
Journal of Artificial Intelligence in Electrical Engineering, Vol. 10 , No.39 , December 2021 

41 
 

manuscript received: 10 August      2021  

revised: 15 October     2021 

accepted: 21 November 2021 

Compressed Sensing: A Review 
Razieh Keshavarzian 

Department of Electrical Engineering, Heris Branch, Islamic Azad University, Heris, Iran. 

Email: r_keshavarzian@herisiau.ac.ir 

Abstract 

 Compressed sensing (CS) is a new and promising framework for simultaneous sampling and 

compression of signals at sub-Nyquist rates. Under certain conditions, the signal can be reconstructed 

exactly from a small set of measurements via solving an optimization problem. In order to make this 

possible, compressed sensing is based on two principles of sparsity and incoherence. Compressed 

sensing takes advantage of the fact that most signals in nature are sparse or compressible, which means 

that when expressed in a suitable basis called as sparsifying basis, they will have a sparse 

representation. In the CS, the sparse signal is sampled by a non-adaptive linear sampling matrix. Then, 

based on the limited measurements obtained from the sampling matrix and using a non-linear algorithm, 

the original signal is reconstructed. The sparse signal reconstruction problem in the CS is an 

optimization problem that various algorithms have been proposed to solve it. The compressed sensing 

has a great application potential and can be used in a wide range of applications. Recently, deep learning 

has been used to solve the CS problem and its medical applications. In this paper, the generalities of 

compressed sensing are presented and CS reconstruction algorithms are reviewed. Also, the application 

of CS in magnetic resonance imaging (MRI) are investigated. 

Keywords Compressed sensing, Reconstruction algorithm, Sampling matrix, Sparsity 

1. Introduction 

Previous methods of signal sampling are 

usually based on the Shannon-Nyquist theory. 

According to this theory, the sampling rate of 

a band-limited signal should be at least twice 

its bandwidth to guarantee error-free 

reconstruction. In most applications, the 

Nyquist rate is so high that many samples are 

obtained. Due to the existence of limitations 

such as the hardware memory needed to store 

samples and the bandwidth of the channels to 

be sent, compression prior to storage or 

transmission is a necessity [1]. In the 

compression stage, less important samples are 

removed. In this way, the cost and energy 

used to collect these samples is wasted [2]. 

In order to reduce the number of samples 

required to reconstruct signals without 

reducing their quality, the theory of 

compressed sensing (CS) has been proposed. 

In principle, compressed sensing integrates 

sampling and compression by collecting the 

least number of samples that contain the most 

information about the signal [2]. Compressed 

sensing theory states that certain signals can 

be reconstructed from much fewer samples or 

measurements compared to Nyquist theory. 

In order to make this possible, compressed 

sensing is based on the following two 

principles: 

 Principle of sparsity: It states that the 

information rate of a time continuous signal 

may be much lower than the value specified 
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by the bandwidth of the signal. More 

precisely, compressed sensing takes advantage 

of the fact that most signals in nature are 

sparse or compressible, which means that 

when expressed in a suitable basis, they will 

have a sparse representation. 

 The principle of incoherence: it states that the 

signals that have a sparse representation in a 

base must be expanded in the area where the 

signal acquisition is performed. In other 

words, incoherence means that unlike the 

signal, the sampling waveforms must have a 

very dense representation at the sparse base. 

In compressed sensing, the sparse signal is 

sampled by a non-adaptive linear sampling 

matrix. Then, based on the limited 

measurements obtained from the sampling 

matrix and using a non-linear algorithm, the 

original signal is reconstructed. Therefore, in 

compressed sensing, there are two approaches: 

the first is the design of an efficient sampling 

matrix with certain properties that leads to 

error-free reconstruction of the signal. The 

second is the improvement of signal sparsity 

and the development of non-linear 

reconstruction algorithms that can provide 

accurate reconstruction of the signal when the 

sampling matrix is known. In recent years, a 

variety of sampling matrices have been 

developed. A category of matrices that are 

uncorrelated with each sparsifying basis are 

random matrices that are built based on a 

specific probability distribution. But these 

matrices are very expensive in practical 

applications because they require high 

computational complexity and a lot of 

memory. Another category of matrices are a 

uniform random subset of the rows of an 

orthonormal matrix, which has a fast and 

efficient implementation. The third category 

of matrices are structured non-random 

matrices that can greatly reduce the memory 

and computational complexity in the 

reconstruction process, but they do not lead to 

the optimal solution. The sparse signal 

reconstruction problem in compressed sensing 

is an optimization problem that various 

algorithms have been proposed to solve it. 

