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Abstract 
In this paper, modular neural network (MNN) inversion has been applied for the parameters approximation of the gravity 

anomaly causative target. The trained neural network is used for estimating the amplitude coefficient and depths to the top and 

bottom of a finite vertical cylinder source. The results of the applied neural network method are compared with the results of the 

least-squares standard deviation method. The inverse modeling has been tested first on synthetic gravity data. The synthetic data are 

infected with random noise to evaluate the effect of noise on performance of the methods. Both methods show satisfactory results, 

with and without random noise. The MNN and least squares standard deviation approaches have been applied to two real gravity data 

due to two salt domes from Iran and USA, where the results comparison shows good agreement with each other. The computed 

standard errors indicate the generated gravity response of the estimated parameters from MNN has better conformity with the 

observed gravity anomaly than the generated gravity response from the least squares method. The results of the MNN inversion show 

the top and bottom depths of the salt dome situated in Iran are about 24.5 m and 63.8 m and for the salt dome situated in USA are 

about 1451 m and 9263 m, respectively.   
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1. Introduction 
To consider a simple geometrically shaped model for 

buried structures can be very useful in quantitative 

analysis of gravity data, as ambiguity in interpretation 

reduce dramatically. One of the most important 

exploration problems is estimating the shape and depth 

of an anomaly causative mass. Different methods have 

been developed to determine the shape and depth of the 

buried structure from gravity data.  

The methods generally fall into one of two categories. 

The first category is the continual modeling methods, 

such as Talwani and Ewing (1960), Tanner (1967) and 

Cordell and Henderson (1968). However, the methods 

require information about density and depth as part of 

the input data obtained from geological studies and/or 

other geophysical methods. Thus, the resulting model 

based on these parameters can change infinitely. The 

second category is the graphical methods, such as 

Masket et al. (l956), Skeels (1963), Botezatu et al. 

(1971) and Pick et al. (l973). Moreover, some people 

illustrated that the window curves method can be 

employed to compute the depth and shape of the buried 

mass from gravity data (Abdelrahman and El-Arabi 

1996; Abdelrahman et al. 2001; Essa 2007). 

Abdelrahman et al. (2006) expanded a least-squares 

variance analysis method for shape and depth estimation 

from gravity field data.  
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Nowadays Artificial Neural Networks (ANNs) are of 

main research concern, so that involving researchers of 

various disciplines and sciences. Topics contributing to 

this investigation contain biology, computing, 

electronics, mathematics, medicine, geophysics and etc 

(Bichsel 2005). The new method, the artificial neural 

network, has been employed in recent years for different 

branch of geophysics especially potential fields. For 

example, the situation of buried steel drums as magnetic 

dipole source is evaluated using supervised artificial 

neural network (Salem et al. 2001). Eslam et al. (2001) 

specified depth and radius of subsurface cavities from 

microgravity data using back propagation neural 

networks. Hajian (2004) estimated depth and shape 

factor of the gravity anomaly source by applying Feed-

Forward Back-Propagation Neural Networks. Chua and 

Yang (1998) defined a new approach in neural networks 

titled Cellular Neural Network (CNN), which is focused 

on 2D image processing. CNN was applied for 

separation of regional/residual potential sources in 

geophysics (Albora et al. 2001a, 2001b). Forced Neural 

Networks for gravity anomaly analysis was proposed by 

Osman et al. (2006, 2007). Abedi et al. (2009) 

calculated the depth and radius of the simple geometry 

by the neural network from the gravity anomalies. Al- 

Garni (2013) used MNN inversion for estimating the 

depth of the gravity anomaly source related to simple 

geometry such as sphere, infinite horizontal cylinder and 

semi-infinite vertical cylinder. Eshaghzadeh and 

Kalantari (2015) have been proposed a new method 
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based on feed-forward neural network for gravity field 

inverse modeling due to anticlinal structures. 

Eshaghzadeh and Hajian (2018) have introduced a new 

concept of the modularity for analysis the gravity field 

by modular neural network.  

