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Abstract 
Fracture modeling is one of the most important steps in the study of fractured reservoirs. Due to the high cost of imaging logs and 

their absence in most wells of the study area, it is often attempted to use other available data to detect fractures. This paper attempts 
to investigate the relationship between the lithology and fractures of rocks. For this purpose, the Image, Neutron, Density, Lit ho-
density, and NGS logs have used to simulate the lithology. Based on this feature, the studied area was divided into six homogeneity 
part, and the fracture probability was determined in each section to improve the accuracy of fracture modeling. Recently, an 
intelligent method has been proven as an efficient tool for modeling complex and non-linear phenomena. In this paper, neural 
network methods has been used in fracture modeling. The results show that the division of the field based on lithological studies will  

improves the accuracy of fracture modeling in the studied area up to 7 percent without increasing the cost of image logging. 
Keywords: Fracture modeling, Lithology, Petroleum, Neural network. 

 

1. Introduction 
Fractures are the most important geological features that 

affect the production from the most carbonate 
reservoirs. Large volumes of hydrocarbon resources in 

the world are located in fractured reservoirs which are 

the major supplier of energy. Fractures play an 

important role in reservoir property and hydrocarbon 

migration (McQuillan 1973; Coward et al. 1998; Parnell 

1998; Haneberg et al. 1999; Atilla 2000; Nian et al. 

2017). Natural fracture systems have a great influence 

on the permeability of most carbonate reservoirs. Some 

hydrocarbon reservoirs with low efficiency, have a 

favorable production due to the transfer of liquids into 

wells by natural fractures. In some reserves, fractures 

and faults are necessary for the initial migration of 
hydrocarbons from source rocks (Hunt and Tucker 

1992; Javadi et al. 2016; Shafiei et al. 2018). Fractures 

and faults are also influential factors of hydrocarbons 

trapping. Although fracture detection in reservoirs is an 

important step, it is not easy to determine how these 

structures affect the fluid flow of the reservoir. Due to 

the complexity of the fractures and the variability of 

their behavior in trapping, migration, and flow of 

hydrocarbons, their evaluation is a very complicated 

task (Aydin et al. 1998; Jingsong et al.  2016; Zuo et al 

2019). 
Each structures which are created in special geological 

and geomechanical conditions, have their own 

geometries (orientation and dimensions), distances, 

distributions, permeabilities and hydraulic properties 

that cause migration or trapping of hydrocarbons. Most 

joints and fractures in the upper crust are formed in 
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conjunction with ground forces from the local 

construction (Pollard and Aydin 1988). They are usually 

found in categories that include a large number of 

approximately parallel joints in fractured rock units 

(Helgeson and Aydin 1991; Gross et al. 1995). Since 
these joints are confined to the boundaries of the layers, 

lithological unit contributions to the flow of 

hydrocarbon are different from each other. However, if 

the joints create a network of fractures that have an 

appropriate opening, length, distance, connection, and 

distribution, they can contribute to the permeation and 

production of the reservoir. For example, it has been 

proved that the joints found in the sandstone reservoir in 

the Piceance Basin of Colorado have caused the 

permeability of the reservoir rock to be 10 times higher 

(Lorenz et al. 1988; Eichhubi 2009). 
The complex fracture process that occurs due to the 

changing geological conditions will create different 

patterns of fracture and characteristics of the natural 

fractured reservoirs. Most rocks are simultaneously and 

continuously deformed and created complex fracture 

systems, which is why it is not easy to identify the 

features of their fractures. Therefore, for the study of the 

fractures, it is necessary to collect a wide range of data, 

including geological, geophysical, petrophysical and 

drilling data (Gouth et al. 2006; Berre et al. 2018). 

So far, many methods have been developed to study the 

relationship between different parameters and fractures. 
The equivalent fracture models based on the mimetic 

finite difference method yields comparable results with 

those based on the standard finite volume method. 

Whereas their accuracy is influenced by the orientations 

of sparsely distributed fractures. The influence of the 

fracture network pattern on the accuracy of equivalent 
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fracture models. The relative difference between the 

equivalent fracture model and the discrete fracture 

model is 1 % - 3 %. The equivalent fracture model with 

the mimetic finite difference method yields a smaller 

relative difference than that with the finite volume 

method. However, based on the same grid block 

dimension and the petrophysical parameters, when the 

fracture pattern changes from parallel to non-parallel, 

the relative difference increased to 5% - 7% (Chen et al. 

