refinery, chemistry engineering 

and metalogics for more than two decades as 

an optimal method based on a clear use of 

process model [3-14]. The idea of model 

predictive control method could be attributed 

to output behavior prediction or a process 

state within a limited time horizon, the 

calculation of input signal for future in each 

time step through minimizing cost function in 

the presence of restrictions and the 

application of the very first constituent of the 

controlling input vector. Therefore, having a 

system model is known as a prerequisite 

condition to design a model predictive control 

approach.  

Model predictive control has some 

advantages compared with other control 

methods and some of the most important 

items in this regard are the objectivity of the 

concepts, working with it in the industry, 

working with complicated dynamics, systems 

with delay, non-minimized phase, 

multivariable, and the application of simple 

prerequisites [8]. In [15], the model 

predictive control has been applied for a 

connected two reservoir system. In [16], and 

using Laguerre functions, predictive control 

has been designed and implemented for a four 

reservoir system. In [17], a generalized 

predictive control for a coupled four tank 

MIMO system using a continuous-discrete 

time observer has been designed and 

implemented. One of the challenges of using 
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model predictive control is how to adjust its 

parameters. To reach consistency and optimal 

system performance we need to adjust 

predictive control parameters properly. In 

[18], the adjustment methods proposed 

during the years between 1980 and 1994 have 

been represented. In this research and through 

applying a white noise signal into the plant 

and recognizing it, the first order model with 

delay has been achieved. Then an analytical 

method [19], has been utilized to adjust 

predictive control parameters. Model 

predictive control has been designed to 

control the liquid level in the third tank of a 

three reservoir system and its parameters 

have been adjusted using an analytical 

method. The present paper has been divided 

into five sections. In second section, the 

system has been modeled and has been 

written in the form of state space. In third 

section, a predictive model control for first 

order model with a delay in the system has 

been designed and its control signal has been 

achieved. In section four, the adjustment of 

parameters and simulation results have been 

investigated. In part five, the conclusion has 

been represented. 

 

Fig. 1.Three Reservoir System 

 

 

Three Reservoir System Modeling 

In this part the system model in the form of 

space state has been represented. According 

to figure 1, water with a fluid rate of Qin is 

sucked from the main tank and enters the 

system and exits from it with a fluid rate of 

Qout. The system input Qin and its output is 

known as water height in the third tank (H3). 

Through writing a mass balance equation for 

each tank, we would have the following 

equations: 

Tank 1: 

𝜌𝐴1
𝑑ℎ1

𝑑𝑡
= 𝜌𝑄𝑖𝑛 − 𝜌𝑄2                                    (1) 

𝑄2 =
ℎ1

𝑅1
                                                          (2) 

Tank 2: 

𝜌𝐴2
𝑑ℎ2

𝑑𝑡
= 𝜌𝑄2 − 𝜌𝑄3                                   (3) 

𝑄3 =
ℎ2

𝑅2
                                                         (4) 

Tank 3: 

𝜌𝐴3
𝑑ℎ3

𝑑𝑡
= 𝜌𝑄3 − 𝜌𝑄𝑜𝑢𝑡                               (5) 

𝑄𝑜𝑢𝑡 =
ℎ3

𝑅3
                                                     (6) 

Through placing equation 2 in 1 and equation 

2 in 3 and equations 4 and 6 in 5, the system 

space state model is achieved as follows: 

�̇� = 𝐴𝑥 + 𝐵𝑢                                               (7) 

𝑦 = 𝐶𝑥                                                          (8) 

𝑥 = [ℎ1 ℎ2 ℎ3]
𝑇                                      (9) 

𝐴 =

[
 
 
 
 
−1

𝐴1𝑅1
0 0

1

𝐴2𝑅1

−1

𝐴2𝑅2
0

0
1

𝐴3𝑅2

−1

𝐴3𝑅3]
 
 
 
 

    𝐵 = [

1

𝐴1

0
0

]  

𝐶 = [0 0 1]                                             (10) 

Through changing the amounts above using 

Laplace transfer in equations 1 to 6 and 
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applying the numbers, the system exchange 

function with output h3 is gained as follows: 

𝐻3(𝑠)

𝑄𝑖𝑛(𝑠)
=

𝑅3

(𝐴1𝑅1𝑠+1)(𝐴2𝑅2𝑠+1)(𝐴3𝑅3𝑠+1)
         (11) 

Predictive model control design for first order 

system with delay 

In this part, a predictive model control in the 

form of space state model [20] for first order 

system with delay has been designed. 

