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We introduce a new class of generalized inverse which is called 𝜋 −Hirano 

inverse. In this paper some elementary properties of the 𝜋 −Hirano inverse are 

obtained. We investigate the existence of the 𝜋 −Hirano inverse for the anti-

triangular operator matrix 𝑁 = [
0 𝐵
𝐶 𝐷

] with 𝐷𝐶𝐵 = 0 and et al. Certain 

multiplicative and additive results for the 𝜋 −Hirano inverse in a Banach 

algebra are presented. We then apply some conditions under which a 2 × 2 

block operator matrix  has 𝜋 −Hirano inverse over Banach spaces. 
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1- Introduction 

     Let 𝒜 be a Banach algebra with an identity. We first 

recall the definitions of some generalized inverses. As is 

well known, in 1958, Drazin [6] defined, an element        

𝑎 ∈ 𝒜 has Drazin inverse if there is the element 𝑎 ∈ 𝒜 

which satisfies 

𝑎𝑥 = 𝑥𝑎, 𝑥𝑎𝑥 = 𝑥 𝑎𝑛𝑑  𝑎 − 𝑎2𝑥 ∈ 𝑁(𝒜) 

or 

𝑎𝑥 = 𝑥𝑎, 𝑥𝑎𝑥 = 𝑥 𝑎𝑛𝑑  𝑎𝑘 = 𝑎𝑘+1𝑥.              (1) 

Here 𝑁(𝒜) is the set of all nilpotent elements in 𝒜. The 

element 𝑥 above is uniqe if it exists and is denoted by      

𝑎𝑑  and called the Drazin inverse of 𝑎. The smallest such 

nonnegetive integer 𝑘 is called the Drazin index of 𝑎, 

denoted 𝑖𝑛𝑑(𝑎). Drazin proved that 𝑎 has Drazin inverse 

if and only if 𝑎 is strongly π−regular, that is                          

𝑎𝑚 ∈ 𝑎𝑚+1𝒜 ∩ 𝒜𝑎𝑚+1 for some 𝑚 ∈ ℕ [6]. Here, ℕ 

stands for the set of all natural numbers. Recently, several 

subclasses of the Drazin inverse have been studied. In 

2017, Wang [12] gave the notion of the strongly Drazin 

inverse in a ring. An element 𝑎 ∈ 𝒜 has strongly Drazin 

inverse if there is 𝑎 uniqe common solution to the 

equations 

𝑎𝑥 = 𝑥𝑎, 𝑥𝑎𝑥 = 𝑥 𝑎𝑛𝑑  𝑎 − 𝑎𝑥 ∈ 𝑁(𝒜) 

and we denoted by 𝑎𝑠𝑑. We know that in a Banach 

algebra 𝒜, 𝑎 ∈ 𝒜𝑠𝑑  if and only if it is the sum of an 

idempotent and a nilpotent that commute, if and only if 

𝑎 − 𝑎2 ∈ 𝑁(𝒜) [2]. Here, 𝑞 ∈ 𝒜 is an idempotent if  

𝑞2 = 𝑞. 

      In same year, Chen and Sheibani [3] definded, the 

Hirano inverse of 𝑎 ∈ 𝒜 is the uniqe element 𝑥 ∈ 𝒜 

satisfying 

𝑎𝑥 = 𝑥𝑎, 𝑥𝑎𝑥 = 𝑥 𝑎𝑛𝑑 𝑎2 − 𝑎𝑥 ∈ 𝑁(𝒜) 

and we denoted by 𝑎ℎ. They characterized the Hirano 

inverse by tripotents. Here, 𝑞 ∈ 𝒜 is a tripotent if 𝑞3 = 𝑞. 

Also, they showed that, 𝑎 ∈ 𝒜𝐻 if and only if                        
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𝑎 − 𝑎3 ∈ 𝑁(𝒜) [3], if and only if it is the sum of a 

tripotenet and a nilpotent that commute [1]. In addition, 

they obtained 𝒜𝑠𝐷 ⊊ 𝒜𝐻 ⊊ 𝒜𝐷, where 𝒜𝑠𝐷, 𝒜𝐻 and 

𝒜𝐷 mean the sets of all strongly Drazin invertible, Hirano 

invertible and Derazin invertible elements in 𝒜, 

respectively. In 2019, Mosic [10] gave the notion of the   

n-strongly Drazin inverse, which is a new class of Drazin 

inverse and the n-strongly Drazin inverse 𝑎 ∈ 𝒜 is the 

uniqe element 𝑥 ∈ 𝒜 if such element exists, and if it 

satisfies 

𝑎𝑥 = 𝑥𝑎, 𝑥𝑎𝑥 = 𝑥 𝑎𝑛𝑑 𝑎𝑛 − 𝑎𝑥 ∈ 𝑁(𝒜)           (2) 

