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Abstract 

Deep learning has developed rapidly in recent years and has been applied in many areas that are major 
areas of artificial intelligence. The combination of deep learning and embedded systems has created 
good dimensions in the technical field. In this paper, a deep learning neural network algorithm can be 
designed that can be implemented on FPGA hardware. The PyTorch and CUDA were used as assistant 
methods. Convolution neural network (CNN) was also used for image classification. Three good CNN 
models such as ResNet, ResNeXt and MobileNet were reviewed in this article. Using these models in the 
design, an algorithm was eventually designed with the MobileNet model. Models were selected from 
different aspects such as floating operation point (FLOP), number of parameters and classification 
accuracy. In fact, the MobileNet-based algorithm was selected with a top-1 error of 5.5% in software 
with a 6-class data set. In addition, hardware simulation in MobileNet-based algorithms was presented. 
The parameters were converted from floating numbers to 8-bit integers. The output numbers of each 
layer were cut into integer fixed bits to fit the hardware constraint. A method based on working with 
numbers was designed to simulate number changes in hardware. The results of simulation show that, 
the top-1 error increased to 12.3%, which is acceptable. 

Keywords: Artificial Intelligence, Deep Learning, Image Classification, Convolution Neural 
Network, Deep Learning Algorithm. 

 

1- Introduction 

Deep learning has always been used in 
areas such as image classification and voice 
recognition with raw data. Compared to 
desktops, embedded systems (such as 
FPGA) have lower power consumption, 
smaller size, and lower unit cost  [1]. The 
FPGAs are used in several fields such as 
robots and smartphones  [2]. 
The FPGA board is using the Xilinx Zynq 
UltraScale + MPSoC ZCU104 evaluation 
kit with 38 MB of memory [3]. This 
memory is small enough to run a CNN 
model. Parameters and most workloads are 
stored in memory. It therefore needs to 
design a CNN model small enough to 
overcome the limitations of hardware 
memory. In this paper, by combining CNN 

and FPGA, an embedded CNN system with 
image recognition capability was produced. 
It is assumed that it detects the information 
on the image in a reasonable period of time  
[4]. 
Previous studies [5] on the use of 
specialized devices such as FPGAs and 
GPUs in heterogeneous computations to 
accelerate deep learning computations with 
energy efficiency constraints to evaluate 
efficient DNN performance show that using 
FPGA for fully connected layer and GPU 
for floating point operation can be faster 
calculation and much lower power 
consumption.  
Also, studies on the study of FPGA-based 
accelerators from deep learning networks 
for learning and classification, recent 
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techniques to accelerate deep learning 
networks in FPGA reflect recent trends in 
FPGA-based accelerators of deep learning 
networks [6]. 
The purpose of this paper is image 
recognition and for this purpose, image 
classification was performed in the 
embedded system. The camera was used to 
capture the image and the captured images 
were transferred to the FPGA board. FPGA 
board is a hardware platform that is the 
main part of the system. The CPU on the 
FPGA board prepares images with the 
given size and type of data and then sends 
the data to the programmable logic in which 
CNN implements and executes. CNN then 
on the board, the FPGA output contains 
several digits that indicate the previously 
distributed image classification. The result 
of the diagnosis is displayed on the screen. 
As mentioned earlier in this paper, a 
combination of CNN and FPGA produced 
an embedded CNN system with image 
recognition capabilities. Therefore, provide 
a CNN model with an accuracy greater than 
90% (top-1 error less than 10%) based on 
the target data set; evaluation based on top-
1 error, spatial resource cost, and model 
complexity; comparing different models 
with the proposed model and select the 
appropriate model for hardware 
implementation; designing a method to 
convert the parameters of the selected 
model to format (mobile numeric 
numbers); providing a solution for 
simulating hardware performance based on 
specific features of the FPGA board and 
achieving simulation accuracy of more than 
85% are important objectives of this paper. 