Discrete time model with sampling time Ts 

has been represented as equation (12) below: 

𝐺𝑑(𝑧
−1) =

𝑘𝑝(1−𝑎)𝑧
−𝑘−1

1−𝑎𝑧−1
                           (12) 

where, 𝑎 = 𝑒−𝑇𝑠/𝜏 , 𝑘 = 𝜃/𝑇𝑠   The discrete 

time space state model is explained as 

follows: 

𝑥𝑚(𝑘 + 1) = 𝐴𝑚𝑥𝑚(𝑘) + 𝐵𝑚𝑢(𝑘),      (13) 

  𝑦(𝑘) = 𝐶𝑚𝑥𝑚(𝑘)                                (14) 

u is the input variable and y is the output in 

the process. Using subtraction operation in 

both sides of the equation 13 and equations 15 

and 16, result in equation 13 modified as 

equation 17. 

∆𝑥𝑚(𝑘 + 1) = 𝑥𝑚(𝑘 + 1) − 𝑥𝑚(𝑘)   (15) 

∆𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1)                 (16) 

∆𝑥𝑚(𝑘 + 1) = 𝐴𝑚∆𝑥𝑚(𝑘) + 𝐵𝑚∆𝑢(𝑘)(17) 

Also for output, we would have: 

𝑦(𝑘 + 1) − 𝑦(𝑘)
= 𝐶𝑚(𝑥𝑚(𝑘 + 1) − 𝑥𝑚(𝑘)) 

                        = 𝐶𝑚∆𝑥𝑚(𝑘 + 1)         (18) 

Through placing numbers in equations 17 and 

18, the output is achieved as equation 19: 

 𝑦(𝑘 + 1) =  𝐶𝑚𝐴𝑚∆𝑥𝑚(𝑘) +
𝐶𝑚𝐵𝑚∆𝑢(𝑘) + 𝑦(𝑘)                            (19) 

The new state variable is defined as equation 

20 below: 

𝑥(𝑘) = [∆𝑥𝑚(𝑘)
𝑇    𝑦(𝑘)]𝑇                  (20) 

The completed space state model is explained 

as follows: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵∆𝑢(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) 

𝑥(𝑘 + 1) = [
 ∆𝑥𝑚(𝑘 + 1)

𝑦(𝑘 + 1)
] ,  

𝐴 = [
𝐴𝑚 𝑜𝑚

𝑇

 𝐶𝑚𝐴𝑚 1
] , 𝐵 = [

𝐵𝑚
𝐶𝑚𝐵𝑚

]  

𝐶 = [𝑜𝑚 1] , 𝑜𝑚 = [0 0 . . . 0]
⏞      

𝑛1

              (21) 

The identification of optimal control signal 

through solving the cost function below is 

determined: 

min
𝑢(𝑛)

(𝑤(𝑛) − 𝑦(𝑛))
𝑇
𝑄(𝑤(𝑛) − 𝑦(𝑛)) +

                                         (∆𝑢(𝑛))
𝑇
𝑅(∆𝑢(𝑛))  

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑛 + 𝑖|𝑛) ≤ 𝑢𝑚𝑎𝑥                    (22) 

𝑦𝑚𝑖𝑛 ≤ �̂�(𝑛 + 𝑗|𝑛) ≤ 𝑦𝑚𝑎𝑥 

Where, 

𝑤(𝑛) = [

𝑤(𝑛)
𝑤(𝑛)
⋮

𝑤(𝑛)

]  , 𝑦(𝑛) = [

�̂�(𝑛 + 𝑁1|𝑛)
�̂�(𝑛 + 𝑁1 + 1|𝑛)

