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Abstract 
 

Porosity is one of the key parameters associated with oil reservoirs. Determination of this petrophysical parameter is an essential 

step in reservoir characterization. Among different linear and nonlinear prediction tools such as multi-regression and polynomial 

curve fitting, artificial neural network has gained the attention of researchers over the past years. In the present study, two-

 

dimensional (2D) seismic and well logs data of the Burgan oil field were used for prediction of the reservoir porosity. In this regard, 

broad-

 

band acoustic impedance was first extracted from 2D seismic dataset, as the attribute most related to porosity. Next, other 

optimum seismic attributes were selected using stepwise regression and cross validation techniques. At the end, three types of neural 

network were used for inversion of seismic attributes and prediction of reservoir porosity. The results show that probabilist ic neural 

network (PNN) is the best one for prediction of the reservoir porosity using seismic attributes.  
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Introduction 
 

The geophysical development of oil and gas fields 

relies on characterizing several petrophysical 

properties throughout the sedimentary interval 

 

containing the reservoirs [1]. Hence, laboratory 

measurements on core plugs, interpretation of 

geophysical well logs and inversion of seismic 

attributes provide valuable estimation about reservoir 

physical properties. Integration of these distinct 

methodologies is the best approach to determine 

uncertainties in the predictions, with direct 

implications on risk mitigation in drilling operations 

 

[2] . 

Porosity is a key variable in characterizing a 

reservoir and in determining flow patterns in order to 

optimize the production of a field. Reliable prediction 

of porosity is also crucial for evaluating hydrocarbon 

accumulations in a basin-scale fluid-migration analysis 

and to map potential pressure seals in order to reduce 

drilling hazards. Several relationships have been 

offered which relate porosity to wireline readings, such 

as the sonic transit time and density logs. However, the 

conversion from density and transit time to equivalent 

porosity values is not simple. The common conversion 

formulae contain terms and factors that depend on the 

individual location and lithology, e.g. clay content, 

pore-fluid type, grain density and grain transit time for 

conversion from density and sonic logs, respectively,  
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which in general are unknown and thus must be 

determined from rock sample analysis. Hence, porosity 

is generally measured in the laboratory on the cored 

rocks taken from the reservoir or can be determined by 

well-test data. However,  the well testing and coring 

methods are very expensive and time-

 

consuming [3]. 

Moreover,  in a typical oil or gas field, almost all wells 

are logged using various tools to measure geophysical 

parameters such as porosity and density, while both 

well test and core data are available only for a few 

 

wells [4].   

Recently, petroleum industry has witnessed 

significant advances in  research of intelligent system 

for prediction, classification, history matching and so 

forth between two sets of input and output data. 

Seismic data is a measurement of subsurface properties 

such as lithology, rock type, porosity, water saturation, 

pore pressure, etc. Some research work has been 

carried out for prediction of reservoir properties from 

 

seismic attributes [5, 6, 7, 8 and 9]. Recently, 

prediction of porosity from seismic attributes has been 

done by performing statistical approach, neural 

networks, fuzzy logic and committee fuzzy inference 

 

system (CFIS) [5, 9]. In all of these works, only one 

type of neural network has been used for prediction 

and there is no specific comparison between the 

various types of neural networks to highlight their 

capabilities.  

The main aim of this paper is to predict porosity 

using seismic attributes and three different types of 

neural networks. The Burgan reservoir in the south of 

Iran has been selected as a case study.  
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2. Study area  
 

The Burgan reservoir is characterized by severe 

heterogeneity due to a complex interplay of 

stratigraphic and diagenetic effects. This reservoir is 

located in one of the oil fields in the Bushehr province, 

Iran. The producing horizon in this field is the Albian 

 

and lower Cenomanian limestone and shale. Figure 1 

shows the geographic position of this reservoir. This 

oil field contains different formations including 

Kazhdomi, Daryan, Gadvan, etc. The entire available 

well log data of this study was obtained from four 

wells located in the Burgan reservoir. UTM 

 

coordinates of these wells are given in Table 1.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Geographical position of the Burgan reservoir. 

 

 

Table 1. UTM coordinates of the three wells located in 

Burgan reservoir. 
 