2017). The use of image logs and their relationship with 

other logs can help to identify the network of fractures. 

The determination of linear and nonlinear regression 
between logs can be used to improve the accuracy of 

fracture modeling. In order to find a generalized 

estimator, a unique normalization method are 

developed, and by using it, a non-linear regression has 

been found which estimates fracture density with 

correlation coefficient of higher than 80%. The resultant 

regression has the capability of generalization in the 

studied field (Tokhmchi et al. 2010). 

The reservoir zoning approach based on lithological 

units can improve fracture modeling accuracy. One of 

the models used in this regard is the ARX model (Shiri 
et al. 2012). Another method for extracting information 

from the data obtained from the logs is the Parzen and 

wavelet combination method. The results of the study 

showed that the wavelet transform and the Parzen 

classification were the best combination techniques used 

for vuggy zones detection. According to the results, the 

method can be generalized with a total accuracy of 52–

99% (average 75%) (Asgari Nezhad et al. 2014). 

Image logs are kind of modern loges that can be used 

for detecting fractures crosscutting with the well 

(Khoshbakht et al. 2012). Therefore, determining the 

relationship between these logs and other available data 
can greatly help to improve the fracture model. 

Due to the fact that lithology is one of the factors 

affecting the fracture network, the study of lithology and 

its relationship with fractures can improve the fracture 

modeling accuracy. since, its possible to determine the 

lithology in all wells using petrophysical methods, it is 

possible to predict the changes in fractures due to 

lithological changes in the field (Aghli et al. 2016) 

based on determined relationship between lithology and 

fractures. This will be valuable when the FMI and FMS 

data are not available for wells. 
In this paper, this relationship is examined and the 

results are presented. In this study, geostatistical 

methods and neural network methods have been used. 

The study area is located in the southwest of Iran. The 

recognition of features related to basement tectonics and 

realization of their implication in the control and 

modification of geological processes are important 

adjuncts to the search for hydrocarbon accumulations in 

this region (Rahnama-Rad et al. 2009). The field is 

parallel to the general folding of the region (northwest - 

south east). In order to verify the field, 24 wells were 

drilled in it. Image logs were provided in two of the 

wells and core information is available in six of the 

wells. The aim of this study is investigating the 

relationship between lithology and fractures in these two 

wells and to use the results in other wells. 
 

2. Methodology 
2.1. Used data 

The fracture model is mainly made using static data 

such as image logs and cores. Using existing data can 

play an important role in improving the model accuracy 

and reducing fracture modeling errors. The lithology of 

studied area is mainly composed of limestone, dolomite, 

anhydrite and shale. According to the above 

combination and modeling simplification, it was 
decided to define 6 main lithological units this area 

(Table 1). According to the table 1 to simplify and 

prevent the increase in the number of lithologies the 

Carbonate has been used for dolomite, limestone or a 

combination of these two (codes 2 and 4). The lithology 

of limestone-dolomite (code 5) is also composed of a 

considerable amount of lime and dolomite. 
 

Table 1: Petrology defined for study area and their code 
Lithology code Color 

Limestone 0 Blue 

Dolomite 1 Purple 

shaly carbonate 2 Gray 

Anhydrite 3 Green 

Anhydritic carbonate 4 Yellow 

Dol-limestone 5 Red 

 

2.2. Neural network 

An artificial neural network is a data processing system 

that is thought of as a human brain. In this network data 

processing is handled by small and large processors that 

deal with each other in an interconnected and parallel 

network to solve a problem. Different methods have 
been designed to construct problem-solving by the 

neural network. Here the training method with the 

supervisor is used. In this method, for each category of 

input patterns, the corresponding outputs are also shown 

to the network and weights are changed until the 

difference between the output of the network and the 

training patterns of the desired outputs is as acceptable 

as the error. The goal is to design a network that first 

learns using existing educational data and then by 

providing a vector input to the network which may or 

may not has already been acquired by the network Class 
is detects. Such a network is widely used for pattern 

recognition tasks. The following data was used as the 

network input: 

- Image log 

The image logs are one of the most powerful tools for 

exploration, drilling and development of oil reservoirs. 

- Sonic logs 

One of the most important markers of fractures is the 

vibration of sound waves inside and around the well. 

- Neutron log 

Neutron diagrams by measuring the amount of neutron 
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capture generated from a neutron source measured the 

ionic concentration of hydrogen in the formation. This 

graph calculates the total porosity and in the presence of 

an open fracture present an anomaly in this chart. 

