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Abstract 
 

DT log is one of the most frequently used wireline logs to determine compression wave velocity. This log is commonly used to 
gain insight into the elastic and petrophysical parameters of reservoir rocks. Acquisition of DT log is, however, a very expensive and 
time consuming task. Thus prediction of this log by any means can be a great help by decreasing the amount of money that needs to 
be allocated for acquisition. Support vector machine (SVM) is one of the best artificial intelligence techniques proven to be a reliable 
method in the prediction of various real world problems. The aim of this paper is to use SVM to predict the DT log data of a well 
located in the southern oilfields of Iran. By comparing the results of SVM with those obtained by a Back Propagation Neural 
Network (BPNN) we were able to verify the accuracy of SVM in the prediction of P-wave velocity. Hence, this method is 
recommended as a cost effective tool in the prediction of P- wave velocity.  
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1. Introduction 
 

The prediction of rock mechanical parameters is 
necessary for reservoir development, management and 
prospect evaluation when very sparse or no borehole-
based rock mechanical data are available. The most 
direct way of determining the rock mechanical data is 
through laboratory tests of cores or through the 
analysis of plug samples. A core-based test for the 
whole reservoir interval in each well is very expensive 
and requires an extensive amount of coring to be 
sampled and analyzed. Thus, a simple yet effective 
method is required to predict rock mechanical 
characterization [1]. Conventional well logs data can 
be indirectly used to predict these properties but 
logging acquisition can be very expensive and time 
consuming. According to recent studies, correlations 
have been proposed relating acoustic velocities and 
reservoir rock properties [2]. DT log is the most well-
known log, after dipole shear sonic imager (DSI) log, 
used to determine reservoir rock properties. This log 
contains information about P-wave slowness (i.e. 
inverse of velocity) and thus will be a great aid in the 
identification of the quality and weak portions of 
reservoirs. Although this log is often acquired through 
logging process, it imposes additional cost on the 
project. Thus, if this log could be predicted using other 
conventional logs, the associated cost incurred by the 
acquisition of this log will be decreased. In recent 
years, artificial intelligence (AI) techniques have been 
proven to be successful methods for understanding the 
complex relationships of real world problems.  
--------------------- 
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Artificial Neural networks (ANNs) are AI 
techniques often used to solve nonlinear problems. 
There are several neural network architectures such as 
radial basis function (RBF), back propagation neural 
network (BPNN), counter propagation and learning 
vector quantization (LVQ) networks [5, 6] which are 
successfully employed to solve regression or 
classification problems. ANNs can be trained very 
easily as long as a large amount of data is available. In 
most cases, these methods require normalization 
processes to provide relevant outputs. Error-back 
propagation (EBP) algorithm, [7, 8] which is the most 
popular learning algorithm in ANNs discussion used to 
reduce errors and increase the generalization ability of 
the networks, is not able to handle complex problems 
[9, 10]. More recently, support vector machine (SVM) 
technique [11] was introduced and successfully used 
for many applications as it does not suffer from the 
shortcomings of ANN methods. This is an easy to train 
method  with good generalization and estimation 
ability in finding the best global models. SVM was 
introduced in the early of 1990s by Vapnik to solve 
nonlinear related problems [12]. It was found that 
SVM has a high power of extension which allows it to 
deal with noise and a lack of data [13-16]. The aim of 
this paper is to use SVM for the prediction of DT 
wireline log for a well located in the southern oilfields 
of Iran. The results provided by SVM are compared 
with those given by a BPNN to highlight the ability of 
each network in the prediction process. 
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2. Study Area 
 
The oilfield used for this study is located in 

Khuzestan Province, in the petroliferous area of the 
Dezful Embayment. The middle and upper Cretaceous 
sediments of the Dezful Embayment are one of the 
richest petroleum systems in the Middle East, with the 
presence of the Gurpi, Khazdumi and Gadvan source 
rocks as well as Lurestan, Asmari, Khuzestan and 
Khami/ Bangestan reservoirs. This oilfield is near the 
western portion of Basrah. The structures of the Basrah 
area consist of gentle anticlines showing a north-south 
general trend. These structures continue south to 
Kuwait and show the same orientation. Well log 
datasets used for this study and obtained from well No. 
10 including, calibrated compressional sonic logs, 
density log and neutron porosity log were considered in 
order to study the quantitative relationships between 
the acoustic and litho-petrophysical properties of the 
reservoir’s layers. Figure 1 shows the geographical 
location of the oilfield in southern Iran. 
 