In this paper, first Abdelrahman and Abo-Ezz (2008) 

method is applied to determine the depth to the top and 

base of a buried finite vertical cylinder from moving 

average residual anomaly profiles obtained numerically 

from gravity data using filters of successive window 

lengths. The standard deviation of the depths to the top 

can be investigated as a criterion for determining the 

correct top and base depth of the subsurface structure. 

Afterward, the modular neural network is used for 

inverse modeling of profile gravity data. We investigate 

the ability of the suggested approach in estimating the 

radius and the depth to the top and bottom of buried 

finite vertical cylinder structure from calculated gravity 

data, with and without random noise. The MNN 

inversion and least-squares standard deviation method 

are employed for analysis of a real gravity data set of 

two salt domes from Iran and USA.  

 

2. Least-squares standard deviation method  
The gravity effect of a finite vertical cylinder is defined 

by Hammer (1974) 

(x) (x)g KF                                                              (1) 

Where k is amplitude coefficient as 

2

2 2 2 2

1 1
...( ) , K G RiF x

x z x h
   

 

  

where x is the horizontal location coordinate of 

measurement points, z and h represent the depths to the 

top and base planes of causative structure from ground 

surface respectively, G is the gravitational constant, R is 

the radius of the horizontal cross section of a vertical 

cylinder, and ρ is the density contrast (Fig 1). 

 

 
Fig 1. Geometries of the finite vertical cylinder 

 

Three observation points xi-s, xi and xi + s are 

considered on the residual gravity anomaly profile 

where s = 1,…, M interval units and is named the 

window length. The moving average residual gravity 

anomaly gr(xi) at the observation point xi was given by 

Abdelrahman and Abo-Ezz (2008) in the following 

form: 

 ( ) 2 ( ) ( ) ( s) ,... 1,2,3,..., .
2

r i i i i

K
g x F x F x s F x i N     

                                                                                     (2) 

gr (xi) achieves its most extreme at xi = 0, which is 

computed by 

(max) ( , )rg KE h z                                                         (3) 

Where  
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Equation (2) can now be rewritten as (Abdelrahman and 

Abo-Ezz 2008) 
(max)

( ) (x )
2

r
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g
g x D                                                 (4) 
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The unknown top depth (z) of the structure in equation 

(4) can be attained by minimizing, i.e. 
2

1
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2

N
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                          (5) 

where H(xi) signifies the observed moving average 

residual gravity anomalies at xi. 

Setting the derivative of λ(z) to zero as for z lead-in to 

(Abdelrahman and Abo-Ezz 2008) 

1

(max)
( ) (x ) (x ) (x ) 0,

2

N
r

i i i

i

g
u z H D D 


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 


                       (6) 

Where 
(x )

(x ) i
i

D
D

z

 




  

Nonlinear equation (6) can be worked out for z using 

standard methods such as Newton–Raphson method as 

the depth to the bottom (h) remains unchangeable during 

the solving process. Thus, the depth to the top is 

estimated by solving one nonlinear equation in z. 

Theoretically, one value of the window length, i.e. s, is 

enough to compute the depth to the top from equation 

(6), but in practice, more than one value of the window 

length is used because of the presence of noise in data 

set and interference from neighboring sources. In this 

method, criterion for determining the exact depth to the 

top and base of the causative structure is the minimum 

standard deviation (Abdelrahman and Abo-Ezz 2008). 

The lowest standard deviation indicates the best value of 

the assumed depth to the base and the correct values for 

computed depth to the top based on the different 

windows length. 

2.1. Synthetic example 

We have considered a finite vertical cylinder model with 

K=-20 mGal.m ,z=10 m and h=30 m. Moreover, for 

evaluating the stability of the least squares method, 

random errors of 5% were added to synthetic gravity 

data. Four successive moving average windows are 

employed to each set of input data, that is, the free-noise 

and noise corrupted synthetic gravity data (Figs. 2 and 

3).  
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Fig 2. Moving average residual gravity anomalies due to a 

buried finite vertical cylinder model for s = 2, 3, 4, and 5 m.  