2- Methodology 

Quantitative and qualitative methods were 
used in this article. Also, in this article, the 

deductive method was used. The models 
used in this article are: ResNet, ResNeXt, 
MobileNet and ShuffNet. Software 
performance and cost are shown. The 
networks designed in this article are not the 
main networks in the articles. The most 
important features of these networks were 
studied and the basic structure was 
maintained. Most importantly, by reducing 
the number of layers or channels, space 
costs can be reduced to an acceptable level. 

3- Data set and analysis method 

In this article, the data set containing 
fingerprints (representing numbers 0 to 5) 
in the Kaggle database was used. 
The simulation was performed in 
MATLAB V.2015b and was performed on 
a system with 7-core processor 
specifications with 6 MB of cache and 3.6 
MHz and 6 GB of memory in Windows 8. 

4- Network training 

Samples of datasets used in this paper are 
shown in Figure (1). Some methods have 
been used to complicate the data set, such 
as adding noise and background. Images 
include a gray scale channel measuring 128 
x 128 x 128. 
 

   
 

   
Fig (1): The main examples of data sets 

taken from the kaggle database. 
The rest of the data set are all similar 
images with finger movements from 
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number 0 to 5. To show more datasets, the 
black background of the original dataset 
must be changed. These is to add random 
backgrounds to the pure black and white 
part of the images, which diversifies the 
data set and increases the complexity of the 
classification. 
 

   
 

   
Fig (2): samples of data sets after 

processing. 
After applying the background to the main 
data set, the images of the data set appear as 
Figure (2). According to this figure, the 
images of the other hand are not in the 
center and the same size. Images of hand 
movements are rotated. They are enlarged 
or reduced and then placed in different 
corners of the image. The background is 
real-world images to bring training and 
testing data set closer to the real uses. After 
using images, it is important to categorize 
this data into a file, including their File 
names and which class they belong to. 

5- CNN models 

5-1- ResNet model 
To achieve residual deep learning, the open 
source ResNet model is used in accordance 
with [7] in this paper. This model defines 
the Bottleneck and ResNet classes. The 
bottleneck structure is made up of two point 
rotations and one deep rotation in the 
middle. After starting the convolution 
layer, there are four layers. Each layer starts 

with a max pool layer with stride 2 so that 
each layer starts with an input size divided 
by 2 in width and height. In this paper, each 
layer contains two bottleneck structures. At 
the end of each bottleneck structure, the 
input futures map is added to the calculated 
futures map. If the input and output channel 
numbers do not match, there is an 
additional layer of convolution that is also 
trained to match the channels. Details and 
FLOPs of the ResNet model are shown in 
Table (1). 
 
Table (1): ResNet structure and FLOPs. 

 Ker
nel 
size 

Outp
ut 
chan
nel 

Outp
ut 
size 

Layer 
name 

padd
ing = 
1 

3×3 8 128×
128 

Initial 
convolutio
n 

max pool  2×2, stride 2 Max 
pool 

La
ye

r 1
 Repe

at 
once 

1×1 4 64×6
4 

Pointw
ise* 

3×3 4 64×6
4 

Depth
wise 

1×1 16 64×6
4 

Pointw
ise 

max pool  2×2, stride 2 Max 
pool 

La
ye

r 2
 Repe

at 
once 

1×1 64 32×3
2 

Pointw
ise 

3×3 64 32×3
2 

Depth
wise 

1×1 256 32×3
2 

Pointw
ise 

max pool  2×2, stride 2 Max 
pool 

La
ye

r 3
 

Repe
at 
once 

1×1 64 16×1
6 

Pointw
ise 

3×3 64 16×1
6 

Depth
wise 
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1×1 256 16×1
6 

Pointw
ise 

max pool  2×2, stride 2 Max 
pool 

La
ye

r 4
 Repe

at 
once 

1×1 4 8×8 Pointw
ise 

3×3 4 8×8 Depth
wise 

1×1 16 8×8 Pointw
ise 

16-output fc1، 8-output fc2 
and 6-output fc3 

Full 
connected 
layer  

1.93×108 FLOPs 
*padding = 1 
In this model, the test result of the 1800 
image dataset is shown in Table (2). 
According to this table, ResNet 
performance is not good at this size and 
data set. 
 