Well Name X (UTM) Y (UTM) 

 

Noroz 11 342782.81 3260826.63 

 

Noroz 16 343970.20 3261833.70 

 

Abozar 2 358642.00 3238562.00 

 

 

3. Materials and methodology  
 

This study focuses on the application of artificial 

neural network techniques for prediction of Burgan 

reservoir porosity using seismic attributes. For the 

 

purpose of this study, 3 post stack 2D seismic time 

sections with good quality and available well log data 

 

of three wells  were used (Figure 2). Density, porosity 

and sonic logs were available for the entire wells, but 

Check shot data was only available for one well. The 

 

2D time section “5 SE-NW” showing general quality 

of seismic data across the Burgan reservoir is shown in 

 

Figure 3. 

 

 

3.1. Correlation of well logs to seismic data 

As the first step of this study, seismic sections were 

interpreted and time horizons were picked based on the 

availability of one check shot in well A-

 

2. Check shot 

was applied for initial time to depth conversion and 

then the first correlations of well logs to seismic data 

were carried out on wells N-

 

11, N-

 

16 and A-

 

2 for 

extracting wavelet and making synthetic seismogram. 

After that, it was necessary to create synthetics and 

extract the wavelets iteratively for converting the well 

log data into time. At the end, suitable time-depth 

relationships were obtained. A well-to-seismic tie, at 

the well A-

 

2, is shown in Figure 4, where the 

correlation between synthetic seismogram (blue) and 

 

composite trace (red) at vicinity of the well is 0.81.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 2. A 2D Map showing the location of wells and 2D 

seismic sections across the Burgan reservoir. 

 

 

 

 

 

 

 

 

 

 
Fig. 3. 

 

2D time section “5 SE-NW” showing the general 

quality of seismic data across the Burgan reservoir. 

 

 

3.2. Selection of optimal seismic attributes 

The reason for applying several statistical and 

intelligent approaches is to find linear or nonlinear 

relationships between two sets of input and output data. 

The relationship between input (seismic attributes) and 

output (porosity) data was investigated by stepwise-

regression analysis and validation error was used a 

criterion to stop adding attributes to the input dataset 

 

[5]. The extracted attributes of this study are given in 

 

Table 2. 

 

According to Table 2, the first two attributes, 

acoustic impedance and average frequency, can be 

optimal inputs for prediction of porosity as the output 

in linearity and nonlinearity mode. Individual 

relationship between actual and predicted porosity of 

 

this study are shown in Figure 5. 
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Fig. 4. A sample of well to seismic tie at well A-2. 

 

 

Table 2. Multi-attributes extracted for predicting the porosity. 

Number of attributes Target Final attribute Training error Validation error 

1 Porosity Acoustic Impedance 0.056038 0.065922 

2 Porosity Average Frequency 0.052839 0.063778 

3 Porosity Time 0.050521 0.064078 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. A cross plot showing the relationships between actual and predicted porosity. 
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As it is well-known, acoustic impedance is a 

product of sonic velocity and bulk density. Because the 

acoustic impedance was selected as a suitable seismic 

attribute for prediction of porosity, a broad band 

acoustic impedance model for the entire oil field was 

extracted via seismic inversion integrating high 

frequency of seismic data and low frequency of well 

logs data. The average frequency is a signature of the 

events and the effects on the abnormal attenuation due 

 

to the presence of the hydrocarbons [10]. 

 

 

3.3. Artificial Neural Network  

The goal of Artificial Neural Network (ANN) 

research is to develop a mathematical model of 

biological events in order to imitate the capability of 

biological neural structures with the purpose of 

designing an intelligent information processing system. 

The first mathematical model was introduced by 

 

Warren McCulloch and Walter Pitts [11]. An adaptive 

Neural Network is a network structure consisting of a 

number of nodes connected through directional links; 

all or part of the nodes are adaptive which means the 

outputs of these nodes depend on modifiable  

parameters belonging to these nodes. 

 

 

3.3.1 Multi-layer Feed Forward Neural Network (MLFN) 

Multilayer feed forward network, or MLFN, is the 

classic neural network and referred to as multi-layer 

perceptron (MLP). Supervised learning using the 

perceptron model was first presented by Rosenblatt, 

 

[12]. It has the capability of solving nonlinear 

problems but its disadvantage is that the final answer is 

dependent on the initial guess o

 

f the weights. Figure 6 

shows a structure of a multi-layer perceptron with M 

inputs and K perceptron.  