 

 
 

Fig 3. Moving average residual gravity anomalies due to a 

buried finite vertical cylinder model for s = 2, 3, 4, and 5 m 

after adding 5% of random noise to the gravity anomaly 

profile 

 

The range of values of the depth to the base plane of 

model is considered to be from 20 m to 40 m and the 

spacing of h values is assumed to be 2 m. Then the 

standard deviation of the top depth estimates related to 

the different lengths of the moving average windows for 

each value of the depth to the base is computed. The 

estimated depths to the top and also their average values 

and standard deviations are given in tables 1 and 2.  

The estimated parameters (z=10 m and h=30 m) from 

the free noise gravity data are alike the initial 

assumption, where the standard deviation of the depths 

to the top is zero. The minimum standard deviation 

(0.046) occurs at h = 32 m and z = 10.03 m while the 

synthetic gravity data have been corrupted with 5% 

random noise. The results show an error of 0.3% and 

6.67% in the depths to the top and base of the finite 

vertical cylinder model, respectively.  Sometime z and h 

are known, the amplitude coefficient (K) can be 

obtained from equation (3). Known amplitude 

coefficient (K) and the density contrast (ρ), the radius of 

the cylinder (R) can be specified from the relationship 

given in equation (1). When the data contain 5% random 

errors, the estimated average value of amplitude 

coefficient (K) is 18.86 mGal.m. The results are all close 

to the chosen parameters for initial theoretical model. 

This demonstrates the robustness and flexibility of the 

present method. The calculated gravity fields by 

estimated parameters from both gravity data sets, with 

and without random noise, using least squares method 

are shown in Fig 4.  

 

 
 
Fig 4. The observed and calculated gravity fields for the finite 

vertical cylinder synthetic model 

 

 

3. Modular neural network 
The major implication of modularity has a close relation 

to the notion of local computation, that is to say, each 

module is an independent operator and interacts with 

others in an integrated unit structure, in order to carry 

out a given duty. We apply an MNN to train and 

generate synthetic gravity responses. As shown in Fig 5, 

an MNN is a high-level neural network, consisting of a 

number of modules (local experts).  

 

 

 
 

Fig 5. Sketch of the modular neural network architecture 
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Table 1. The moving average windows results for a finite vertical cylinder theoretical example where the parameters are: z = 10 m, h 

= 30 m and K = -20 mGal.m. 

Average value 

of z (m) 

Standard deviation 

of depths (m) 

Computed depth to the top (z) (m) 

Assumed h 

Value (m) 

S=5 m S=4 m S=3 m S=2 m 

10.22 

10.15 

10.11 

10.08 

10.05 

10.0 

9.98 

9.95 

9.92 

9.9 

9.86 

0.081 

0.059 

0.064 

0.056 

0.039 

0.00 

0.024 

0.052 

0.071 

0.078 

0.083 

10.12 

10.08 

10.03 

10 

10 

10 

10 

10 

10 

9.97 

9.95 

10.19 

10.14 

10.1 

10.07 

10.03 

10 

10 

9.99 

9.95 

9.95 

9.89 

10.25 

10.17 

10.14 

10.1 

10.06 

10 

9.98 

9.93 

9.88 

9.87 

9.82 

10.31 

10.22 

10.18 

10.13 

10.09 

10 

9.95 

9.89 

9.84 

9.8 

9.76 

20 

22 

24 

26 

28 

30 

32 

34 

36 

38 

40 

 
Table 2. The moving average windows results for a finite vertical cylinder theoretical example with added 5% random noise where 

the parameters are: z = 10 m, h = 30 m and K = -20 mGal.m. 

Average value 

of z (m) 

Standard deviation 

of depths (m) 

Computed depth to the top (z) (m) 

Assumed h 

Value (m) 

S=5 m S=4 m S=3 m S=2 m 

10.41 

10.28 

10.2 

10.17 

10.08 

10.07 

10.03 

9.91 

9.89 

9.82 

9.7 

0.147 

0.158 

0.121 

0.083 

0.1 

0.071 

0.046 

0.068 

0.057 

0.082 

0.148 

10.27 

10.12 

10.09 

10.08 

10.05 

10.01 

9.97 

9.98 

9.96 

9.92 

9.87 

10.34 

10.19 

10.13 

10.15 

9.97 

10.03 

10.02 

9.94 

9.92 

9.85 

9.76 

10.47 

10.35 

10.24 

10.19 

10.1 

10.08 

10.04 

9.82 

9.85 

9.78 

9.61 

10.58 

10.47 

10.36 

10.28 

10.21 

10.17 

10.08 

9.91 

9.84 

9.73 

9.57 

20 

22 

24 

26 

28 

30 

32 

34 

36 

38 

40 

 