for some 𝑛 ∈ ℕ and we denoted by 𝑎nsd. Clearly, the n-

strongly Drazin inverse covers the strongly Drazin inverse 

and Hirano inverse, that is, 𝑎1sd = 𝑎sd and 𝑎1sd = 𝑎h. In 

[16], Zou and Mosic et al. investigate the structure of a 

ring in which every element satisfies the condition 𝑎 −

𝑎𝑛+1 ∈ 𝑁(𝒜) is nilpotent for a fixed 𝑛. This inspires us to 

introduce and study a new class of generalized 

inverse, that it forms a subclass of Drazin inverses in a 

Banach algebra. We say that  an element 𝑎 ∈ 𝒜 has 

𝜋 −Hirano inverse if there exists 𝑥 ∈ 𝒜 such that 

𝑎𝑥 = 𝑥𝑎, 𝑥𝑎𝑥 = 𝑥 𝑎𝑛𝑑  𝑎 − 𝑎𝑛+2𝑥 ∈ 𝑁(𝒜)            (3) 

for some 𝑛 ∈ ℕ and we denoted by 𝑎𝜋ℎ. The preceding 𝑥 

shall be unique, if such element exists. We observed these 

inverses form a subclass of Drazin inverses which is 

related to periodic elements in a Banach algebra 𝒜. We 

denote the set of all π−Hirano invertible elements in 𝒜 by 

𝒜𝜋𝐻 . It is proved that an element 𝑎 ∈ 𝒜 has 𝜋 −Hirano 

inverse if and only if  𝑎 − 𝑎𝑛+1 ∈ 𝑁(𝒜) for some              

𝑛 ∈ ℕ. The invertibility of the sum of two 𝜋 −Hirano 

invertible elements in a Banach algebra under some 

conditions will be presented. 

 

2- Additive results 

        In this section we are concern on additive property of 

the 𝜋 −Hirano inverse of the sum in a Banach algebra 𝒜. 

 

Lemma 1.2.  [16] Let 𝑎, 𝑏 ∈ 𝒜 with 𝑎𝑏 = 𝑏𝑎. Then 

(i) If 𝑎 ∈ 𝑁(𝒜) or 𝑏 ∈ 𝑁(𝒜) then 𝑎𝑏 ∈ 𝑁(𝒜).  

(ii) If 𝑎, 𝑏 ∈ 𝑁(𝒜), then 𝑎 + 𝑏 ∈ 𝑁(𝒜). 

 

Lemma 2.2. [14] Let 𝑎 ∈ 𝒜. If 𝑎 − 𝑎2 ∈ 𝑁(𝒜), then there 

exists a monic polynomial 𝑓(𝑎) ∈ 𝑍[𝑎] such that      

𝑓(𝑎) = 𝑓(𝑎)2 and 𝑎 − 𝑓(𝑎) ∈ 𝑁(𝒜).  

 

Lemma 3.2. [16] Let 𝑎, 𝑏 ∈ 𝒜 be such that 𝑎𝑏 = 0. Then 

𝑎, 𝑏 ∈ 𝑁(𝒜) ⟺  𝑎 + 𝑏 ∈ 𝑁(𝒜).  

 

Theorem 4.2. [7] Let 𝑛 ∈ ℕ. Then 𝑎 ∈ 𝒜𝜋𝐻  if and only if 

𝑎 − 𝑎𝑛+1 ∈ 𝑁(𝒜). 

 

Corollary 5.2. Every Hirano invertible element in a Banach 

algebra is π−Hirano invertible element.  

 

Proof. It is obvious by Theorem 2.4.                                    

 

        In the next example we show that the converse 

Corollary 5.2 is not true.  

Example 6.2. Let 𝒜 = 𝑀2(𝑍2) and 𝑎 = [
1 1
1 0

] ∈ 𝒜. 

Then 𝑎 has π−Hirano inverse but it is not Hirano 

invertible. Because, it is obvious that 𝑎 = 𝑎4 and so 𝑎 −

𝑎4 ∈ 𝑁(𝒜).  Then by Theorem 2.4, 𝑎 has π−Hirano 

inverse. If 𝑎 has Hirano inverse, it follows by [3],  

𝑎ℎ = 𝑎𝑑 = [
0 1
1 −1

]. 

But 𝑎2 − 𝑎𝑎ℎ = [
−1 1
1 0

] is not nilpotent. This gives a 

contradiction. 

 

Corollary 7.2. Every π−Hirano invertible element in a 

Banach algebra is Deazin invertible element.  

 

Proof. Let 𝑎 ∈ 𝒜 has π−Hirano inverse. By Theorem 4.2,  

𝑎 − 𝑎𝑛+1 ∈ 𝑁(𝒜). Then there exists some 𝑚 ∈ ℕ such 

that (𝑎 − 𝑎𝑛+1)𝑚 = 0. Hence, by Lemma 2.2, we can find 

some polynomial 𝑓(𝑎) such that 𝑎𝑛 = 𝑎𝑛+1𝑓(𝑎)and so 𝑎 

is strongly π−regular which is Drazin invertible element 

[6].                                                                                              

 

Theorem 8.2. [7] Let 𝑎, 𝑏, 𝑐 ∈ 𝒜. If 𝑎𝑏𝑎 = 𝑎𝑐𝑎, then 𝑎𝑐 

has 𝜋 −Hirano inverse if and only if 𝑏𝑎 has 𝜋 −Hirano  

inverse. 