The first layer in the MLP is referred to as the input 

layer, the second layer as the hidden layer, and, the 

third layer as the output layer. Between input and 

output layers, one or more hidden layer is possible but 

it is common to use one layer with optimal number of 

nodes. Any function with a finite collection of points 

and any function that is continuous and bounded can be 

 

solved with 3 layers. The 3 layer model can handle 

 

many functions that do not have these criteria [13]. The 

input to the MLFN is a vector of M attributes, value x
T

j 

= [x

 

1j, x

 

2j, …, xMj], where 

 

j=1, … , N, is the number of 

seismic samples. The output of the weighting and 

summation in first layer can be written as:  

(1) (1) (1)

0

 

, 1,2,..., ,
M

T

kj ki ij j

i

y w x W x k K


    

 

(1) 

 

The input to the single perceptron in layer 3 can be 

written as:   

(2) (2) (1) (2) (1)

0

 

, 1,2,..., ,
k

T

j ki kj j j

k

y w z w z j N


    

 

(2) 

Where 

 
(1)

kjz  is nonlinear function that imposes to 

 

the output of layer 1, one of the most commonly used 

 

functions in MLFN is the logistic function (3) in which 

the output constrained between -

 

1 and +1. 

1
( ) logist( ) ,

 

1 exp( )
f x x

x
 

 
      

 

(3) 

 

The final output for MLFN with two layer 

 

perceptron which is shown in Figure 6 can be written 

as:  
(2) (2) (2) (1) (1)( ( )).T T

j jz f w f w x         

 

(4) 

 

The weight of the network  was computed via error 

back propagation algorithm in which errors are back 

propagated through the network and used to improve 

the fit between the actual output and the training value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. A multi-layer perceptron with M inputs, K 

perceptrons, and a single output. 

 

 

3.3.2. Radial Basis Function Network (RBFN) 

The radial basis function network, or RBFN, was 

originally developed as a method for performing exact 

interpolation of a set of data points in multi-

 

dimensional space [14]. It was derived using 

regularization theory and Gaussian basis functions and 

 

firstly applied by Ronen et al. [15]. It is a feed-forward 

network where the Gaussian bell curve is the basic 

function. 

Consider ti values as the training samples and si values 

as attributes vector;  in general form the problem can 

be formulated as: 

 
1 1

 

( ) , 1,2,..., ,
N N

i j i j j ij

j j

t s w s s w i N 
 

    
        

 

(5) 

 

 

Where, the function 
 i js s 

 is a set on N radial 

basis functions that depends on the attribute distance. 

A radial basis function is a function the response of 

which decreases monotonically with distance away 

A. Hosseini et al. / Iranian Journal of Earth Sciences 3 

 

(201

 

1) / 168-174 A.S. Alaug et al./ Iranian Journal of Earth Sciences 3 

 

(201

 

1) / 134-152 

 

 

171 

As it is well-known, acoustic impedance is a 

product of sonic velocity and bulk density. Because the 

acoustic impedance was selected as a suitable seismic 

attribute for prediction of porosity, a broad band 

acoustic impedance model for the entire oil field was 

extracted via seismic inversion integrating high 

frequency of seismic data and low frequency of well 

logs data. The average frequency is a signature of the 

events and the effects on the abnormal attenuation due 

 

to the presence of the hydrocarbons [10]. 

 

 

3.3. Artificial Neural Network  

The goal of Artificial Neural Network (ANN) 

research is to develop a mathematical model of 

biological events in order to imitate the capability of 

biological neural structures with the purpose of 

designing an intelligent information processing system. 

The first mathematical model was introduced by 

 

Warren McCulloch and Walter Pitts [11]. An adaptive 

Neural Network is a network structure consisting of a 

number of nodes connected through directional links; 

all or part of the nodes are adaptive which means the 

outputs of these nodes depend on modifiable  

parameters belonging to these nodes. 