Support Vector Machine  

 
Support Vector Machine (SVM) which is used for 

regression analysis is called support vector regression 
(SVR). The aim of SVR is to find a function for the 
approximation of the output according to the available 
dataset [17, 18]. To estimate a function, a small 
fraction of training samples called support vectors 
(SVs) are taken into account. In addition, a specific 
loss function called ε-insensitive is used to create a 
sparseness property for the SVR algorithm. The basis 
of the theory was developed based on a regression 
algorithm as well as the inner product of two vectors in 
Hilbert Space (i.e. a space in which the inner product 
of two vectors has a real value). To control the risk 
minimization, simultaneous control of the complexity 
and error of the model are taken into consideration. 
This is the basic idea used to improve the 
generalization ability of SVR [19, 20]. However, to get 
a better generalization in non-linear cases, the data 
points are mapped into a space called feature space 
(i.e., Hilbert or inner product space) through utilization 
of a function known as a kernel function [21, 22]. 
Selecting a suitable kernel makes it possible to separate 
the data in the feature space while the original input 
space is still non-linear. Thus, while data for n-parity is 
not separated by a hyper plane in the input space, it can 
be separated in the feature space by a proper kernel 
[23, 24, 25]. According to the definition of kernel, the 
nonlinear regression estimation problem of SVR can be 
proposed and utilized for solving any regression 
analysis [19]. 
 
Back-Propagation Neural Network 

The goal of ANN is to develop a mathematical 
model that can imitate the capabilities of neural 

structures in purposing an intelligent information 
processing system. Back propagation neural network 
(BPNN) has been an active research topic in recent 
years because of its efficiency in modeling nonlinear 
dynamic systems [17, 18]. Numerous applications can 
be found in various papers indicating the abilities of 
this typical neural network [19, 20]. BPNN is usually 
recognised for its prediction capabilities and ability to 
generalise well on a wide variety of problems. For 
example, Liang and Gupta studied the stability of 
dynamic back propagation training algorithm using the 
Lyapunov Method [21]. This network is a supervised 
type of network which means that it should be trained 
with both input and target output data. During the 
training, the network tries to match the outputs with the 
desired target values. Learning starts with the 
assignment of random weights. The output is then 
calculated and the error is estimated. This error is used 
to update the weights until the stopping criterion is 
reached. In this case, the stopping criteria will be the 
average error of epoch.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Geographical location of the studied oilfield 

 
Dataset 

As mentioned before, the aim of this work is to 
predict the DT wireline log of a well located in the 
southern oilfields of Iran. The available database used 
for this study includes sonic log (DT), Neutron 
Porosity logs (NPHI), Formation Density logs 
(RHOB), Standard Resolution Caliper logs (CAL), 
Gamma Ray log (GR) and Formation Resistivity log 
(RT) (See Figure 2). To identify the most relevant logs 
to be used as the input for training the networks, 
principle component analysis was used. Principle 
component analysis (PCA) is a conventional 
dimensionality reduction technique used to transform 
data and reveal the most relevant features of any type 
of system [22, 23]. PCA is a technique for extracting a 
smaller set of variables with less redundancy from 
high-dimensional data sets to retain as  much of the 
information as possible [24, 25].  
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Fig.2. Conventional well logs used for the purpose of this study. 
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Determination of linear combinations of variables 
featuring, extraction, dimensionality reduction, 
visualization of multidimensional data and 
identification of underlying variables are among the 
most important abilities of PCA [26, 27, 28]. The 
principle components, which are the projection of the 
data onto the eigenvectors (principle axes), can capture 
most of the structure in the data [29, 30]. 

After applying PCA analysis, correlation and 
component were obtained. Tables 1 and 2 respectively 
give the correlation matrix and component matrix used 
to assess the possible relationship between DT log and 
other available logs. Figure 3 shows the component 
plot visually depicting the relationship of various well 
logs in 3D space. 

