
Journal of Artificial Intelligence in Electrical Engineering, Vol.8, No.32 ,March 2020

33

Why do we need a fault tolerant system?
Pouya Shams Ahari

Department of Electrical Engineering. Ahar Branch, Islamic Azad University, Ahar, Iran

pouyashams1@yahoo.com

Introduction

All designers try to get rid of all the

hardware and software tools before they hit

the market, but it shows that such a goal is

unattainable. Some of these environmental

factors are unexpected and unavoidable, as

well as some potential mistakes are

predictable. [2]Due to the development of

semiconductor technologies, hardware

components are naturally naturally reliable

and the need for component fault tolerance

in applications has been reduced. However,

fault tolerance remains a requirement in

many critical-safety, critical-mission, and

critical-commercial applications.

Therefore, even when a system appears to be

fully designed and implemented, the

designer may experience errors outside of

control. On the other hand, since it is

practically impossible to build a complete

and error-free system, fault tolerance is

required. The main problem arises that he is

sure he finds it, compensation can be

applied. As a result, a tolerable system

manages individual errors in hardware or

software components, power supply failures,

or other types of unforeseen adverse events.

What is fault tolerance

Fault tolerance refers to the ability of a

system (computer, network, cloud cluster,

etc.) to continue operating without

interruption when one or more of its

components fail.

The objective of creating a fault-tolerant

system is to prevent disruptions arising from

a single point of failure, ensuring the high

availability and business continuity of

mission-critical applications or systems.

Fault-tolerant systems use backup

components that automatically take the

place of failed components, ensuring no loss

of service. [5]These include:

Hardware systems that are backed up by

identical or equivalent systems. For

example, a server can be made fault tolerant

by using an identical server running in

parallel, with all operations mirrored to the

backup server.

Software systems that are backed up by

other software instances. For example, a

database with customer information can be

continuously replicated to another machine.

If the primary database goes down,

operations can be automatically redirected to

the second database.

Power sources that are made fault tolerant

using alternative sources. For example,

many organizations have power generators

that can take over in case main line

electricity fails.

In similar fashion, any system or component

which is a single point of failure can be

made fault tolerant using redundancy. [5]

Fault tolerance can play a role in a disaster

recovery strategy. For example, fault-

Journal of Artificial Intelligence in Electrical Engineering, Vol.8, No.32 ,March 2020

34

tolerant systems with backup components in

the cloud can restore mission-critical

systems quickly, even if a natural or human-

induced disaster destroys on-premise IT

infrastructure.

History

The first known fault-tolerant computer was

SAPO, built in 1951 in Czechoslovakia by

Antonín Svoboda.[3]: 155  Its basic design

was magnetic drums connected via relays,

with a voting method of memory error

detection (triple modular redundancy).

Several other machines were developed

along this line, mostly for military use. [4]

Eventually, they separated into three distinct

categories: machines that would last a long

time without any maintenance, such as the

ones used on NASA space probes and

satellites; computers that were very

dependable but required constant

monitoring, such as those used to monitor

and control nuclear power plants or

supercollider experiments; and finally,

computers with a high amount of runtime

which would be under heavy use, such as

many of the supercomputers used by

insurance companies for their probability

monitoring.

Most of the development in the so-called

LLNM (Long Life, No Maintenance)

computing was done by NASA during the

1960s, in preparation for Project Apollo and

other research aspects. NASA's first

machine went into a space observatory, and

their second attempt, the JSTAR computer,

was used in Voyager. This computer had a

backup of memory arrays to use memory

recovery methods and thus it was called the

JPL Self-Testing-And-Repairing computer.

[1]It could detect its own errors and fix them

or bring up redundant modules as needed.

The computer is still working today.

Hyper-dependable computers were

pioneered mostly by aircraft manufacturers,

nuclear power companies, and the railroad

industry in the USA. These needed

computers with massive amounts of uptime

that would fail gracefully enough with a

fault to allow continued operation while

relying on the fact that the computer output

would be constantly monitored by humans

to detect faults. [2] Again, IBM developed

the first computer of this kind for NASA for

guidance of Saturn V rockets, but later on

BNSF, Unisys, and General Electric built

their own.