Table (2): ResNet verification result. 
5 4 3 2 1 0 Class 
97 89 94 90 93 94 Accuracy 

(%) 
7.2 Top-1 

error  (%)  
 

5-2- ResNeXt model 
The ResNeXt model is similar to ResNet. 
ResNet uses fully deep grouped 
convolution, and different channels do not 
communicate during deep convolution 
operations. 
As shown in Table (3), the total number of 
layers (counting the deep layer as a 
reference) is 8, which is ResNet. The initial 
convolution is the max pool and fully 
connected layers of ResNet. 
 

Table (3): ResNeXt structure and 
FLOPs. 

 Ker
nel 
size 

Outp
ut 
chan
nel 

Outpu
t size 

Layer 
name 

paddi
ng = 
1 

3×3 8 128×
128 

Initial 
convolut
ion 

max pool  2×2, stride 2 Max 
pool 1 

Repe
at 
once 

1×1 64 64×6
4 

Pointwis
e* 

3×3 64 64×6
4 

Depthwi
se** 

1×1 32 64×6
4 

Pointwis
e 

max pool  2×2, stride 2 Max 
pool 2 

Repe
at 4 
times 

1×1 128 32×3
2 

Pointwis
e 

3×3 128 32×3
2 

Depthwi
se 

1×1 64 32×3
2 

Pointwis
e 

max pool  2×2, stride 2 Max 
pool 3 

Repe
at 
once 

1×1 32 16×1
6 

Pointwis
e 

3×3 32 16×1
6 

Depthwi
se 

1×1 16 16×1
6 

Pointwis
e 

max pool  2×2, stride 2 Max 
pool 4 

6-output fc3، 8-output fc2 
and 16-output fc1 

Full 
connecte
d layer  

2.52×108 FLOPs 
*padding = 0 
 **group = 8, padding = 0 
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The training and validation process uses the 
same dataset. The validation result is shown 
in Table (4). The method of calculating 
FLOPs is presented in accordance with [8]. 
 
Table (4): ResNeXt verification result. 

5 4 3 2 1 0 Class 
98 95 93 89 92 95 Accuracy 

(%) 
6.3 Top-1 

error  (%)  
 

5-3- MobileNet model 
The structure of the MobileNet model is 
shown in Table (5) in this paper. In addition 
to the initial convolution layer, there are 
eight pairs of depth-points. The 2×2 max 
pool functions with stride 2 are placed after 
the second, fourth, fifth and eighth pairs. 
After the initial convolution layer, a ReLU 
layer is placed. In addition, each depthwise 
or pointwise convolution layer is followed 
by a batch-norm layer and a ReLU layer. 
In this model, the test result on a data set of 
1800 images is shown in Table (6). 