The final outputs of the MNN are the amplitude 

coefficient, top and base depths of a finite vertical 

cylinder produced by summing the outputs of the 

modules weighted by a gating network. Each module 

has its own input, hidden, and output layers. An MNN 

contains a group of modules (also called local experts) 

and a gating network. The gating network learns to 

divide a task into several parts, which is an unsupervised 

learning. Each module is assigned to learn one part of 

the task, which is a supervised learning. Therefore, the 

MNN combines supervised and unsupervised learning 

(Haykin 1994). Fig 5 shows the architecture of the 

MNN. Both the modules and the gating network are 

connected to the same input layer. The number of output 

nodes and modules in the gating network must be equal. 

The output of each module is linked to the output layer. 

The output vector from the corresponding modules is 

weighted by the output values of the gating network so 

the output from a module with the best performance is 

transferred to the output layer with slightest change 

while the outputs from the other modules are weighted 

by a number close to zero and thus have little effect on 

the solution. The MNN final output is the summation of 

the weighted output vectors (Zhang et al. 2002). 

Input pattern from the training set for each module and 

the gating network is the same where modules and the 

gating network are trained simultaneously. The gating 

network’s duty is to specifies which module produce the 

most exact response to the training pattern (Haykin 

1994; Zhang et al. 2002). In fact, the gating network 

decides how the output of the modules ought to be 

combined to form the final output of the system and 

which modules should be trained with which training 

patterns (Al-Garni 2013). The connection weights in 

that module are then allowed to be updated to increase 

the probability that the module will respond best to 

similar input patterns. For more detail, the learning 

algorithm has been expanded by Zhang et al. (2002). 

 

3.1. MNN training 

Training samples are a collection of input data fed to a 

neural network to adjust the internal network parameters 

along with the corresponding desired output data. 

Finding the internal parameters is, by itself, an inverse 

problem where the observations are the desired output 

data and the unknowns are the internal parameters. The 

number of training samples should be sufficient to reach 

the desired training accuracy (Zhang et al. 2002). 

Modules can be trained in parallel which reduces 

training times substantially and additional can be added 

without the need to retrain the others. 

To recognize the gravity anomaly pattern by the neural 

network, some of its characteristic factors are defined. 

These factors are related to model geometry. The Fig 2 

show the 2D gravity anomaly of a finite vertical 

cylinder model with the top and base surfaces depth of 
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25 m and 60 m, respectively and the amplitude 

coefficient of -5.5 mGal.m. The features are defined as 

following (Fig 6): 
F1=maximum gravity, (G(max)). 

F2= the width of the curve at points of 80% of maximum 

observation gravity, (W80). 

F3=the gravity value at points of 80% of maximum 

observation gravity, (G80). 

F4= the width of the curve at points of 60% of maximum 

observation gravity, (W60). 

F5=the gravity value at points of 60% of maximum 

observation gravity, (G60). 

F6= the width of the curve at points of 40% of maximum 

observation gravity, (W40). 

F7=the gravity value at points of 40% of maximum 

observation gravity, (G40). 

 

 
 
Fig 6. A pattern for estimating features from the curve of the 

gravity anomaly variations related to a finite vertical cylinder 

model 

 

Therefore, the inputs of neural network are parameters 

of synthetic profile that are generated by forward 

modeling. Outputs are the geometric parameters of a 

model, namely the top and bottom depths and amplitude 

coefficient parameters. To generate training vectors, 

forward modeling is performed over 100 m profile with 

two-m interval. We have considered the ranges from 15 

to 30 m, with 12 points for z parameter (the depth of the 

top surface), the ranges from 48 to 68 m with 18 points 

for h parameter (the depth of the base surface) and the 

ranges from 5 to 9 mGal.m with 10 points for the 

amplitude coefficient (K) parameter. The parameters are 

selected in aforementioned ranges disorderly. The 

choice of the expected range of the parameters depend 

on the behavior of measured field data and the 

geological information from the area under 

consideration.  