In the 1970s, much work has happened in

the field . For instance, F14 CADC had

built-in self-test and redundancy.

In general, the early efforts at fault-tolerant

designs were focused mainly on internal

diagnosis, where a fault would indicate

something was failing and a worker could

replace it. [2]SAPO, for instance, had a

method by which faulty memory drums

would emit a noise before failure. Later

efforts showed that to be fully effective, the

system had to be self-repairing and

diagnosing – isolating a fault and then

implementing a redundant backup while

alerting a need for repair. This is known as

N-model redundancy, where faults cause

automatic fail-safes and a warning to the

operator, and it is still the most common

form of level one fault-tolerant design in use

today.

Voting was another initial method, as

discussed above, with multiple redundant

backups operating constantly and checking

each other's results, with the outcome that if,

Journal of Artificial Intelligence in Electrical Engineering, Vol.8, No.32 ,March 2020

35

for example, four components reported an

answer of 5 and one component reported an

answer of 6, the other four would "vote" that

the fifth component was faulty and have it

taken out of service. This is called M out of

N majority voting.

Historically, the motion has always been to

move further from N-model and more to M

out of N due to the fact that the complexity

of systems and the difficulty of ensuring the

transitive state from fault-negative to fault-

positive did not disrupt operations.

Tandem and Stratus were among the first

companies specializing in the design of

fault-tolerant computer systems for online

transaction processing.

Fault tolerance vs. high availability

High availability refers to a system’s ability

to avoid loss of service by minimizing

downtime. It’s expressed in terms of a

system’s uptime, as a percentage of total

running time.

[3]In most cases, a business continuity

strategy will include both high availability

and fault tolerance to ensure your

organization maintains essential functions

during minor failures, and in the event of a

disaster.

While both fault tolerance and high

availability refer to a system’s functionality

over time, there are differences that

highlight their individual importance in your

business continuity planning.

Consider the following analogy to better

understand the difference between fault

tolerance and high availability. A twin-

engine airplane is a fault tolerant system – if

one engine fails, the other one kicks in,

allowing the plane to continue flying.

Conversely, a car with a spare tire is highly

available. A flat tire will cause the car to

stop, but downtime is minimal because the

tire can be easily replaced.

How to build a fault tolerance system?

In many applications, where a computer is

used, interruptions or breakdowns can be

costly or even catastrophic. In that case, the

system has to deal with failures, but such

systems are hardly complete.

The following is a summary of situations

that may occur for any computer system, as

well as safes that can help it work to some

degree of acceptance if some of its

components fail.

If something goes wrong, it will happen.

Murphy's First Law

There are countless ways in which a system

can fail. In order to be able to tolerate the

error, we must identify potential failures that

a system may encounter and design

countermeasures. [4]The frequency of each

failure and its impact on the system must be

estimated to decide which system to

withstand. Here are just a few examples of

potential issues to think about:

The application encounters an irreversible error

and failure (uncontrolled exceptions, expired

certificates, memory leaks)

Component not available (power failure,

disconnection)

Data corruption (hardware failure, malicious

attack)

Security (one component compromised)

Performance (increased latency, traffic, demand)

Most common failures can be divided into two

categories:

Failure - Stop behaviors (eg server shutdown,

connection loss)

Byzantine behaviors (such as data destruction or

manipulation)

References

Journal of Artificial Intelligence in Electrical Engineering, Vol.8, No.32 ,March 2020

36

[1]. https://www.imperva.com/learn

[2]. Fault-Tolerant Design , Elena Dubrova

(2013)

[3]. https://en.wikipedia.org/wiki/Fault_toler

ance

[4]. Fault Tolerant System Design , Dr. Axel

Krings (2011)

[5]. -https://kariera.future-processing.pl/blog