 
Table 1. Component matrix of the well logs data. 

Component Matrix 

 1 2 3 
RHOB .852 -.258 -.245 
NPHI .248 -.256 .746 
CAL .701 .382  
DT .638 .439 -.400 
GR .572 .346 -.301 
RT .673 .337 .241 

 
Table 2. Correlation matrix of the well logs data. 

 

Correlation Matrix 

 RHOZ GR DT RT NPHI CAL 
RHOZ 1.000      
GR -.340 1.000     
DT .612 .695 1.000    
RT .007 .153 .521 1.000   
NPHI -.719 -.047 .206 -.214 1.000  
CAL .350 -.009 .682 .311 -.566 1.000 

 
Shown in Table 1, DT has a close relationship with 

all of the well logs except NPHI log. This inference 
can be proven by the component matrix given in Table 
2. According to the PCA theory, all of the variables 
located in the same column with a correlation 
coefficient up to 0.5 are assumed to be in close 
relationship with each other. Looking at Table 2, since 
DT, NPHI, RHOZ, GR and RT logs are located in 
component 3 and have a correlation up to 0.5, they can 
be considered to have suitable relationships with each 
other. Figure 4 visually proves the relationships given 
in Table 1 and Table 2. 

Shown in Figure 3, those well logs located on the 
same side of the plot have a close relationship with 
each other. This is verification which shows the 
reliability of the results presented in Table 2.  

After selecting the relevant input well logs, 70% of 
the data (data from depth of 4080m up to 4412m) was 
randomly used for training and the remainder (data 
from depth of4412mup to 4554m) was considered for 
testing using Automated Bayesian Regularization 
methods. This type of regularization can significantly 
reduce a large amount of error called over-fitting.  The 

very popular MATLAB Neural Network Toolbox [31] 
is not able to handle arbitrarily connected BPNN and 
SVM methods. Therefore, two codes were developed 
using MATLAB software to run these two networks. 
Normalization of data helps artificial networks to better 
understand the relationship between input and output 
data as well as increasing the accuracy of prediction so 
high efficiency will be achieved during the testing 
phase. The normalization process for the raw inputs 
has a great effect on making the data suitable for the 
training process. Without this normalization, training 
the networks would have been very slow. It can be 
used to scale the data in the same range of values for 
each input feature in order to minimize bias within the 
networks from one feature to another. Data 
normalization can also speed up training time by 
starting the training process for each feature within the 
same scale. It is especially useful for modeling 
application where the inputs are generally on widely 
different scales [28, 29, 30]. There are many different 
type of normalization typically used to scale data 
including, Z-Score Normalization, Min-Max 
normalization, Sigmoid normalization, Statistical 
column normalization, etc. In view of the requirements 
of the network’s algorithm, available data from the 
input and output variables were normalized [32, 33]. 
Therefore, the data were normalized using Eq. (10) for 
being in the range of -1 and 1 [35]. 

 
 
(10) 
 

Where X is the normalized value, Xi is the actual 
value and Xmax and Xmin are the maximum and 
minimum value of data respectively. When the min-
max normalization is applied, each feature will lie 
within the new range of values and will remain the 
same. Min-max normalization has the advantage of 
exactly preserving all relationships in the data []. 
Leaving out one cross-validation of the whole training 
set was also used to adjust the associated parameters of 
each network [36]. 

 
Support Vector Machine Implementation 

 
According to the information mentioned in the 

SVM section, the efficiency of SVM depends on the 
selection of a suitable kernel. Thus, because of the 
performance and robustness of Gaussian Radial Basis 
function [37, 38, 42, 33], it was considered for the 
purpose of this study. The formulation of this kernel is 
as follows: 

 
 

                 (11) 

Where is a constant parameter used to control the 
amplitude of the Gaussian function as well as the 
generalization ability of SVM in the prediction process. 
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This parameter needs to be optimizes to have a suitable 

SVM. Thus, the trade-off parameters C,  of -
insensitive loss function, the kernel type K and its 

corresponding   parameters need to be determined. 
C is a regularization parameter that controls the trade-
off between maximizing the margin and minimizing 
the training error. If C is too small, insufficient stress 
will be placed on fitting the training data. If C is too 
large, the algorithm will over fit the training data.  