These algorithms are divided into three 

general categories: greedy algorithms, convex 

approximation based algorithms, non-convex 

approximation based algorithms. A greedy 

algorithm obtains the approximate solution of 

the CS problem iteratively and step by step. 

This work is done by detecting the location of 

the non-zero components of the signal. The 

convex approximation based algorithms 

obtain the approximate solution of the CS 

reconstruction problem by replacing a convex 

function instead of the 𝑙0 norm and then 

solving it iteratively. The non-convex 

approximation based algorithms replace the 𝑙0 

norm with a non-convex function. Applying 

compressed sensing to images faces several 

challenges; including the need for a huge 

memory to store the random sampling matrix 

and also the high cost of some reconstruction 

algorithms. So far, various methods have been 

proposed to reconstruct CS images that have 

tried to deal with these challenges. Among 

them, we can mention the block compressed 

sensing in [3, 4], which was proposed in order 

to solve the first challenge. In general, it can 

be said that a CS image reconstruction 

method, by using previous knowledge about 

natural images, tries to provide a high quality 

reconstructed image from the least number of 

measurements. The compressed sensing has a 

great application potential and can be used in 

a wide range of applications, like signal, 

image and video processing [5, 6, 7], medical 

image processing [8], wireless sensor network 

[9], data mining [10], and communication 

[11]. 
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2. Compressed Sensing Problem 

Consider a finite-length signal 𝐮 ∈ ℝ𝑁. A 

number of M (𝑀 ≪ 𝑁) linear, non-adaptive 

measurement of  𝐮 are acquired through the 

following linear transformation: 

𝐲 = 𝚽𝐮 + 𝐞 (1) 

where 𝐲 ∈ ℝ𝑀 is the measurement vector, 

𝚽 ∈ ℝ𝑀×𝑁 is a measurement matrix and 𝐞 

denotes possible measurement noise vector 

with ‖𝐞‖2 ≤ 𝜖. The usual choice for the 

measurement matrix 𝚽 is a random matrix [4]. 

We wish to reconstruct the signal 𝐮 from 𝐲 by 

solving (1). Since 𝑀 ≪ 𝑁, the reconstruction 

of 𝐮 from 𝐲 is ill-posed in general. However, 

if 𝐮 is sparse (or compressible), then exact 

reconstruction is possible.  

A. Sparse signals  

A signal 𝐮 ∈ ℝ𝑁 is called sparse if most of 

its components are equal to zero, that is, 

‖𝐮‖0 ≪ 𝑁, where ‖𝐮‖0 is the 𝑙0 norm of the 

signal and represents the number of its non-

zero components. If there is a maximum of s 

non-zero components, i.e. ‖𝐮‖0 ≤ 𝑠, the 

signal 𝐮 is called sparse of order s or s-sparse. 

Figure (1) shows an example of a sparse 

signal.  

 

Fg.1.An example of sparse signal 

Many signals themselves are not sparse, but when they 

are expressed in a convenient basis will have sparse 

representations. In this case, the signal 𝐮 can be 

represented as 

𝐮 = 𝐱 ,                                         (2) 

where  is a sparsifying basis or dictionary 

and 𝐱 ∈ ℝ𝑁 is the coefficient vector that most 

entries of which are zero or close to zero. In 

figure (2), an example of a signal is shown, 

which has a sparse representation in the 

Fourier basis. 

 

 
                                                 a 

 

b 

Fig.2.Representation of sparse signal, a) original 

signal, b) the signal in Fourier base 

B. Compressible signals  

An important point in practice is that few signals in 

nature are exactly sparse; rather, most of them are 

compressible, which means that most of the 

components of these signals are small and close to zero 

either in the time domain or in the  domain. Therefore, 

these small components can be considered as zero 

without significant change in the signal. As a result, 

compressible signals are well approximated by sparse 

signals. 