 

Corollary 9.2. Let 𝑎, 𝑏 ∈ 𝒜. If 𝑎𝑏 has π−Hirano inverse, 

then so has 𝑏𝑎. 
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Corollary 10.2. Let 𝑎 ∈ 𝒜 and 𝑚 ∈ ℕ. Then 𝑎 ∈ 𝒜𝜋𝐻           

if and only if 𝑎𝑚 ∈ 𝒜𝜋𝐻 . 

 

Lemma 11.2. Let 𝑎, 𝑏 ∈ 𝒜 and 𝑎𝑏 = 0. Then 𝑎, 𝑏 ∈ 𝒜𝜋𝐻 

if and only if 𝑎 + 𝑏 ∈ 𝒜𝜋𝐻 . 

 

Proof.  Since 𝑎 + 𝑏 ∈ 𝒜𝜋𝐻 , there exist 𝑚, 𝑘 ∈ ℕ such that 

𝑎 − 𝑎𝑚+1 ,  𝑏 − 𝑏𝑘+1 

are nilpotent. Let 𝑛 = 𝑚𝑘. Then 𝑎 − 𝑎𝑛+1 and 𝑏 − 𝑏𝑛+1 

are nilpotent. Becuase, 

𝑎 − 𝑎𝑛+1 = 𝑎 − 𝑎𝑚𝑘+1 

                  = (𝑎 − 𝑎𝑚+1) + (𝑎𝑚+1 − 𝑎2𝑚+1) + ⋯

+ (𝑎(𝑘−1)𝑚+1 − 𝑎𝑘𝑚+1) 

     = (𝑎 − 𝑎𝑚+1)(1 + 𝑎𝑚 + ⋯ + 𝑎(𝑘−1)𝑚) ∈ 𝑁(𝒜) 

Likewise, we have 𝑏 − 𝑏𝑛+1 ∈ 𝑁(𝒜). By hypothesis  

𝑎𝑏 = 0, we have 

𝑎 + 𝑏 − (𝑎 + 𝑏)𝑛+1 

                       = (𝑎 − 𝑎𝑛+1) + (𝑏 − 𝑏𝑛+1) + (𝑏𝑎𝑛

+ 𝑏2𝑎𝑛−1 + ⋯ + 𝑏𝑛𝑎) 

                              = 𝑥 + 𝑦 + 𝑧. 

It is clear that x, y and z are nilpotent, 𝑥(𝑦 + 𝑧) = 0 and 

𝑧𝑦 = 0. In view of Lemma 3.2, we get 𝑥 + 𝑦 + 𝑧 is 

nilpotent and by Theorem 4.2, 𝑎 + 𝑏 is π−Hirano 

invertible. On the contrary, let 𝑎 + 𝑏 ∈ 𝒜𝜋𝐻 . Then 

𝑥(𝑦 + 𝑧) = 0 and 𝑧𝑦 = 0. By Lemma 3.2 and Theorem 

4.2, we obtain 𝑥, 𝑦, 𝑧 ∈ 𝑁(𝒜) and 𝑎 + 𝑏 ∈ 𝒜𝜋𝐻 .                                                                       

 

Theorem 12.2. [11] Let 𝑎, 𝑏 ∈ 𝒜𝜋𝐻 . If 𝑎3𝑏 = 0,         

𝑏𝑎2𝑏 = 0, 𝑎𝑏𝑎𝑏 = 0 and 𝑏2𝑎𝑏 = 0, then 𝑎 + 𝑏 ∈ 𝒜𝜋𝐻 . 

 

Corollary 13.2. Let 𝑎, 𝑏 ∈ 𝒜𝜋𝐻 . If 𝑎2𝑏 = 0, 𝑎𝑏𝑎 = 0 and 

𝑏𝑎𝑏 = 0, then 𝑎 + 𝑏 ∈ 𝒜𝜋𝐻 . 

 

Corollary 14.2. [11] Let 𝑎, 𝑏 ∈ 𝒜𝜋𝐻. If 𝑎2𝑏 = 0 and  

𝑏𝑎𝑏 = 0, then 𝑎 + 𝑏 ∈ 𝒜𝜋𝐻 . 

 

    We are now ready to prove: 

Theorem 15.2. Let 𝑎, 𝑏 ∈ 𝒜𝜋𝐻. If 𝑎2𝑏 = 0, 𝑏𝑎𝑏2 = 0 and 

(𝑎𝑏)2 = 0 then 𝑎 + 𝑏 ∈ 𝒜𝜋𝐻 . 