 
Table (5): MobileNet structure and 

FLOPs. 
Paddin
g    

Ker
nel 
size 

Outp
ut 
chan
nel 

Outpu
t size 

Layer 
name 

1 3×3 8 128×
128 

Initial 
convolu
tion 

1 3×3 8 128×
128 

Depthw
ise 1 

0 1×1 32 128×
128 

Pointwi
se 1 

1 3×3 32 128×
128 

Depthw
ise 2 

0 1×1 64 128×
128 

Pointwi
se 2 

max pool  2×2, stride 2 Max 
pool 1 

1 3×3 64 64×6
4 

Depthw
ise 3 

0 1×1 64 64×6
4 

Pointwi
se 3 

1 3×3 64 64×6
4 

Depthw
ise 4 

0 1×1 64 64×6
4 

Pointwi
se 4 

max pool  2×2, stride 2 Max 
pool 2 

1 3×3 64 32×3
2 

Depthw
ise 5 

0 1×1 64 32×3
2 

Pointwi
se 5 

max pool  2×2, stride 2 Max 
pool 3 

1 3×3 64 16×1
6 

Depthw
ise 6 

0 1×1 64 16×1
6 

Pointwi
se 6 

1 3×3 64 16×1
6 

Depthw
ise 7 

0 1×1 32 16×1
6 

Pointwi
se 7 

1 3×3 32 16×1
6 

Depthw
ise 8 

0 1×1 16 16×1
6 

Pointwi
se 8 

max pool  2×2, stride 2 Max 
pool 4 

6-output fc3، 8-output fc2 and 
16-output fc1 

Full 
connect
ed layer  

1.02×108 FLOPs 
 

Table (6): MobileNet verification result. 
5 4 3 2 1 0 Class 
98 94 90 93 91 93 Accuracy 

(%) 
6.8 Top-1 

error  (%)  
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6- Comparison and model selection 

As shown in Figure (3), the dissipation 
curves of the three models are close to zero. 
This means that training processes perform 
almost at their best in these models. 
Comparisons in FLOPs, parameter values, 
and top-1 error are presented in Table (7). 
The method of calculating FLOPs and the 
number of parameters are presented in [8]. 

 
Fig (3): The loss curves of the three 

models. 
Table (7): Comparison between three 

models. 
MobileN
et 

ResNe
Xt 

ResN
et 

 

1.02 2.52 1.93 FLOPs 
(108%) 

43820 213800 36007
0 

#paramete
rs 

6.8 6.3 7.2 Top-1 
error  (%)  

 
According to Table (7), the choice is clear. 
For FLOPs, ResNeXt is the worst case 
scenario because in some layers of 
convolution it uses the maximum number 
of channels and gives more communication 
to the channels than ResNet. ResNet has the 

highest number of parameters, while 
MobileNet has the lowest number of 
parameters with 1.5. ResNet is the worst in 
the top-1 error, however, the top-1 error is 
acceptable. 
These three models all use a large 8-layer 
structure (a complete combination as a 
large layer, like a depthwise-pointwise 
layer combination in MobileNet). 
However, in the large layers of each model, 
MobileNet uses only two convulsions, 
while ResNet and ResNeXt use another 
layer of point-wise convulsions.  
MobileNet stores resources in the hardware 
with fewer layers of convolution. On the 
other hand, ResNet and ResNeXt do not 
have much advantage over MobileNet. 
Therefore, the MobileNet model is selected 
for the next steps. 
 

7- Building Integr-Net model 

Integer-Net is built on MobileNet and 
maintains the same MobileNet structures as 
number of layers, layer types and 
parameters. The trend can be shown in 
Figure (4). This figure shows a layer, also 
called a module. The layer change is 
detachable. 

 
Fig (4): Copy process from MobileNet to 

Integer-Net. 
For each layer, the parameters are tensor 
and all parameters are less than 1 in this 
particular model. They change in the same 
way. The change method is shown in Figure 
(5), which places these parameters in the 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

15913172125293337414549535761656973778185899397101105109113117121125129

Lo
ss

Epoch

ResNet ResNeXt MobileNet
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range of -127 to +127 and prevents the 
parameters from being overdone. 
The classification of parameters is 
presented in Table (8). For layers that have 
only one type of parameter, such as 
convolution layers, they only have a 3 × 3 
kernel weight as the parameter. Other 
layers, such as batch-norm layers and fully 
connected layers, have two types of 
parameters: weight and bias. The method of 
dealing with these parameters is to change 
these two types of parameters in the same 
way (multiplied by 2 at a time). 