C. Reconstruction 

To reconstruct the signal 𝐮 from 𝐲, one could search 

for the sparsest coefficient vector (i.e. the vector 𝐱 with 

the smallest 𝑙0 norm) consistent with the measurement 

𝐲 by solving the optimization problem 

 

min
𝐱

 ‖𝐱‖0     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    ‖𝐲 − 𝐀𝐱‖2 ≤ 𝜖 (3) 
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which 𝐀 = 𝚽, and then reconstruct 𝐮 using 

(2). Unfortunately, the optimization problem 

(3) is NP-hard that can only be solved using a 

combinatorial approach [12]. Thus, alternative 

procedures to find out a suboptimal solution 

have been proposed in recent years. One of 

these, is to relax the 𝑙0 norm, replacing it by a 

continuous or even smooth approximation 

[13]. Examples of such approximations 

include 𝑙𝑝 norms for some 0 < 𝑝 ≤ 1 [14] or 

even smooth functions such as Logarithm 

[15], Exponential [16]. A popular choice for 

the approximation function is 𝑙1 norm which leads to 

the convex optimization problem 

    min
𝐱

 ‖𝐱‖1     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    ‖𝐲 − 𝐀𝐱‖2 ≤ 𝜖 (4) 

This optimization problem known as basis 

pursuit denoising (BPDN) can be recast into 

the unconstrained optimization problem 

min 
𝐱

 
1

2
‖𝐲 − 𝐀𝐱‖2

2+ ‖𝐱‖1 ,                 (5) 

which the second term is a regularization term 

that reflects prior information of the signal and 

 is the regularization parameter. With an 

appropriate choice of the , the problem in (5) 

will yield the same solution as that in (4) [17]. 

This problem can be solved by many efficient 

algorithms which are investigated in the next 

section.  

3. Reconstruction Algorithms 

A CS reconstruction algorithm should be 

able to reconstruct the original signal from the 

measurement vector when the sampling 

matrix is known. In this section, the different 

algorithms presented for the approximate 

solution of the problem (3) are studied. These 

algorithms are divided into three general 

categories: greedy algorithms, algorithms 

based on convex approximation, algorithms 

based on non-convex approximation.  

A. Greedy algorithms 

A greedy algorithm obtains the approximate 

solution of the problem (3) iteratively and 

step by step. This is done by detecting the 

location of the non-zero components of the 

signal. After detecting the non-zero locations, 

the signal is reconstructed using the 

relationship  𝐱 = (𝐀𝑠)†𝐲, where 𝐀𝑠 is the 

measurement matrix with columns 

corresponding to s non-zero locations and 

(𝐀𝑠)† is the pseudo-inverse of the matrix 𝐀𝑠. 

Among greedy algorithms, matching pursuit 

(MP) [18] and its improved version 

orthogonal matching pursuit (OMP) [19] can 

be mentioned. In the OMP algorithm, in each 

iteration, the column of the matrix 𝐀 that has 

the highest correlation with the measurement 

vector is selected. Then, the effect of this 

column in the measurement vector is removed 

and a residual vector is obtained. The steps 

are repeated on this vector until finally s 

columns of 𝐀, which corresponds to s non-

zero locations, are determined [20]. This 

algorithm is very fast but has less 

reconstruction accuracy. Since this algorithm 

selects only one column of 𝐀 per iteration, at 

least s iterations are required for an s-sparse 

vector. But when the vector is not very sparse 

(s is large), the reconstruction becomes 

expensive. To speed up the algorithm, several 

columns can be selected in each iteration [17]. 

Based on this, its improved versions 

stagewise orthogonal matching pursuit 

(StOMP) [21], regularized orthogonal 

matching pursuit (ROMP) [22] and 

compressive sampling matching pursuit 

CoSaMP [23] were presented. There is 

another class of greedy algorithms that use a 

threshold level to select non-zero components. 

Among these algorithms, iterative hard 

thresholding (IHT) [24 and 25] can be 

mentioned. The IHT algorithm is resistant to 
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noise and can be solved with the minimum 

number of measurements, but it is sensitive to 

the change of the scale of 𝐀, so that the 

performance of the algorithm changes in 

different scales of 𝐀.  

B. Convex approximation based algorithms 

These algorithms obtain the approximate 

solution of the problem (3) by substituting 

a convex function instead of the l_0 norm 

and then solving it iteratively. These 

algorithms start from an initial estimate. 

Then, in each iteration, an estimate of the 

signal is obtained, and during the 

iterations, this estimate becomes more 

accurate to reach the optimal solution. 