We employ the MNN to invert the gravity data using 7 

neurons for the input layer (7 features) and twenty 

number of nodes was also used in the hidden layer. The 

sigmoid transfer function was used to modify 

activations in the hidden layer. The number of hidden 

neurons can be defined more exactly by trial-and-error 

methods in the calculated limits. Here, the best results, 

obtained by trial-and-error when the number of hidden 

neurons is 20. Three local experts (modules) have been 

used for the MNN. We have computed 2160 training 

models (vectors) covering the ranges of the parameters. 

During the learning process, the learning error for each 

parameter can be tested individually as well as the 

overall root mean square. If the learning error is 

accepted, then we compare the misfit between the 

computed gravity field from the NN inversion with the 

observed gravity field data. If the misfit is acceptable, 

then the choice of the ranges is suitable. After correct 

training of the network, by entering parameters of 

anomaly profile into MNN, geometric parameters of the 

model are obtained. 

 

3.2.  MNN inversion for synthetic model 

It is assumed that the finite vertical cylinder model to 

have parameters z=20 m, h=50 m and K=-8 mGal.m. 

The extracted features from the gravity anomaly profile 

as input vector is given to the trained MNN. The 

synthetic gravity anomaly and generating response from 

MNN inversion are shown in Fig 7. In order to 

investigate the effect of error on the MNN performance, 

a random noise of 10% added to the gravity anomaly 

(Fig 8). The generated gravity response from the 

estimated parameters using MNN inversion is shown in 

Fig 8. The inverted parameters by MNN are 

summarized in Table 3. The computed parameters are 

nearly equal to the initial supposed parameters. This 

indicates the efficiency of the MNN in inverse 

modeling. 

 

 
 
Fig 7. The synthetic gravity anomaly and generating response 

from MNN inversion 

 
Table 3. Estimated parameters using MNN from the synthetic 

gravity anomaly 

 

Parameter Initial value 
Estimated value from 

free noise data 

Estimated value from 

noise corrupted data 

K (mGal.m) -8 -7.94 -7.78 

z (m) 20 20.7 18.7 

h (m) 50 51.1 52.6 
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4. Field example 
The explained methods are employed to interpret two 

gravity field anomalies from the Iran and USA. 

4.1. Aji-chay salt dome 

The region under study is situated in the northwest of 

Iran. Miocene units in this region include sequences of 

Marl, Salt and Chalk (Fig 9).  

 

 
Fig 8. The synthetic gravity anomaly which contain 10% 

random noise and generating response from MNN inversion 

 

The salt domes in this area are the result of the upward 

movement of the Neogene evaporative materials. The 

depth of these salt domes is low and have mostly high 

alloy of Potash. The main salt dome in the region under 

consideration is Aji-chay salt dome. The part of the 

gravity sampling has been determined with a white 

rectangular on Fig 9. Fig 10 shows the computed 

Bouguer gravity anomaly after making the necessary 

corrections and the points of the gravity reading along 

10 profiles. After removing a trend (degree 2) from the 

Bouguer anomalies, the residual (local) gravity 

anomalies were computed (Fig 11). The salt dome with 

negative anomaly is recognizable on the residual gravity 

anomalies map. Profile A in anomaly is specified in N-S 

direction, which is shown in Fig 11. The defined 

features are specified from the observed anomaly of the 

profile A cross-section. The trained MNN is fed by the 

features vector. The evaluated top depth (z), bottom 

depth (h) and amplitude coefficient (K) parameters from 

MNN are 24.5 m, 63.8 m and -6.45 mGal.m, 

respectively. The obtained parameters from MNN 

inversion is given in Table 4.  
 

Table 4. The estimated parameters from MNN inversion 

Parameter 
K 

(mGal.m) 
h 

(m) 
z 

(m) 
R 

(m) 
SE 

(mGal) 

Estimated 

value 
-6.45 63.8 25.4 22.6 0.0189 

 

 

Fig 9. The geological map of the region under study 
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Four successive moving average windows (s=11, 12, 13 

and 14 m) are used to observed gravity data related to 

profile A passing over Aji chay salt dome (Fig 12). The 

moving average residual anomalies are used to 

determine the depth to the top for each h value of the 

depth to the base using equation (6). The range of h 

values was chosen from 56 m to 72 m with a distance of 

1 m. The depths to the top, their average values and 

standard deviation are given in Table 5. 