 

Proof. Let 𝑝 = 𝑎2 + 𝑎𝑏 and 𝑞 = 𝑏2 + 𝑏𝑎. Since     

 (𝑎𝑏)2 = 0 and we have 𝑎𝑏 − (𝑎𝑏)2 ∈ 𝒜 is nilpotent. 

Hence, by using Theorem 4.2, we see that 𝑎𝑏 ∈ 𝒜𝜋𝐻 . By 

using Corollary 9.2, 𝑏𝑎 ∈ 𝒜𝜋𝐻 . In view of Corollary 10.2, 

𝑎2, 𝑏2 ∈ 𝒜𝜋𝐻 . Since 𝑎2(𝑎𝑏) = 0, it follows by Lemma 

11.2, that 𝑝 ∈ 𝒜𝜋𝐻 . As (𝑏𝑎)𝑏2 = 0, we see that                

𝑞 ∈ 𝒜𝜋𝐻 . Clearly, 

𝑝2𝑞 = (𝑎2 + 𝑎𝑏)(𝑎𝑏3 + 𝑎𝑏2𝑎) = 0, 

𝑞𝑝𝑞 = (𝑏2 + 𝑏𝑎)(𝑎𝑏3 + 𝑎𝑏2𝑎) = 0. 

According to Corollary 14.2, (𝑎 + 𝑏)2 = 𝑝 + 𝑞 ∈ 𝒜𝜋𝐻 . 

Therefore 𝑎 + 𝑏 ∈ 𝒜𝜋𝐻 , by Corollary 10.2. 

      Clearly, (𝑎𝑏)𝑎2 = 0 and (𝑏𝑎)𝑏2 = 0. It follows by 

Lemma 11.2, that 𝑝, 𝑞 ∈ 𝒜𝜋𝐻 . Furthermore, we check 

that 𝑝𝑞 = 0 and then (𝑎 + 𝑏)2 = 𝑝 + 𝑞 ∈ 𝒜𝜋𝐻  and      

𝑎 + 𝑏 ∈ 𝒜𝜋𝐻 , as required.                                                                    

 

Lemma 16.2. Let 𝑎, 𝑏 ∈ 𝒜𝜋𝐻. If 𝑎𝑏2 = 0 and                  

𝑎𝑏𝑎 = 0, then 𝑎 + 𝑏 ∈ 𝒜𝜋𝐻 . 

 

Proof. Let 𝑝 = 𝑎2 + 𝑎𝑏 and 𝑞 = 𝑏2 + 𝑏𝑎. Since     

 (𝑎𝑏)2 = 0, then  𝑎𝑏, 𝑏𝑎 ∈ 𝒜𝜋𝐻 . Clearly, (𝑎𝑏)𝑎2 = 0 and 

(𝑏𝑎)𝑏2 = 0. It follows by Lemma 11.2, that 𝑝, 𝑞 ∈ 𝒜𝜋𝐻 . 

Furthermore, we check that  𝑝𝑞 = 0 and then                   

(𝑎 + 𝑏)2 = 𝑝 + 𝑞 ∈ 𝒜𝜋𝐻  and 𝑎 + 𝑏 ∈ 𝒜𝜋𝐻 , as required.     

                  

Theorem 17.2. Let 𝑎, 𝑏 ∈ 𝒜𝜋𝐻. If 𝑎𝑏2 = 0, 𝑎𝑏𝑎2 = 0 and 

(𝑎𝑏)2 = 0, then 𝑎 + 𝑏 ∈ 𝒜𝜋𝐻 . 

 

Proof. Let 𝑝 = 𝑎2 + 𝑎𝑏 and 𝑞 = 𝑏2 + 𝑏𝑎. Clearly, 

𝑎𝑏, 𝑏𝑎 ∈ 𝒜𝜋𝐻 . Since (𝑎𝑏)𝑎2 = 0 and (𝑏𝑎)𝑏2 = 0 it 

follows by Lemma 11.2, that  𝑝, 𝑞 ∈ 𝒜𝜋𝐻 . Clearly,       

𝑝𝑞2 = 0 and 𝑝𝑞𝑝 = 0. According to Lemma 16.2., 

(𝑎 + 𝑏)2 = 𝑝 + 𝑞 ∈ 𝒜𝜋𝐻 . Therefore  𝑎 + 𝑏 ∈ 𝒜𝜋𝐻 .        

 

Proposition 18.2. Let 𝑎, 𝑏 ∈ 𝒜𝜋𝐻. If 𝑎𝑏2 = 0, 𝑎2𝑏𝑎 = 0 

and (𝑎𝑏)2 = 0, then 𝑎 + 𝑏 ∈ 𝒜𝜋𝐻 . 