- Density log 

In this type of diagram, the formation density which is a 

function of rock type and porosity, is measured by 

gamma radiation by the device and the gamma radiation 

recorded from the formation is measured. 

- Litho density  log 

This tool is known as the photoelectric diagram and can 

use to identify the mineralogy of the formation. 
Determination of photoelectric absorption cross-section 

using LDT tool can be used in wells drilled with barite 

to detect mud flood and the rate of mud thinning in low 

porosity zones. 

- Natural Gamma Spectrometry (NGS) 

In addition to measuring total radioactivity, NGS charts 

measure the energy level of gamma rays emitted from 

the formation. In fractured reservoirs, increase of 

gamma rays or shale line without increasing shale 

volume may be observed due to the deposition of 

uranium salts at the fractures-due to rotation of 
hydrothermal waters or groundwater. Therefore, 

uranium peaks can be used to diagnose fractures. 

   

2.3. Combine data and modeling 

The preparation of the 3D lithology model has many 

applications in geological sciences. One of these 

applications is the use of lithology and fracture 

relationship in improving the fracture model. For this 

purpose, this paper examines this relationship and its 

application. At first, raw data was analyzed to obtain a 

proper understanding of their profile and distribution. 

One of the charts that provides proper information on 
the vertical distribution of lithology is the probability 

curves which are located in the place of all wells for all 

layers and zones. In this curves, the percentage of 

lithology for each individual layer was calculated. As a 

result, the topography has been removed and therefore it 

will be suitable for stratigraphic and sedimentary 

interpretation. Subsequently, according to the modeling 

methods, the data were scaled up to the large reservoir 

network and then analyzed. In this process, any 

lithologic code which has the most repetition in a cell 

was selected for the cell. The average height of each 
layer in this study is 3 meters and there are 6 data for 

each 15 centimeters, so at scale up stage, the average of 

all 18 lithology codes was converted to a code and 

attributed to the corresponding cell. Using the main logs 

that represents lithological changes (Neutrons, Density, 

Photoelectric factor, Gamma and Sonic) and also the 

definition of six classes that are equivalent to six 

lithologies defined in wells, the neural network was 

trained. Finally, for all the wells and intervals that the 

above logs were available, lithology was determined 

using multi-layer perceptron neural network (Fig 1). 

 
Fig 1. Multi-layer perceptron neural network structure used in 

this study (Bishop 1997) 

 
The data were calculated using the following formulas 

in the neural network, the process of which is shown in 

Fig 1. 
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In this study, a complete analysis was performed for all 

zones and all lithologies. In the probabilistic modeling, 

due to the introduction of uncertainty into the model, the 

initial distribution of data in the final model will be 
largely preserved. One of the methods used to control 

the modeling quality is to compare the initial histogram 

of the data in the wells, with the histogram of the data 

after scale up and histogram. In this study, this method 

was used to examine the results. At the end, in order to 

compare the statistics of lithology and fracture, cross-

platform fractures and lithology codes were plotted (Fig. 

8). 

 

3. Discussion  
Before lithology modeling, it is necessary to analyze the 

raw data in order to obtain a proper understanding of 

their specifics and distribution. One of the charts that 

provides proper information about the vertical 

distribution of lithology is the probability curves that are 

plotted for all layers and zones in the area of all wells. 

In this chart, the percentage of lithology for each 

individual layer is calculated and, as a result, the 

topographic effect is eliminated in order to be suitable 

for stratigraphic and sedimentary interpretation.  
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Fig 2. Lithology prospect diagram for different layers at the site of all wells for which lithology has been defined 

 

 

 
 

Fig 3. scale up lithology in the reservoir network 

 

On the other hand, in the 3D modeling of lithology, a 

similar vertical distribution can be reconstructed. In 

figure 2, the probability curve for all studied layers is 

shown. It should be noted that this chart is before the 
modeling, and it is only related to the location of the 

wells. 

In modeling process, the data must be scaled up in 

reservoir network and then must be thoroughly 

analyzed. Figure 3 shows scale up lithologies in the 

reservoir network for the study area. As shown in this 

figure, good 3D modeling has been achieved due to the 

high number of data and proper dispersion. In this study, 

lithology was identified using available logs. For this 

purpose, the Neutrons, Density, Photoelectric factor, 

Gamma and Sonic logs used to characterize lithological 
changes. Six classes were defined for lithology. Finally 

neural network was trained, for studied area where the 

above logs were available. Then the lithology was 

determined and acceptable results were obtained. 