 
Fig (5): The process of changing the 
parameter from the floating point to 

integers. 
Table (8): MobileNet model parameter 

categories and sizes. 
Parameters Layer name 
Width [1 × Out 
Channel × 3 × 3] 

Initial convolution 

Width [1 × Out 
Channel × 3 × 3] 

Depthwise 
convolution 

Width [Out 
Channel × In 
Channel × 3 × 3] 

Pointwise 
convolution 

Width [1]; Bias [1] Batch-norm 
Width [out channel 
× in channel] 
Bias [Out Channel 
× In Channel] 

Full connected  

No parameters ReLU 
The reason that three convolution layers do 
not have bias as a parameter is the bias = 
False argument, which is set for 
convolution layers during network training. 

In Equation (1), all parameters change 
according to Integer-Net requirements, so 
the XBN changes, which is related to the 
change in the output of the convolution 
layers. However, the Xmiddle feature will not 
change. The µ and σ are the mean and the 
deviation from the XBN input, so we can 
consider Xmiddle unchanged. Accordingly, γ 
and α must be multiplied by the same rate 
to ensure that the output relationship 
remains unchanged. 

(1) BN
BN

middle2

XY X−µ
= γ +α = γ +α

σ +∈
  

8- Accuracy modification of the output 
futures map 

Rounding the contents of the output futures 
map to fixed bit numbers is essential. This 
is done for two main reasons. The first 
reason is that the hardware must have 
numbers in the process with the same 
format selected for the integer signed with 
a fixed bit. 
8-1- Test 1 
The first method proposed is to multiply 
and divide the complete futures map after 
each layer by 2 continuously before the 
maximum absolute tensor is greater than 
127, which is clearer according to the 
following codes. 
while ( torch . max( torch .abs(x)) > 127): 
x = torch . round (x / 2) 

This method ensures that each layer makes 
full use of 8-bit space. 
Table (9): Accuracy result with number 

range [127-, 127]. 
5 4 3 2 1 0 Class 
20 47 66 77 78 34 Accuracy 

(%) 
46.3 Top-1 

error  (%)  
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However, the result is not acceptable. When 
each intermediate futures map is in the 
range of -127 to +127, the accuracy is very 
poor, as shown in Table (9). This top-1 
error means using 8-bit integers because the 
pixel size of the resulting content is bad. 
The small size may swipe the small 
numbers that are affected by the resulting 
pixel map variation. So that for the 
simulation function, a slightly larger integer 
must be used. 9-bit integers are chosen to 
improve this experiment. Hence the code 
that controls the content range of the output 
futures map changes as follows. 
while ( torch . max( torch .abs(x)) > 255): 
x = torch . round (x / 2) 

This code only changes the number 127 to 
255, however, the accuracy result is quite 
different. As shown in Table (10), the top-1 
error is acceptable. 
 
Table (10): The result of accuracy with 

number range [255-, 255]. 
5 4 3 2 1 0 Class 
87 87 81 88 88 92 Accuracy 

(%) 
12.8 Top-1 

error  (%)  
 

8-2- Test 2 
Test 2 is based on each futures map output 
from each layer. By calculating and 
estimating the size of the number of each 
layer, the output number range of each layer 
is estimated. The output range must be an 
8-bit signed integer, and the bit-cutting 
method of a result calculated in Table (11) 
is presented. The first bit is the sign bit, so 
the cutting method deals with 7 bits. 

Table (11): Test bit control 2. 
Keep bits [big bit, 
small bit] 

Layer name 

[11,5] Depth-wise 

[14,8] 64- channel Point-
wise 

[13,7] 32- channel Point-
wise 

[12,6] 16- channel Point-
wise 

[11,5] Batch-norm 
[22,16] FC 1 (1024×16) 
[13,7] FC 2 (16×8) 
[12,6] FC 3 (8×6) 

Unfortunately, this method gives bad 
results as shown in Table (12). 