 

Proof. Let 𝑝 = 𝑎2 + 𝑏𝑎 and 𝑞 = 𝑏2 + 𝑎𝑏. As in the proof 

in Theorem 17.2, we see that  𝑎 + 𝑏 ∈ 𝒜𝜋𝐻.                        
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3- OPERATOR  MATRICES  

       To illustrate the preceding results, we are concerned 

with the π−Hirano inverse for an operator matrix. 

Throughout this section, the operator matrix 

𝑀 = [
𝐴 𝐵
𝐶 𝐷

]                                   (4) 

Where 𝐴 ∈ ℒ(𝑋)𝜋𝐻 , 𝐵 ∈ ℒ(𝑋, 𝑌), 𝐶 ∈ ℒ(𝑌, 𝑋) and         

𝐷 ∈ ℒ(𝑌)𝜋𝐻. Using different splitting approach and 

Theorem 17.2, we will obtain various conditions for the 

π−Hirano inverse of 𝑀. 

 

Lemma 1.3. [7] Let 𝐴 ∈ ℒ(𝑋)𝜋𝐻  and 𝐷 ∈ ℒ(𝑌)𝜋𝐻. Then 

𝐾 = [
𝐴 0
0 0

], 𝐿 = [
0 0
0 𝐷

] and 𝐿 = [
𝐴 0
0 𝐷

] 

have π−Hirano inverse. 

 

Lemma 2.3. [4] Let 𝐵 ∈ ℒ(𝑋, 𝑌)𝜋𝐻  and 𝐶 ∈ ℒ(𝑌, 𝑋)𝜋𝐻 . If 

𝐶𝐵 ∈ ℒ(𝑌)𝜋𝐻, then 

𝐿 = [
0 𝐵
𝐶 0

] 

has 𝜋 −Hirano inverse. 

 

Lemma 3.3. Let 𝐷, 𝐶𝐵 ∈ ℒ(𝑌)𝜋𝐻 . If 𝐷𝐶𝐵 = 0, then 

𝑁 = [
0 𝐵
𝐶 𝐷

] 

has 𝜋 −Hirano inverse. 

 

Proof. Consider the splitting of, 

𝑁 = [
0 0
0 𝐷

] + [
0 𝐵
𝐶 0

] = 𝑃 + 𝑄 

By Lemmas 1.3 and 2.3, P and Q have π−Hirano inverse. 

According to the assumptions, we have, 

𝑃𝑄2 = [
0 0
0 𝐷𝐶𝐵

], 𝑃𝑄𝑃2 = [
0 0

𝐷𝐶𝐵𝐶 0
] 

and (𝑃𝑄)2 = [
0 0

𝐷𝐶 0
]

2

. 

Therefore 𝑃𝑄2 = 0, 𝑃𝑄𝑃2 = 0 and (𝑃𝑄)2 = 0. Applying 

Theorem 17.2, 𝑀 = 𝑃 + 𝑄 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻, as asserted.  

 

Theorem 4.3. Let 𝐴 ∈ ℒ(𝑋)𝜋𝐻  and 𝐷, 𝐶𝐵 ∈ ℒ(𝑌)𝜋𝐻 . If 

𝐷𝐶𝐵 = 0,  𝐴𝐵𝐶 = 0 and 𝐴𝐵𝐷 = 0, then 

𝑀 = [
𝐴 𝐵
𝐶 𝐷

] 

has 𝜋 −Hirano inverse. 

 

Proof.  Write 

𝑀 = [
𝐴 𝐵
𝐶 𝐷

] = [
𝐴 0
0 0

] + [
0 𝐵
𝐶 𝐷

] = 𝑃 + 𝑄. 

By Lemma 3.1 and Lemma 3.3, P and Q have π−Hirano 

inverse. We check that 𝑃𝑄2 = 0, 𝑃𝑄𝑃2 = 0 and   

(𝑃𝑄)2 = 0. Then by Theorem 17.2, we complete the 

proof and 𝑀 = 𝑃 + 𝑄 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻.                                   

 

Corollary 5.3. Let 𝐴 ∈ ℒ(𝑋)𝜋𝐻 and 𝐷, 𝐶𝐵 ∈ ℒ(𝑌)𝜋𝐻 . If 

𝐷𝐶𝐵 = 0, and 𝐴𝐵 = 0, then 𝑀 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻. 

 

Proposition 6.3. Let 𝐴 ∈ ℒ(𝑋)𝜋𝐻  and 𝐷, 𝐶𝐵 ∈ ℒ(𝑌)𝜋𝐻 . If 

𝐷𝐶𝐵 = 0, 𝐶𝐴𝐵 = 0 and 𝐶𝐴2 = 0 then 𝑀 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻. 

 

Proof.  Write 

𝑀 = [
𝐴 𝐵
𝐶 𝐷

] = [
0 𝐵
𝐶 𝐷

] + [
𝐴 0
0 0

] = 𝑃 + 𝑄. 

Simillary Theorem 4.3, we have 𝑃𝑄2 = 0, 𝑃𝑄𝑃2 = 0 and 

(𝑃𝑄)2 = 0. By Theorem 17.2, we complete the proof.    