One of these algorithms is iterative 

shrinkage thresholding algorithm (ISTA) 

[26] that solves the problem (5) as:  

𝐱(𝑘+1) = 𝑆𝜇,1(𝐱(𝑘)

+ 𝜇𝐀𝑇(𝐲 − 𝐀𝐱(𝑘))) 

(6) 

where 𝜇 is a suitable step size and 

𝑆𝜇,1(. ) is a soft thresholding function: 

𝑆𝜇,1(𝑥𝑖)

= {

𝑥𝑖 − 𝜇 2⁄               𝑖𝑓     𝑥𝑖 ≥ 𝜇 2⁄

 0                              𝑖𝑓     |𝑥𝑖| < 𝜇 2⁄

 𝑥𝑖 + 𝜇 2⁄              𝑖𝑓     𝑥𝑖 ≤ − 𝜇 2⁄
 

(7) 

This algorithm is simple to be 

implemented; however, it converges quite 

slowly. Some accelerated versions of 

ISTA have been proposed, including two-

step IST (TwIST) [27] and fast IST 

(FISTA) [28]. In these algorithms, each 

iteration depends on two previous 

iterations instead of one previous 

iteration. The FISTA for solving problem 

(5) is as follows: 

𝐱(𝑘+1) = 𝑆𝜇,1(𝒛(𝑘) + 𝜇𝐀𝑇(𝐲 − 𝐀𝒛(𝑘))) (8) 

 

 𝑡(1) = 1,        𝑡(𝑘+1) =
1

2
(1 +

√1 + 4(𝑡(𝑘))2) 

(9) 

𝒛(𝑘) = 𝐱(𝑘) + (
𝑡(𝑘) − 1

𝑡(𝑘+1)
) (𝐱(𝑘)

− 𝐱(𝑘−1)) 

(10) 

The subband adaptive iterative shrinkage 

thresholding algorithm (SISTA) [29] is a 

generalization of ISTA, in which different 

step sizes are considered for different 

subbands of wavelet transform as the 

sparsifying transform. This increases the 

convergence speed of the algorithm. 

Given the vector μ=[μ_1,μ_2,…,μ_J], the 

algorithm uses the following iteration:  

 

min 
𝐱,𝐳

𝑓(𝐱) + 𝑔(𝒛)     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑩𝐱

+ 𝑪𝒛 = 𝑫 

(11) 

where 𝝁 is a diagonal matrix whose 

elements are equal to 𝜇𝑗. The iteratively 

reweighted least squares (IRLS) algorithm 

[30] provides a simple method to solve the 

problem (5). In this method, ‖𝐱‖1 is 

replaced by the weighted 𝑙2 norm of 𝐱. 

The alternating direction method of 

multipliers (ADMM) algorithm [31] 

solves convex optimization problems by 

breaking them into smaller pieces. For 

this, it uses an auxiliary variable and 

separates the cost function into two parts. 

In general, this algorithm solves the 

following problems: 

min 
𝐱,𝐳

𝑓(𝐱) + 𝑔(𝒛)     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑩𝐱

+ 𝑪𝒛 = 𝑫 

(12) 

where 𝐱 ∈ ℝ𝑁 is the main variable, 𝒛 ∈ ℝ𝑚 

is auxiliary variable, 𝑩 ∈ ℝ𝑝×𝑁, 𝑪 ∈

ℝ𝑝×𝑚 and 𝑫 ∈ ℝ𝑝. The augmented 

Lagrange function is calculated as follows: 
𝐿𝜌(x, 𝑧, ) = 𝑓(x) + 𝑔(𝑧)

+ 𝑇(𝐵x + 𝐶𝑧 − 𝐷)

+
𝜌

2
‖𝐵x + 𝐶𝑧 − 𝐷‖2

2 

  

(13) 

which 𝜌 > 0. The augmented Lagrange 

function is minimized with respect to the 
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variables in an orderly or sequential manner, 

in such a way that it is minimized first with 

respect to the variable x (fixed z) and then 

with respect to the variable z (fixed x). In 

both steps, the Lagrange coefficient is 

assumed to be constant. Finally, the 

obtained answers are used to update the 

Lagrange coefficient. 

C. Non-convex approximation based algorithms 

These algorithms obtain the approximate 

solution of the problem (3) by substituting a 

non-convex function instead of the 𝑙0 norm 

and then solving it iteratively. Due to the non-

convexity of the resultant problem, identifying 

its global minimum is challenging. For this 

reason, the conditions under which the 

algorithm converges to a local minimum are 

emphasized. However, algorithms based on 

the non-convex approximation reconstruct 

sparse signals from a smaller number of 

measurements. Also, they may increase noise 

resistance and lead to stability [17]. Among 

the suggested approximation functions, we 

can mention 𝑙𝑝 (0 < 𝑝 ≤ 1) [14] norms. The 

𝑙𝑝 norms, which are the most common 

approximation for 𝑙0 norm, are defined as 

follows for 𝑝 > 0: 