 
 

Table 5. The moving average windows results for the observed gravity anomaly of the profile A cross section 

Average value 

of z (m) 

Standard deviation 

of depths (m) 

Computed depth to the top (z) (m) 

Assumed h 

Value (m) 

S=14 m S=13 m S=12 m S=11 m 

25.48 

19.35 

20.82 

21.6 

23.43 

19.37 

17.31 

18.4 

22.84 

6.52 

4.68 

5.28 

3.72 

2.32 

3.47 

3.61 

3.89 

4.02 

18.45 

14.81 

16.35 

17.73 

20.67 

16.36 

15.28 

16.44 

21.52 

22.54 

17.28 

20.16 

19.83 

22.46 

17.74 

14.92 

18.57 

28.36 

27.31 

19.55 

18.37 

22.5 

24.72 

19.06 

16.4 

23.76 

18.82 

33.62 

25.74 

28.39 

26.35 

25.87 

24.3 

22.64 

14.83 

22.64 

56 

58 

60 

62 

64 

66 

68 

70 

72 

 

 
Fig 10. The Bouguer gravity anomalies map 

 

 
Fig 11. The residual gravity anomalies map 

 

Table 6.The estimated parameters from least-squares standard 

deviation method 

Parameter 
K 

(mGal.m) 
h 

(m) 
z (m) 

R 
(m) 

SE 
(mGal) 

Estimated 

value 
-6.12 64 23.43 22.04 0.0195 

 

 
Fig 12. Moving average residual gravity anomalies of the 

profile A cross section for s = 11, 12, 13 and 14 m. 

 

 Table 5 shows that the standard deviation in the case of 

h = 64 m is (sd=2.32) less than the standard deviation in 

other cases of h values. The average value of the depth 

to top at h = 64 m is z = 23.43 m. The estimated average 

value of amplitude coefficient (K) is -6.12 mGal.m. The 

estimated parameters from the least-squares standard 

deviation method is shown in Table 6. This result is in 

good agreement with the MNN outputs. Fig 13 display 

the computed gravity responses from the estimated 

parameters using both methods. We have applied the 

standard error (SE) as the criteria in order to compare 

the observed and evaluated values (Asfahani and Tlas 

2008), 
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 
2

1
( ) ( )

N

o i c ii
g x g x

SE
N





                                         (7)  

where go and gc (i = 1, ..., N) are the observed and the 

evaluated values at the points xi (i = 1, ..., N), 

respectively. The standard error for MNN and least-

squares standard deviation methods are 0.0189 and 

0.0195 mGal, respectively (Tables 4 and 6). As regards 

the estimated parameters by both methods are 

approximately equal, according to computed SE, the 

inverted parameters from MNN are closer to reality.   

 
Fig 13. The observed gravity anomaly due to Aji-chay salt dome (green curve), gravity responses from MNN inversion (red curve) 

and gravity responses from least-squares standard deviation method (blue curve) 

 

 
Fig 14. The observed gravity anomaly due to Louisiana salt dome (green curve), gravity responses from MNN inversion (red curve) 

and gravity responses from least-squares standard deviation method (blue curve) 

 

4.2. Louisiana Salt Dome Anomaly 

The second field example is a residual gravity anomaly 

profile passing over the center of the gravity map 

offshore Louisiana salt dome situated in USA (Fig 14). 

This anomaly has been analyzed using the least-squares 

standard deviation method by Abdelrahman and Abo-

Ezz (2008). The average value of the depth to top at h = 

9.287 km is z = 1.433 km, where the standard deviation 

in the case of h = 9.287 km is less than the standard 

deviation in other cases of h values. The estimated 

average value of amplitude coefficient (A) is -10.269 

mGal. This suggests that the salt body is buried at z = 

1.433 km and h = 9.287 km. The estimated parameters 

are shown in table 7.  The generated gravity effect due 

to the estimated parameters is shown in Fig 14. 