 

Corollary 7.3. Let 𝐴 ∈ ℒ(𝑋)𝜋𝐻 and 𝐷, 𝐶𝐵 ∈ ℒ(𝑌)𝜋𝐻 . If 

𝐷𝐶𝐵 = 0 and 𝐶𝐴 = 0 then 𝑀 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻. 

 

Lemma 8.3.  Let 𝐷, 𝐶𝐵 ∈ ℒ(𝑌)𝜋𝐻 . If 𝐵𝐷𝐶 = 0 and   

 𝐵𝐷2 = 0, then 

𝑁 = [
0 𝐵
𝐶 𝐷

]                                    (5) 

has π−Hirano inverse. 

 

Proof. Consider the splitting of, 

𝑁 = [
0 𝐵
𝐶 0

] + [
0 0
0 𝐷

] = 𝑃 + 𝑄 

Simillary Lemma 3.3, we have 𝑃𝑄2 = 0, 𝑃𝑄𝑃2 = 0 and 

(𝑃𝑄)2 = 0. Applying Theorem 17.2, 𝑁 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻 , as 

asserted.                                                                                   

 

Theorem 9.3. Let 𝐴 ∈ ℒ(𝑋)𝜋𝐻 and 𝐷, 𝐶𝐵 ∈ ℒ(𝑌)𝜋𝐻 . If 

𝐵𝐷𝐶 = 0, 𝐵𝐷2 = 0, 𝐶𝐴2 = 0, and 𝐶𝐴𝐵 = 0, then 

𝑀 = [
𝐴 𝐵
𝐶 𝐷

] 
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has 𝜋 −Hirano inverse. 

 

Proof. Write 

𝑀 = [
0 𝐵
𝐶 𝐷

] + [
𝐴 0
0 0

] = 𝑃 + 𝑄. 

By Lemma 1.3 and Lemma 8.3, 𝑃 and 𝑄 have π−Hirano 

inverse. We have 𝑃𝑄2 = 0, 𝑃𝑄𝑃2 = 0 and (𝑃𝑄)2 = 0. 

Then by Theorem 17.2, we complete the proof.               

 

Corollary 10.3. Let 𝐴 ∈ ℒ(𝑋)𝜋𝐻  and 𝐷, 𝐶𝐵 ∈ ℒ(𝑌)𝜋𝐻 . If 

𝐵𝐷 = 0 and 𝐶𝐴 = 0, then 𝑀 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻 .   

 

Theorem 11.3. Let 𝐴 ∈ ℒ(𝑋)𝜋𝐻  and 𝐷, 𝐶𝐵 ∈ ℒ(𝑌)𝜋𝐻. If 

𝐷𝐶𝐵 = 0,  𝐶𝐴𝐵 = 0 and 𝐶𝐴2 = 0, then 𝑀 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻. 

 

Proof. Write 

𝑀 = [
𝐴 0
0 0

] + [
0 𝐵
𝐶 𝐷

] = 𝑃 + 𝑄. 

We get the result by Lemma 3.3 and Theorem 9.3.              

 

Corollary 12.3. Let 𝐴 ∈ ℒ(𝑋)𝜋𝐻  and 𝐷, 𝐶𝐵 ∈ ℒ(𝑌)𝜋𝐻 . If 

𝐷𝐶𝐵 = 0 and 𝐶𝐴 = 0, then 𝑀 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻 . 

 

4- PERTURBATIONS 

     Let 𝑀 be an operator matrix. It is of interest to consider 

the 𝜋 −Hirano inverse of 𝑀 under generalized Schur 

condition 𝐷 = 𝐶𝐴𝜋ℎ𝐵 [9]. Let  

𝑊 = 𝐴𝐴𝜋ℎ + 𝐴𝜋ℎ𝐵𝐶𝐴𝜋ℎ.                  (6) 

We now derive 

 

Theorem 1.4. Let 𝐴 ∈ ℒ(𝑋)𝜋𝐻  and 𝐷 ∈ ℒ(𝑌)𝜋𝐻. If  

𝐴𝐴𝜋𝐵𝐶 = 0, 𝐴𝜋𝐵𝐶𝐴𝜋 = 0, 𝐴𝐵𝐶𝐴𝜋 = 0, 𝐷 = 𝐶𝐴𝜋ℎ𝐵  

and 𝐴𝑊 has 𝜋 −Hirano inverse, then 𝑀 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻 . 

 

Proof.  We easily see that 

𝑀 = [
𝐴 𝐵
𝐶 𝐶𝐴𝜋ℎ𝐵

] = [
0 𝐴𝜋𝐵
0 0

] + [𝐴 𝐴𝐴𝜋ℎ𝐵
𝐶 𝐶𝐴𝜋ℎ𝐵

] 

              = 𝑃 + 𝑄. 