 

 

3.3.1 Multi-layer Feed Forward Neural Network (MLFN) 

Multilayer feed forward network, or MLFN, is the 

classic neural network and referred to as multi-layer 

perceptron (MLP). Supervised learning using the 

perceptron model was first presented by Rosenblatt, 

 

[12]. It has the capability of solving nonlinear 

problems but its disadvantage is that the final answer is 

dependent on the initial guess o

 

f the weights. Figure 6 

shows a structure of a multi-layer perceptron with M 

inputs and K perceptron.  

The first layer in the MLP is referred to as the input 

layer, the second layer as the hidden layer, and, the 

third layer as the output layer. Between input and 

output layers, one or more hidden layer is possible but 

it is common to use one layer with optimal number of 

nodes. Any function with a finite collection of points 

and any function that is continuous and bounded can be 

 

solved with 3 layers. The 3 layer model can handle 

 

many functions that do not have these criteria [13]. The 

input to the MLFN is a vector of M attributes, value x
T

j 

= [x

 

1j, x

 

2j, …, xMj], where 

 

j=1, … , N, is the number of 

seismic samples. The output of the weighting and 

summation in first layer can be written as:  

(1) (1) (1)

0

 

, 1,2,..., ,
M

T

kj ki ij j

i

y w x W x k K


    

 

(1) 

 

The input to the single perceptron in layer 3 can be 

written as:   

(2) (2) (1) (2) (1)

0

 

, 1,2,..., ,
k

T

j ki kj j j

k

y w z w z j N


    

 

(2) 

Where 

 
(1)

kjz  is nonlinear function that imposes to 

 

the output of layer 1, one of the most commonly used 

 

functions in MLFN is the logistic function (3) in which 

the output constrained between -

 

1 and +1. 

1
( ) logist( ) ,

 

1 exp( )
f x x

x
 

 
      

 

(3) 

 

The final output for MLFN with two layer 

 

perceptron which is shown in Figure 6 can be written 

as:  
(2) (2) (2) (1) (1)( ( )).T T

j jz f w f w x         

 

(4) 

 

The weight of the network  was computed via error 

back propagation algorithm in which errors are back 

propagated through the network and used to improve 

the fit between the actual output and the training value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. A multi-layer perceptron with M inputs, K 

perceptrons, and a single output. 

 

 

3.3.2. Radial Basis Function Network (RBFN) 

The radial basis function network, or RBFN, was 

originally developed as a method for performing exact 

interpolation of a set of data points in multi-

 

dimensional space [14]. It was derived using 

regularization theory and Gaussian basis functions and 

 

firstly applied by Ronen et al. [15]. It is a feed-forward 

network where the Gaussian bell curve is the basic 

function. 

Consider ti values as the training samples and si values 

as attributes vector;  in general form the problem can 

be formulated as: 

 
1 1

 

( ) , 1,2,..., ,
N N

i j i j j ij

j j

t s w s s w i N 
 

    
        

 

(5) 

 

 

Where, the function 
 i js s 

 is a set on N radial 

basis functions that depends on the attribute distance. 

A radial basis function is a function the response of 

which decreases monotonically with distance away 

A. Hosseini et al. / Iranian Journal of Earth Sciences 3 

 

(201

 

1) / 168-174 A.S. Alaug et al./ Iranian Journal of Earth Sciences 3 

 

(201

 

1) / 134-152 

 

 

171 

As it is well-known, acoustic impedance is a 

product of sonic velocity and bulk density. Because the 

acoustic impedance was selected as a suitable seismic 

attribute for prediction of porosity, a broad band 

acoustic impedance model for the entire oil field was 

extracted via seismic inversion integrating high 

frequency of seismic data and low frequency of well 

logs data. The average frequency is a signature of the 

events and the effects on the abnormal attenuation due 

 

to the presence of the hydrocarbons [10]. 

 

 

3.3. Artificial Neural Network  

The goal of Artificial Neural Network (ANN) 

research is to develop a mathematical model of 

biological events in order to imitate the capability of 

biological neural structures with the purpose of 

designing an intelligent information processing system. 

The first mathematical model was introduced by 

 

Warren McCulloch and Walter Pitts [11]. An adaptive 

Neural Network is a network structure consisting of a 

number of nodes connected through directional links; 

all or part of the nodes are adaptive which means the 

outputs of these nodes depend on modifiable  

parameters belonging to these nodes. 