Hence, to implement SVM, the appropriate values 

of parameters C (trade-off parameter), and  need to 
be determined. To obtain the value of these parameters, 
cross-validation was used. Cross-validation techniques 
can be used to adjust the parameters involved in SVM 
structure as they make no biased assumptions about the 
data and noise distribution. The Leave-One-Out 
method(LOO) is a cross validation method comprised 
of removing one portion from the training set and 
constructing the decision function based on the 
remaining training data [39, 43]. The root mean square 
error (RMSE) was used to evaluate the quality of the 
model built through training and testing steps. To 

obtain the optimal value of , the SVM with different 

s was trained, the  varying from 0.05 to 0.22, 

every 0.01. Finally, the optimal was found as 0.13. 

In order to find an optimal , the RMSE of different

s were calculated. Eventually, the optimal value of

 was found to be 0.09. According to data [40, 41, 
42, 44] it was found that a large value should be set for 
C (e.g., C = 2100). Figure 5 presents the performance 
of SVM in the prediction of DT logs using 
conventional well logs. 
As shown in Figure 5, SVM showed a high level 
of accuracy during the testing phase as it provided 
a good estimation of the DT log data.  

 
Prediction of DT Logs Using BPNN 

 
To check the accuracy of SVM in the prediction of 

DT log, the results obtained from SVM were compared 
with those of a BPNN. To optimize the best network 
topology (e.g. number of hidden layers and 
corresponding neurons), trial and error procedure was 
utilized. The structure of the BPNN used for the 
purpose of this paper includes one input layer 
consisting 5 neurons, two hidden layers of the 8-8 
neurons and an output layer containing only one 
neuron. Multiple layers of neurons with nonlinear 
transfer functions allow the network to learn nonlinear 
and linear relationships between the input and output 
vectors. Figure 6 shows the optimum BPNN structure 
used for this paper. 

The prediction performance of the model built by 
BPNN for DT log was done by calculating the mean 
square error (RMSE) and correlation coefficient (R). 

The results obtained by neural network were run using 
an m.file written using MATLAB commercial 
software. Figure7 shows the performance of BPNN in 
the prediction process of DT log. 

A comparison of Figure 7 with Figure 5, clearly 
shows that the SVM is a better predictor in terms of 
accuracy compared to BPNN. Although BPNN gives a 
good estimation of DT, the results are not as good as 
those of the SVM. This proves the application and 
strength of SVM in the prediction of DT log. In the 
next section, a detailed comparison is made between 
the results presented by these two networks.  

 
3. Discussion  

 
In this paper, the efficiency of SVM in the 

prediction of DT log was demonstrated using a real 
case study. Two MATLAB codes (i.e. m.files) were 
developed and utilized to compare the performance of 
SVM with that of BPNN. It was found that SVM had a 
much better performance and a higher rate of accuracy 
compared to BPNN in the prediction process. Figure 8 
shows the scatter plots representing the correlation 
coefficient between the measured and predicted DT in 
the testing phase. 

The plots shown in Figure 8 indicate that an 
acceptable agreement (i.e. R=0.98) was obtained 
through the utilization of SVM method. All of these 
expressions show the ability of SVM as a suitable 
algorithm for the prediction of DT logs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Component plot of the well log data. 
 
4. Conclusions 

 
In this paper, we showed the application of SVM in 

the prediction of DT log of a well located in the 
oilfields of southern Iran. Support vector machine 
(SVM) is a novel machine learning methodology based 
on statistical learning theory. It has considerable 
features including, the reliance on  a kernel and  the 
fact that the optimization problem results in a uniquely 
global optimum, high generalization performance and 
prevention of convergence to a local optimal solution. 
Although both methods used proved to be reliable in  
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Fig.5. Performance of SVM in prediction of DT logs using 
testing step. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig.6. Block diagram of the optimum BPNN Structure. 
 