It is not hard to see that 𝑃3𝑄 = 0, 𝑄𝑃2𝑄 = 0, 𝑃𝑄𝑃𝑄 = 0 

and 𝑄2𝑃𝑄 = 0. In view of Theorem 12.2, 𝑃 is nilpotent 

and it has π−Hirano inverse. Moreover, we have             

 𝑄 = 𝑄1 + 𝑄2, 

𝑄1 = [
𝐴𝐴𝜋 0
𝐶𝐴𝜋 0

]  and  𝑄2 = [𝐴2𝐴𝜋ℎ 𝐴𝐴𝜋ℎ𝐵
𝐶𝐴𝐴𝜋ℎ 𝐶𝐴𝜋ℎ𝐵

] 

that 𝑄2𝑄1 = 0 and 𝑄1 is nilpotent. Easily check that 

𝑄2 = [𝐴𝐴𝜋ℎ

𝐶𝐴𝜋ℎ] [𝐴 𝐴𝐴𝜋ℎ𝐵]. 

By hypothesis, we see that 

[𝐴 𝐴𝐴𝜋ℎ𝐵] [𝐴𝐴𝜋ℎ

𝐶𝐴𝜋ℎ] = 𝐴2𝐴𝜋ℎ + 𝐴𝐴𝜋ℎ𝐵𝐶𝐴𝜋ℎ = 𝐴𝑊 

has π−Hirano inverse. Obviously, 𝑄2 has π−Hirano 

inverse. Therefore 𝑄 has π−Hirano inverse. According to 

Theorem 2.12, 𝑀 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻.                                          

 

Corollary 2.4. Let 𝐴 ∈ ℒ(𝑋)𝜋𝐻  and 𝐷 ∈ ℒ(𝑌)𝜋𝐻 . If    

𝐴𝐵𝐶 = 0, 𝐴𝜋𝐵𝐶 = 0, 𝐷 = 𝐶𝐴𝜋ℎ𝐵 and 𝐴𝑊 has 

𝜋 −Hirano inverse, then 𝑀 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻. 

 

Theorem 3.4. Let 𝐴 ∈ ℒ(𝑋)𝜋𝐻  and 𝐷 ∈ ℒ(𝑌)𝜋𝐻. If 

𝐵𝐶𝐴𝐴𝜋 = 0, 𝐴𝜋𝐵𝐶𝐴 = 0 and 𝐷 = 𝐶𝐴𝜋ℎ𝐵. If  𝐴𝑊 has 

𝜋 −Hirano inverse, then 𝑀 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻. 

 

Proof: Clearly, we have 

𝑀 = [
𝐴 𝐵
𝐶 𝐶𝐴𝜋ℎ𝐵

] = 𝑃 + 𝑄 

Where 

 𝑃 = [𝐴2𝐴𝜋ℎ 𝐵
𝐶 𝐶𝐴𝜋ℎ𝐵

] and 𝑄 = [
𝐴𝐴𝜋 0

0 0
]. 

By assumption, we verify that 𝑃2𝑄 = 0, 𝑄𝑃𝑄2 = 0 and 

(𝑃𝑄)2 = 0. In view of in Theorem 15.2, 𝑄 is nilpotent, and 

then it has π−Hirano inverse. Moreover, we have             

𝑃 = 𝑃1 + 𝑃2, 

𝑃1 = [
0 𝐴𝜋𝐵

𝐶𝐴𝜋 0
]  and  𝑃2 = [𝐴2𝐴𝜋ℎ 𝐴𝐴𝜋ℎ𝐵

𝐶𝐴𝐴𝜋ℎ 𝐶𝐴𝜋ℎ𝐵
] 

and 𝑃2𝑃1 = 0. Since 𝑃1
3 = 0, therefore 𝑃1 has π−Hirano 

inverse. Moreover, we have 

𝑃2 = [𝐴𝐴𝜋ℎ

𝐶𝐴𝜋ℎ] [𝐴 𝐴𝐴𝜋ℎ𝐵]. 

By hypothesis, we see that 

[𝐴 𝐴𝐴𝜋ℎ𝐵] [𝐴𝐴𝜋ℎ

𝐶𝐴𝜋ℎ] = 𝐴2𝐴𝜋ℎ + 𝐴𝐴𝜋ℎ𝐵𝐶𝐴𝜋ℎ = 𝐴𝑊 

is π−Hirano invertible. Therefore 𝑃2 has π−Hirano inverse. 

By virtue of Theorem 15.2, 𝑀 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻, as required.  

                                                                                                   
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Corollary 4.4. Let 𝐴 ∈ ℒ(𝑋)𝜋𝐻  and 𝐷 ∈ ℒ(𝑌)𝜋𝐻 . If   

𝐵𝐶𝐴 = 0, 𝐷 = 𝐶𝐴𝜋ℎ𝐵 and 𝐴𝑊 has 𝜋 −Hirano 

inverse, then 𝑀 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻 . 

 

Theorem 5.4. Let 𝐴 ∈ ℒ(𝑋)𝜋𝐻  and 𝐷 ∈ ℒ(𝑌)𝜋𝐻. If 

𝐵𝐶𝐴𝐴𝜋 = 0, 𝐵𝐶𝐴𝜋𝐵𝐶 = 0, 𝐴𝜋𝐵𝐶𝐴 = 0, 𝐷 = 𝐶𝐴𝜋ℎ𝐵 

dna  𝐴𝑊 has 𝜋 −Hirano inverse, then 𝑀 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻 . 

 

Proof. Clearly, we have 

𝑀 = [
𝐴 𝐵
𝐶 𝐶𝐴𝜋ℎ𝐵

] = 𝑃 + 𝑄 

Where 

 𝑃 = [
𝐴 𝐵

𝐶𝐴𝜋ℎ𝐴 𝐶𝐴𝜋ℎ𝐵
]  and  𝑄 = [

0 0
𝐶𝐴𝜋ℎ 0

]. 

By assumption, we verify that 

𝑃𝑄2 = 0, 𝑃𝑄𝑃2 = 0 and (𝑃𝑄)2 = 0. 

In view of Theorem 17.2, 𝑄 is nilpotent, and then it has 

π−Hirano inverse. We see that 𝑃 = 𝑃1 + 𝑃2,  

𝑃1 = [𝐴𝐴𝜋ℎ 𝐴𝜋𝐵
0 0

] and 𝑃2 = [𝐴2𝐴𝜋ℎ 𝐴𝐴𝜋ℎ𝐵
𝐶𝐴𝐴𝜋ℎ 𝐶𝐴𝜋ℎ𝐵

] 

that 𝑃1𝑃2 = 0 and 𝑃1 is nilpotent. Moreover, we have 

𝑃2 = [𝐴𝐴𝜋ℎ

𝐶𝐴𝜋ℎ] [𝐴 𝐴𝐴𝜋ℎ𝐵]. 

By hypothesis, we see that 

[𝐴 𝐴𝐴𝜋ℎ𝐵] [𝐴𝐴𝜋ℎ

𝐶𝐴𝜋ℎ] = 𝐴2𝐴𝜋ℎ + 𝐴𝐴𝜋ℎ𝐵𝐶𝐴𝜋ℎ = 𝐴𝑊 

has π−Hirano inverse. Therefore P2 has π−Hirano inverse. 

By virtue of Theorem 17.2, 𝑀 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻, as required. 

        

Corollary 6.4. Let 𝐴 ∈ ℒ(𝑋)𝜋𝐻  and 𝐷 ∈ ℒ(𝑌)𝜋𝐻 . If   

𝐵𝐶𝐴 = 0, 𝐵𝐶𝐴𝜋 = 0, 𝐷 = 𝐶𝐴𝜋ℎ𝐵 and 𝐴𝑊 has 

𝜋 −Hirano inverse, then 𝑀 ∈ ℒ(𝑋⨁𝑌)𝜋𝐻. 

 

    Regarding a complex matrix as the operator matrix on     

ℂ × ℂ × ⋯ × ℂ, we now present a numerical example to 

demonstrate Theorem 5.4. 

 

Example 7.4. Let 

𝐴 = [

1 0     0 1
0 0     0 0
0 0     0 0
0 1     1 0

],  𝐵 = [

0 1
1 1

−1 −1
0 0

], 

 

𝐶 = [
−1
   1

   
1
1

   
1
1

  
−1
  1

] and 𝐷 = [
0 −1
0 1

] 

be complex matrices and set 

𝑀 = [
𝐴 𝐵
𝐶 𝐷

] 

then 

𝐴𝜋ℎ = [

1 1     1 1
0 0     0 0
0 0     0 0
0 0     0 0

],  𝐴𝜋 = [

  0 −1     −1 −1
0  1        0      0
0  0        1      0
0  0        0      1

]. 

We easily check that 𝐵𝐶𝐴𝐴𝜋 = 0, 𝐵𝐶𝐴𝜋𝐵𝐶 = 0, 

𝐴𝜋𝐵𝐶𝐴 = 0 and 𝐷 = 𝐶𝐴𝜋𝐵. In this case, 𝐴 and 𝐷 have 

𝜋 −Hirano inverses.  

Conclusion 

We introduce a new class of generalized inverse which 

is called 𝜋 −Hirano inverse. In this paper some 

elementary properties of the 𝜋 −Hirano inverse are 

obtained. We investigate the existence of the 𝜋 −Hirano 

inverse for the anti-triangular operator matrix                    

𝑁 = [
0 𝐵
𝐶 𝐷

] with 𝐷𝐶𝐵 = 0 and et al. Certain 

multiplicative and additive results for the 𝜋 −Hirano 

inverse in a Banach algebra are presented. We then apply 

some conditions under which a 2 × 2 block operator 

matrix  has 𝜋 −Hirano inverse over Banach spaces. 
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