The lithology obtained from the neural network in the 

first column from the right, the linguistics interpreted by 

the interpreter in the second column and the logs in the 

subsequent columns are shown in figure 4. As seen in 

this figure lithology obtained from the neural network 

have acceptable adaptations to the interpreted lithology. 

The SIS algorithm (Sequential Indicator Simulation) 

was used and the lithology probability was simulated as 

shown in figure 5. In this model, the vertical distribution 
of data is preserved. Due to the uncertainty of the areas 

with lower data they not used in geological 

interpretations. Because of the characteristics of 

probabilistic simulations, the resulting model is non-

homogeneous and there is severe changes in the 

boundary between lithologies. However, probabilistic 

modeling also has some advantages including due to the 

introduction of uncertainty into the model the initial 

distribution of data in the final model will be largely 

preserved. 

One of the methods used to control the modeling quality 
is to compare the histogram of the initial data, with the 

histogram of the scale up data and the modeling 

histogram, as shown in figure 6. In figure 5, six codes 

from 0 to 5 represent the six petrography given in Table 

1. As seen in this figure, there is a good similarity 

between the distributions of data in these three stages. In 

figure 7, which is constructed along the axis of the 

structure, the heights or the old lines and the hills 

around them are well defined. 
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Fig 4. logs and lithology interpreted by the interpreter and lithology computed by the neural network 

 

 Since the amount of dolomite in the southern edge of 

the anticline is greater than the northern edge and 
because dolomite is more brittle therefore, the degree of 

fracture in the southern edge is higher. It is worth noting 

that some dolomitization may be related to the fracture. 

This means that the flow of fluid through fractures leads 

to secondary dolomitization which occurs after folding. 
The next step is to compare the lithology and fracture 

statistics. Cross-Plot of the severity of fractures and 

lithology codes were plotted as shown in figure 8. 
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Fig 5. 3D lithology mode prepared by simulation algorithm 

 

 

 

 

 

 
 

 

 

 

 

 

 
Fig 6. lithology histogram at the site (red), after scale up (green) and after being modeled (blue) 
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Fig 7. Extracted and horizontal image of the lithological model along 25(left), 10(right) degree 

 
Fig 8. Cross-plot fractures and lithology codes 

 

 It is clear that the lithology code 1, which is related to 

dolomite, has the highest and most extensive fracture 

intensity values. Lithology codes 5 and 0 are related to 

limestone-dolomite and limestone have intermediate 

fracture. The least fractures are observed for anhydrite 

(code 3), which is less than 2. Lithology of shale 

carbonate and carbonate anhydrite (codes 2 and 4, 

respectively) also show lower fracture severity. As a 

result, it is known that lithology can be one of the 

factors controlling fractures in the field. After entering 
the model made from lithology into the fracture 

modeling process, the accuracy of the final model of the 

fracture improved by seven percent. This shows that 

studying individual parameters in fractures separately 

and modeling them can help to improve the accuracy of 

fracture modeling. The studies have shown that 

increasing the accuracy in modeling is different 

depending on the method and data used, and all or some 

of the existing methods can be used depending on the 

purpose of the studies to improve accuracy. 

 

4. Conclusion 
Image logs are one of the important data in the study of 

fractures. Due to the lack of image logs in most wells in 

the studied area, it is necessary to study fractures using 

other available information. In this paper, lithology and 

its relationship with fractures in southwestern of Iran 

have been investigated. For this purpose, lithology was 

determined using neural network method and 

information from various existing logs. The lithology 

derived from the well information provided a good 

connection with the lithology of the interpreters. Then, 

the relationship between obtained lithology and 

fractures was investigated in the wells where fracture 

data were available. The results showed a good 

correlation between lithology and fracture. For example, 

the fracture severity in dolomite showed the highest and 

in the anhydride showed the lowest value, and these 

values were observed in all wells. As shown in this 

paper, lithology is one of the factors that controls the 
fracture. Given the fact that it is possible to determine 

the lithology in most wells, its use can improve the 

accuracy of the model. According to the results of this 

study, this accuracy can be up to 7%. The increased 

accuracy of modeling in some of the proposed models is 

presented in the Introduction section, which this 

increase in accuracy is acceptable compared to them. It 

is recommended to improve the accuracy of the model 

by using these results and introducing lithology in 

fracture modeling and other effective parameters that 

investigated and modeled before final fracture 
modeling. 
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