To compare, we apply the proposed method based on 

MNN for this gravity anomaly.  The defined features are 

determined from the observed gravity anomaly profile. 

The trained MNN is fed by the features vector. The 

inferred top depth (z), bottom depth (h) and amplitude 

coefficient (K) parameters from MNN are 1.451 m, 

9.263 m and -10.327 mGal.m, respectively. The 

obtained parameters from MNN inversion is given in 

Table 7. The gravity response caused by the inverted 

parameters is displayed in Fig 14.  

We have calculated the standard error (SE) between the 

real gravity and the computed gravity anomalies where 

the estimated SE values for the least-squares standard 

deviation method and modular neural network inversion 

are given as 0.154 mGal and 0.143 mGal, respectively. 

This anomaly was also investigated by several authors, 

such as Roy et al. (2000) which introduced a new 

concept in Euler deconvolution method to estimate the 

depth of the causative mass. Furthermore, the depth 

obtained by Mehanee (2014) using flair function 

minimization is 2899 m and Biswas (2015) proposed 

using very fast simulated annealing global optimization 

for interpreting the gravity anomaly. The acquired 

solutions by the various method have been tabulated in 

Table 7. As several wells were drilled over this dome, 

detailed information is available (Nettleton 1976). The 

top of the dome was encountered in the shallowest well 
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at 1.2 km Up to a depth of around 1.8 km. Thus, the 

depth to top estimated by the least-squares standard 

deviation method (Abdelrahman and Abo-Ezz 2008) 

and presented method based on MNN are closer to the 

reality, where the MNN method show the smaller 

standard error than the least-squares standard deviation 

method. 

 

Table 7. The obtained parameters from the analysis of the Louisiana salt dome gravity data using various method 
Parameter K (mGal.km) h (km) z (km) SE (mGal) 

Estimated 

values 

Roy et al. (2000) - 11.3 2.26 - 

Abdelrahman and Abo-Ezz (2008) -10.269 9.287 1.433 0.154 

Mehanee (2014) -16.4 - 2.899 - 

Biswas (2015) -16.02 - 2.702 - 

MNN method -10.327 9.263 1.451 0.143 

 

5. Conclusions 
In this study, two different methods, namely modular 

neural network (MNN) and least-squares standard 

deviation approaches were used for modeling buried 

structure where its geometrical shape is finite vertical 

cylinder. The outputs of the both methods are the top 

and bottom surface depths and amplitude coefficient. 

When the density contrast of the region under evaluation 

be known, the radius of a finite vertical cylinder can 

compute by the amplitude coefficient value. We have 

investigated the performance and stability both methods 

using the synthetic models, with and without random 

noise, where satisfactory results were obtained. We have 

applied both methods to estimate the salt dome 

parameters from Iran and simulate its gravity response. 

The resulted parameters and naturally generated gravity 

responses of these methods are very similar. Hence, the 

standard error was employed to determine which gravity 

response is closer to the observed gravity anomaly. The 

computed standard error for the modular neural network 

and least-squares standard deviation approaches are 

0.0189 and 0.0195 mGal, respectively. Thus, the 

simulated gravity response from MNN inversion has 

better agreement with the real gravity anomaly of profile 

A cross section than the simulated gravity response from 

least square method. Based on the results obtained from 

MNN inversion the the depth of the Salt dome with a 

radius of 22.6 m, starts from 25.4 m and goes down to 

about 63.8 m. 

For further investigation, we evaluated a gravity profile 

due to the Louisiana salt dome using described MNN 

method and compared the inverted parameters with 

those obtained by other method, as can be found that the 

inverted parameters by the both offered approaches 

show the better precision than other methods. The 

drilling information indicate a depth to top of 1.2 km to 

1.8 km for the Louisiana salt dome. The estimated 

amounts for the depth to top by the various method are 

different, but the suggested methods in this study could 

determine the correct depth to top. The depth to top 

values given by the modular neural network and least-

squares standard deviation approaches are 1.451 km and 

1.433 km, respectively. The smaller computed standard 

error for the MNN method than the least-squares 

standard deviation approach denote the better efficiency 

and performance the modular neural network technique. 
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