‖𝐱‖𝑝 = (∑|𝑥𝑖|
𝑝

𝑁

𝑖=1

)

1
𝑝

 

                        
,                               
(14) 

‖𝐱‖𝑝
𝑝
, when 𝑝 tends to zero, it will be equal to ‖𝐱‖0 

[32]. Therefore, the problem (3) can be approximated 

by the following problem: 

min 
𝐱

‖𝐱‖𝑝
𝑝

    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝐲 = 𝐀𝐱 (15) 

The IRLS algorithm is also used to solve the 

problem (15) for 0 < 𝑝 < 1. In this method, 

‖𝐱‖𝑝
𝑝
 is replaced by the weighted 𝑙2 norm of 𝐱. 

The problem (15) is a non-convex optimization 

problem for 0 < 𝑝 < 1. This problem can be rewritten 

in the following unrestricted form, which is known as 

𝑙𝑝 regularization problem: 

min 
𝐱

 
1

2
‖𝐀𝐱 − 𝐲‖2

2 + ‖𝐱‖𝑝
𝑝

      
  (16) 

In [33], this problem is solved for 𝑝 =
1

2
 with the Half 

thresholding algorithm. This algorithm uses the 

following iteration: 

𝐱(𝑘+1) = 𝐻
𝜇,

1
2

(𝐱(𝑘) + 𝜇𝐀𝑇(𝐲 − 𝐀𝐱(𝑘))) (17) 

 

where, 𝐻
𝜇,

1

2

(. ) is the Half thresholding 

function. 

4. Image Compressed Sensing 

Applying compressed sensing to images 

faces several challenges; including the need 

for a huge memory to store the random 

sampling matrix and also the high cost of 

some reconstruction algorithms. So far, 

various methods have been proposed to 

reconstruct compressed sensing images that 

have tried to solve these challenges. Among 

them, we can mention the block compressed 

sensing in [3], which was proposed in order 

to solve the first challenge. In general, it can 

be said that a CS image reconstruction 

method, by using previous knowledge about 

natural images, tries to provide a high-quality 

reconstructed image from the least number of 

measurements. 

In block compressed sensing, the original 

image is divided into non-overlapping small 

blocks, and each block is sampled 

independently by a similar sampling matrix. 

This method has advantages, including the 

following: 

• The sampling matrix is easily stored. 

• Since each block is processed 

independently, the initial solution is easily 

obtained and the reconstruction process is 

greatly accelerated. 

• It is more economical for real-time 

applications; because the coder does not need 

to wait for the whole image to be sampled and 

then send the samples. 
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5. Compressed Sensing MRI 

One of the important applications of 

compressed sensing is in magnetic resonance 

imaging (MRI). MRI is a non-invasive 

imaging method that uses the magnetic 

resonance properties of hydrogen atoms 

inside the body and can display a wide range 

of tissues with high resolution. The main 

challenge of MRI that limits its use is the 

relatively slow speed of data collection. This 

leads to prolongation of imaging time and as 

a result patient's discomfort, increase of 

complications caused by radiation and motion 

distortion. Therefore, improving the speed of 

MRI imaging is of particular importance. 

Considering the physical and physiological 

limitations, the only efficient way to reduce 

imaging time is to reduce the number of 

required samples. But reducing the sampling 

rate violates the Nyquist condition and leads 

to distortion in the reconstructed image. By 

introducing the compact measurement theory 

as an alternative to the Shannon-Nyquist 

theory, it is possible to reconstruct MR 

images without distortion from much less 

data compared to the Nyquist theory. The 

result of using intensive measurement in MRI 

is reducing the time required for imaging, 

reducing costs and patient comfort. 

Sampling in MRI is a special case of 

compact sensing where the sampled linear 

combinations are Fourier coefficients. In this 

situation, the compact sensing method claims 

to be able to accurately reconstruct the 

original signal from a small subset of k-space. 

6. Conclusions 

The problem of reconstructing the 

compressed sensing image is an optimization 

problem that various algorithms have been 

proposed to solve. These algorithms are 

divided into three general categories: greedy 

algorithms, algorithms based on convex 

approximation, algorithms based on non-

convex approximation. Studies have shown 

that algorithms based on non-convex 

approximation require fewer measurements 

for reconstruction. Also, they may increase 

noise immunity and lead to stability. 
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