 

 

3.3.1 Multi-layer Feed Forward Neural Network (MLFN) 

Multilayer feed forward network, or MLFN, is the 

classic neural network and referred to as multi-layer 

perceptron (MLP). Supervised learning using the 

perceptron model was first presented by Rosenblatt, 

 

[12]. It has the capability of solving nonlinear 

problems but its disadvantage is that the final answer is 

dependent on the initial guess o

 

f the weights. Figure 6 

shows a structure of a multi-layer perceptron with M 

inputs and K perceptron.  

The first layer in the MLP is referred to as the input 

layer, the second layer as the hidden layer, and, the 

third layer as the output layer. Between input and 

output layers, one or more hidden layer is possible but 

it is common to use one layer with optimal number of 

nodes. Any function with a finite collection of points 

and any function that is continuous and bounded can be 

 

solved with 3 layers. The 3 layer model can handle 

 

many functions that do not have these criteria [13]. The 

input to the MLFN is a vector of M attributes, value x
T

j 

= [x

 

1j, x

 

2j, …, xMj], where 

 

j=1, … , N, is the number of 

seismic samples. The output of the weighting and 

summation in first layer can be written as:  

(1) (1) (1)

0

 

, 1,2,..., ,
M

T

kj ki ij j

i

y w x W x k K


    

 

(1) 

 

The input to the single perceptron in layer 3 can be 

written as:   

(2) (2) (1) (2) (1)

0

 

, 1,2,..., ,
k

T

j ki kj j j

k

y w z w z j N


    

 

(2) 

Where 

 
(1)

kjz  is nonlinear function that imposes to 

 

the output of layer 1, one of the most commonly used 

 

functions in MLFN is the logistic function (3) in which 

the output constrained between -

 

1 and +1. 

1
( ) logist( ) ,

 

1 exp( )
f x x

x
 

 
      

 

(3) 

 

The final output for MLFN with two layer 

 

perceptron which is shown in Figure 6 can be written 

as:  
(2) (2) (2) (1) (1)( ( )).T T

j jz f w f w x         

 

(4) 

 

The weight of the network  was computed via error 

back propagation algorithm in which errors are back 

propagated through the network and used to improve 

the fit between the actual output and the training value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. A multi-layer perceptron with M inputs, K 

perceptrons, and a single output. 

 

 

3.3.2. Radial Basis Function Network (RBFN) 

The radial basis function network, or RBFN, was 

originally developed as a method for performing exact 

interpolation of a set of data points in multi-

 

dimensional space [14]. It was derived using 

regularization theory and Gaussian basis functions and 

 

firstly applied by Ronen et al. [15]. It is a feed-forward 

network where the Gaussian bell curve is the basic 

function. 

Consider ti values as the training samples and si values 

as attributes vector;  in general form the problem can 

be formulated as: 

 
1 1

 

( ) , 1,2,..., ,
N N

i j i j j ij

j j

t s w s s w i N 
 

    
        

 

(5) 

 

 

Where, the function 
 i js s 

 is a set on N radial 

basis functions that depends on the attribute distance. 

A radial basis function is a function the response of 

which decreases monotonically with distance away 
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from a central point [16]. It has been found that the 

most efficient function is the Gaussian basis function. 

 

So, (5) can be written as: 
2

2
1 1

 

( ) exp , 1,2,..., ,
N N

i j

i j ij j

j j

s s
t s w w i N

 

 
    
 
 

 
                                                                     

 

(6) 

Where wj 

 

, j= 1, … , N, are the desired weights.  

 

Equation (6) in matrix form can be written as: 

,t Øw
                                                     

 

(7) 

The 

 

solution of (7)  is given by: 

 
1

,w Ø I t


 
                                     

 

(8) 

Where, λ is the  prewhitening factor and I is the 

identity matrix. Once the weights have been computed 

then they can be applied to application dataset by: 
2

2
1

( ) exp .
N

k j

k j

j

x s
y x w



 
 
 
 


            

 

(9) 

 

The key parameter in the RBFN method is the 

sigma (σ) value. Unfortunately, no efficient method of 

optimizing σ as a function of each attribute has been 

 

obtained for the RBFN method [5]. Therefore, the 

parabolic se

 

arch method [17] was used to find the 

optimum value for σ. For the present study, the RBFN 

for prediction of porosity by pre-

 

weightening 10 was 

 

performed and the optimum σ=0.444 calculated by the 

parabolic search method.  