⋮
�̂�(𝑛 + 𝑁𝑝|𝑛)

]  

∆𝑢(𝑛) = [

∆𝑢(𝑛)

∆𝑢(𝑛 + 1)
⋮

∆𝑢(𝑛 + 𝑁𝑐 − 1)

] 

𝑄 = [

1 0 … 0
0 𝑞2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 … 0 𝑞𝑝

]

𝑃×𝑃

,  

𝑅 = 𝑘𝑝
2(1 − 𝑎)2 [

𝑟1 0 … 0
0 𝑟2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 … 0 𝑟𝑀

]

𝑀×𝑀

  (23) 

In equations 23, lower level predictive 

horizon was 𝑁1 = 𝑘 + 1 and the upper level 

of predictive horizon was 𝑁2 = 𝑘 + 𝑃. Also 

P represents predictive horizon and M 
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represents control horizon. The amount of 

predicted output in time k is known as 𝑦(𝑛 +
𝑘|𝑛) where we possess the output until time 

n. If the output is represented as the vector 

y(n) in equations 23, the predicted output in 

the equation will be as follows: 

𝑦(𝑛) = ∅∆𝑢(𝑛) + 𝐹𝑥(𝑘)                       (24) 

where, 

𝐹 = [

𝐶𝐴𝑘+1

𝐶𝐴𝑘+2

⋮
𝐶𝐴𝑘+𝑃

]

𝑃×(𝑘+2)

 , 

𝑆 = [

𝐶𝐴𝑘𝐵 0 0 0
𝐶𝐴𝑘+1𝐵 𝐶𝐴𝑘𝐵 0 0

⋮ ⋮ ⋱ ⋮
𝐶𝐴𝑘+𝑃−1𝐵 𝐶𝐴𝑘+𝑃−2𝐵 … 𝐶𝐴𝑘+𝑃−𝑀𝐵

] 

(25) 

The real system output prediction is gained as 

equation 26 below: 

�̂�(𝑛 + 𝑘) = 𝑎𝑘𝑦𝑚(𝑛) + 𝑘𝑝(1

− 𝑎)(𝑎𝑘−1𝑢(n − k)
+ 𝑎𝑢(𝑛 − 2) + 𝑢(𝑛 − 1)
+ 𝑑(𝑛)) 

𝑑(𝑛) = 𝑦𝑝(𝑛) − 𝑦𝑚(𝑛)                        (26) 

where yp is the plant output and ym is 

represented as model output. 

We have an optimal control signal as below: 

∆𝑢(𝑛) = 𝐾𝑦(𝑤(𝑛) − �̂�(𝑛 + 𝑘)) −

𝐾𝑥(∆�̂�(𝑛 + 𝑘))                                      (27) 

where, 

𝐾𝑥 = [

𝐾𝑥1
𝐾𝑥2
⋮
𝐾𝑥𝑀

] = (𝑅 + 𝑆𝑇𝑄𝑆)−1𝑆𝑇𝑄𝐹 

𝐾𝑦 =

[
 
 
 
𝐾𝑦1
𝐾𝑦2
⋮
𝐾𝑦𝑀]

 
 
 

= (𝑅 + 𝑆𝑇𝑄𝑆)−1𝑆𝑇𝑄1𝑃×1 (28) 

Using law of diminishing marginal utility 

through which the first row of control signal 

is implemented, equation 27 will be changed 

as follows: 

𝐺𝑚(𝑠) =
4.0224𝑒−𝑠

5.6355𝑠+1
                                 (29) 

The adjustment of parameters and results of 

simulations 

In this section, the white noise input with 

variance 5 has been applied into the system 

regarding the amounts for three reservoir 

system parameters using MATLAB 

recognition software and the results were 

estimated through collecting input and output 

data into the first order model with delay. 

Having amounts related to system model in 

the form of first order with delay model using 

an analytic method (17), the parameters P and 

M and weight matrixes R and Q are adjusted 

and regarding their amounts, the predictive 

model control has been designed. 