 
 
 
 
 
 
 
 
 

 
Fig.7. Performance of BPNN in the prediction of DT logs in 
testing data.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8. Relationship between measured and predicted data of 
DT log (SVM left and BPNN right). 

the prediction of DT log, it was found that the SVM 
made the running time considerably faster and showed 
a higher rate of accuracy. In Addition, the SVM 
technique resulted in a better prediction relative to that 
of the BPNN model (Figure 8). As a result, SVM 
method is recommended to be used for these types of 
predictions where cost and running time are a real 
issue. 
 
Appendix 
Support Vector Machine Algorithms 

 
SVM, when used for regression analysis, is called 

support vector regression (SVR). SVR aims to find a 
function such as f(x) as an approximation of the value 
y(x) with minimum error based on the available data, 
i.e.   

1 1( , ) , ... , ( , ) ( )n
m mx y x y X R Y R     

(1) 
In this algorithm, a specific loss function called ε-
insensitive loss was developed to create a sparseness 
property for SVR. This function is described as 
follows: 

0                        if ( )
( )

( )     Otherwise

y f x
y f x

y f x





  
  

 
                                                                    (2) 
Where f(x) is the estimated value of the y and the 
corresponding errors being less than ε-boundary (ε-
tube) are not penalized (Figure 9).  
Development of this algorithm was started using linear 
function estimation. It is clear that every linear 
function of input vector x has the following 
representation: [17] 

bxwxf  .)( Where

, ,nw x X R b R      (3) 

 
Note that angle brackets ( . ) indicate the inner 

product of two vectors in Hilbert space (i.e. a space in 
which the inner product of two vectors has a real 
value). In ε-SVR, ε controls the complexity of the 
approximating functions where small values tend to 
penalize a large portion of the training data leading to 
tight approximating. Therefore, the proper choice of 
the ε value is critical for the generalization of 
regression models. 
To find f(x), one should minimize the regulated risk 
functional (Rreg) (instead of just the empirical risk 
functional used in traditional learning algorithms such 
as ANN) defined as follows [19]: 
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The Remp is the empirical error over training data. The 
parameter C is the regularization coefficient indicating 
the complexity of function f and penalizes the error by 
setting the trade-off between training error and model 
complexity. It was proven that minimizing the Eq. (5) 
is equivalent to the following convex quadratic 
optimization problem [20]. 
 

)(
2

1
),,(

1

2





N

i
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  


 

 
Where ξi and

i
  are slack variables introduced to 

satisfy constraints on the function. The first term of Eq. 
(6) is the Vapnik– Chervonenkis (VC) confidence 
interval, whereas the second term is the empirical risk. 
Both terms limit the upper bound of the generalization 
error rather than limiting the training error. This means 
that SVR strikes a balance between the empirical error 
and VC-confidence interval leading to an improvement 
of the generalization performance of the models [21]. 
According to Eq. (6), any error smaller than ε does not 
require a nonzero ξi or

i
  , and does not enter the 

objective function [22]. 
By introducing Lagrange multipliers (α and α') and 
allowing for C >0, ε >0, the equation of an optimum 
hyper plane is achieved by maximization of the 
following relations: 
 
 
 
                
                (6) 
 
 

CtoSubject ii  )(0    (7)

 

 

Where xi only appears inside an inner product. To get a 
potentially better representation of the data in a non-
linear case, the data points can be mapped into an 
alternative space, generally called feature space, 
through the replacement below: 
 

)().(. jiji xxxx    (8) 

The functional form of the mapping φ(xi) does not need 
to be known since it is implicitly defined by the choice 
of a suitable kernel function: k(xi, xj) = φ(xi).φ(xj) or 
inner product in Hilbert space. With a suitable choice 
of kernel the data can become separable in feature 
space while the original input space is still non-linear 
[23, 24]. Then, the nonlinear regression estimate takes 
the following form: 

 
 
 
(9)                                
 
Where b is computed using the fact that constrains of 

equation (6) becomes ξi= 0 if 0<αi<C, and i  = 0 if 

0 < i< C [25]. 

 
 

 
 
 
 
 
 
 
 
 

Fig.9. ε-Insensitive loss function [18] 
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