 

 

3.3.3. Probabilistic Neural Network (PNN) 

The probabilistic neural network is a neural 

network implementation of the Parzen window, and 

 

was initially proposed by Specht [18]. The PNN can be 

used as a tool for predicting the continuous or discrete 

data and for mapping input data to their outputs  It is  a 

fast and efficient method.  For a vector of xi as the 

input to the PNN, the output ON(xi) is calculated as the 

linear combination of n data points in training dataset 

by  the following equation:  

1

1

exp( ( , ))
( ) ,

exp( ( , ))

n

Ni ii
N i n

ii

O D x Px
O x

D x x













   

 

(10) 

 

Where D(x,xi) is the distance between the input 

point x and each of the training point, and it is 

calculated as follows: 
2

1
( , ) .

k j ij

i j
j

x x
D x x



 
   

 


                

 

(11) 

 

Where k is the number of input data, and ρj is the 

distance scale factor for each of the input attributes and 

the only parameter of the PNN which needs to be 

optimized. In comparison with the other types of neural 

network, such as MLFN that requires many parameters 

to be optimized, PNN is simple, fast and efficient. The 

optimal value of ρj is obtained when the validation 

error is minimum, in which a sample of training was 

left out and then predicted from the other samples.  

Next, the mean square error was computed by 

repeating this procedure for all the training samples 

and by averaging the errors, the validation error could 

 

be obtained [5]. 

For optimizing  the distance scale factor ρj range 

 

was taken between 0.10 and 3.00. The numbers of ρj 

values to be trie

 

d  was set to 25. The optimized values 

of ρj for porosity prediction were obtained as follows: 

 

Inversion result: 0.124; average frequency: 0.258; 

Global ρj

 

: 0.342. 

 

 

4. Discussion  
 

 

The results of this study are shown in Table 3 and 

 

Figure 7. As seen, PNN is the best method among the 

selected ANNs because it can provide the maximum 

correlation of determination and the least root mean 

square error (RMSE) in the test dataset. Better 

prediction of porosity using seismic attributes via PNN 

approves the results obtained by Kadkhodaie-Ilkhchi et 

 

al. [9] but rejects the results of Russell [5]. The 

predicted porosity for the Bourgan reservoir in the 

 

vicinity of 2 wells on 2D seismic section “5 SE-NW” 

 

by different ANNs is shown in Figure 7. 

 

 

Table 3. Results of different artificial neural network 

methods used for prediction of porosity. 
 

Method RMSE Correlation Coefficient 

RBFN 0.071 0.444 

MLFN 0.063 0.554 

PNN 0.058 0.609 

 

 

 

5. Conclusion  
 

In this research work, attempts have been carried 

out to utilize seismic attributes for the prediction of 

hydrocarbon reservoir porosity. The results obtained 

have shown that Acoustic Impedance, Average 

Frequency and Time are the most relevant attributes to 

 

be used for prediction of porosity (Table 2).  

Later, three different types of neural networks 

(radial basic function network, multi-layer feed 

forward neural network and probabilistic neural 

network) were used for inversion and subsequent 

prediction of porosity.    
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Fig. 7. Predicted porosity for the Bourgan reservoir across the Nowrooz oil field: (A) RBFN, (B) MLFN, (C) PNN. 
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6. Future Work 
 

For the future work, Artificial Neural Network 

Fuzzy Inference System (ANFIS) will be used for 

formulating porosity via seismic attributes. Based on 

the research conducted by Kadkhodaie-Ilkhchi et al, 

 

[9]. ANFIS is a very accurate, reliable and fast method 

for the prediction of porosity when seismic attributes 

are taken into account. This method can significantly 

decrease the associated cost and exploration risk of 

reservoir exploration, management and production by 

providing more accurate predictions. As a  future work, 

it is recommended that the performance of ANNs 

should be compared with that of an ANFIS and a 

Committee Fuzzy Inference System (CFIZ) to provide 

a better insight into the capabilities of each network.   
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