The sample amounts for three tank system are 

represented as follows: 

𝑅1 = 𝑅2 = 2 𝑚/(𝑚
3/s) , 𝑅3 = 4 𝑚/(𝑚

3/s) 

𝐴1 = 𝐴1 = 1𝑚
2 , 𝐴3 = 0.5𝑚

2 

𝑯𝟑(𝒔)

𝑸𝒊𝒏(𝒔)
= 𝐺𝑝(𝑠) =  

𝟒

(𝟐𝒔+𝟏)(𝟐𝒔+𝟏)(𝟐𝒔+𝟏)
           (30) 

White noise input with variance 5 and system 

output is represented as figure 2. 

 

Fig. 2. White noise input and applying it into 

plant 
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Fig. .3.System Distribution Spread 

First order system with estimated delay is 

represented as follows: 

𝐺𝑚(𝑠) =
4.0224𝑒−𝑠

5.6355𝑠+1
                               (31) 

Figure 4 represents the recognized model 

output and plant regarding white noise input 

where model output, has followed main plant 

output properly.  

 

Fig. 4. Plant output and model regarding 

amounts of white noise input 

Discrete time transfer function of process 

model with fixed time of 1 second is gained 

using equation 32: 

𝐺𝑚(𝑧
−1) =

.654𝑧−2

1−.8374𝑧−1
                           (32) 

Discrete time transfer function for plant is 

represented as follows: 

𝐺𝑝(𝑧
−1) =

.05755𝑧2+.1589𝑧+.02718

𝑧3−1.82𝑧2+1.104𝑧−.2231
           (33) 

System closed loop transfer function is 

represented as equation 34: 

𝐺𝑐𝑙(𝑧
−1) =

�́�𝑦1(−.2276𝑧
−4+.1387𝑧−3−.323𝑧−2+.5755𝑧−1)

∆𝑐𝑙(𝑧
−1)

 (34) 

Where, ∆𝑐𝑙(𝑧
−1) is represented as (35): 

∆𝑐𝑙(𝑧
−1) = −.1868�́�𝑥1𝑧

−6 + (. 1868(�́�𝑥1 +

�́�𝑦1) + 1.3389�́�𝑥1 − .1222)𝑧
−5 +(-

1.338(�́�𝑥1 + �́�𝑦1)- 2.5873�́�𝑥1 +

.8727)𝑧−4 + (2.5873(�́�𝑥1 + �́�𝑦1) +

2.6843�́�𝑥1 − 2.4693)𝑧
−3 +

(−2.6843(�́�𝑥1 + �́�𝑦1) − 1.4126�́�𝑥1 +

3.4567)𝑧−2 + (1.4126(�́�𝑥1 + �́�𝑦1) −

2.3919)𝑧−1 + .6546                            (35) 

Stability area for equation 35 is known as 

figure 5 below: 

 

Fig. 5. Stability area for system multiple 

sentences 

Through the selection of amounts �́�𝑥1 =

.5 , �́�𝑦1 = .15, the amount of prediction 

horizon is considered to be equal to 15. In this 

research, the control horizon has been 

considered to be equal to 2. X11, X12, Y11, 

Y22, and X22 were calculated as follows 

regarding article [17]: 

𝑋11 = 293.31 , 𝑋12 = 274.5 , 𝑋22 = 259.86 

𝑌11 = 62.78 , 𝑌22 = 57 

The amounts r1 and r2 were achieved as 

follows: 

𝑟1 = 29.21 , 𝑟2 = 45.95 

Through the application of these amounts in 

predictive control algorithm, state and output, 

control signal and control challenges could be 

represented as figure 6 below: 
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Fig. 6.Output and first order system control 

signal with estimated delay 

Conclusion 

In this paper, a three reservoir system was 

modeled and its recognition was calculated 

through the application of a white noise signal 

using plant to first order system with 

estimated delay through designing a 

predictive control. The requirement for 

optimal performance of the predictive control 

is the proper adjustment of its parameters. 

The predictive control parameters were 

adjusted using an analytic method. Results of 

an optimal performance of simulation of the 

predictive control represents height control of 

water level in third tank.  
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