Table (12): Accuracy results in test 2. 
5 4 3 2 1 0 Class 
25 51 27 18 12 0 Accuracy 

(%) 
77.8 Top-1 

error  (%)  
 
8-3- Test 3 
This test is a combination of tests 1 and 2. 
The first step is to repeat the process in test 
1 with the range [255-, 255] to maintain 
good performance. During this process, a 
change is recorded in each layer. 
The second step is to adjust the amplitude 
for each layer, as in test 2. In the simulation 
process, the output of each layer changes to 
have numbers in the range [255, 255]. 
Different layers have different parameters 
and bit handling is different in layers. 
After the two steps mentioned above, each 
layer produces a futures map with a 9-bit 
signed integer. Smaller bits are swiped in 
the torch.round () function. However, there 
is still no talk of overflow. According to the 
data set, the result will not go beyond the 
range. 
When numbers are fixed in bit size, we still 
need to prevent overflow. The main idea of 
preventing overflow is to prevent switching 
between positive and negative numbers, 
which can lead to major failure. 
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Based on the numbers generated in the 
second step, the system wants to perform 
the remaining calculation on these numbers 
to prevent overflow. The goal is to get the 
domain [128-, 127]. We need tricks to 
achieve this. The little trick is shown in the 
code below. This trick handles positive and 
negative numbers differently and simulates 
the hardware performance of cutting bits 
out of range. 
relu_mod = torch .nn. modules . 
activation . ReLU () 
x = relu_mod . forward (x)%128 - torch . ceil  
( 
( relu_mod . forward (0-x *2 -1))%256/2 ) 

Accuracy is not greatly affected by the 
number generated by the steps mentioned 
above. As Table (13) shows, the top-1 error 
is approximately similar to the result in test 
1. 

Table (13): Accuracy results in test 3. 
5 4 3 2 1 0 Class 
91 88 84 83 89 91 Accuracy 

(%) 
12.3 Top-1 

error  (%)  

9- Conclusion 

As shown in Table (7), ResNeXt is worst in 
FLOPs, ResNet has the highest number of 
parameters, and all three models have the 
same top-1 errors. Using the quantitative 
method, the MobileNet model is the best 
choice. 
Both quantitative and qualitative methods 
have been used in hardware simulation. The 
result of Experiment 1 with a top-1 error of 
less than 15% is acceptable. However, due 
to the quality standard, Test 1 goes beyond 
the hardware capability. Therefore, test 1 
cannot be the final decision. 
Test 2 have more emphasis on hardware 
capability as it uses a fixed cutting rule but 
produces a bad result. 

Test 3 combines the benefits of the previous 
2 tests. The only quantitative standard is the 
top-1 error after simulation. This test has a 
top-1 error of 12.3%, which is less than 
15%. Given the details mentioned, there are 
no other complex calculations. This does 
not add extra cost to the hardware. Hence 
the simulation reaches its goal. 
The evaluation results of CNN algorithms 
based on the current CNN model (ResNet, 
ResNeXt and MobileNet) showed that it 
has a good accuracy of 93.7%. This article 
compared different models by limiting 
standards and selecting the MobileNet 
model for hardware implementation. 
Finally, this article successfully converts 
the selected model into a suitable format for 
hardware. In particular, the parameters are 
changed to an 8-bit integer without 
affecting the result. 
This paper provides a solution for 
simulating network performance on 
hardware (especially FPGAs). The 
simulation considers the numbers as 8-bit 
integers and simulates the performance on 
the hardware well, which helps to reflect 
the performance on the hardware. The 
simulation performance on the hardware 
shows that it leads to an accuracy of 87.7%, 
which is an acceptable accuracy. 
This project can be improved in the future. 
To test the performance of the model used 
in this paper, different datasets can be 
selected. Which can show whether this 
model works on public data as well. 
Also, more CNN models can be selected 
and compared to the current model to 
determine the most efficient model. For this 
purpose, it is suggested to continue research 
on several other efficient models, such as 
ShuffleNet and BinaryNet. 
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