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ABSTRACT 

 

Option pricing is a main topic in contemporary financial theories, captivating the 

attention of numerous financial analysts and economists.  Barrier option, classi-

fied as an exotic option, derives its value from the behavior of an underlying 

asset. The outcome of this option is based on whether or not the price of the un-

derlying asset has reached a predetermined barrier level. Over the years, the stock 

price has been represented through continuous stochastic processes, with the 

prominent one being the Brownian motion process. Correspondingly, the widely 

used Black-Scholes model has been employed. Nevertheless, it has become evi-

dent that utilizing stochastic differential equations to characterize the stock price 

process is unsuitable and leads to a perplexing paradox. As a result, many re-

searchers have turned to incorporating fuzzy or uncertain environments in such 

situations. This study presents a methodology for pricing barrier options on 

stocks in an uncertain environment, in which the interarrival times are uncertain 

variables. The approach employs the Liu process and renewal uncertain process, 

considering the interest rate as dynamic and floating. The pricing formulas for 

knock-in barrier options are derived using 𝛼-paths of uncertain differential equa-

tions with jumps. 

 

 

 

1   Introduction 
   The pricing of options holds great importance in the financial markets, and it is a subject of consider-

able interest in mathematical finance. Nevertheless, barrier options and vanilla options share similari-

ties, with the exception that barrier options are either activated or deactivated when the underlying asset 

price touches the barrier price before the maturity time. Barrier options have been traded in the over-

the-counter (OTC) market since 1967 and have become the preferred choice among exotic options. 

Different pricing methods have been widely utilized in option pricing, including the Black-Scholes [1] 

and Merton's [2] option pricing theory, in which the price process for underlying assets follows the 
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stochastic differential equations (SDEs). Merton [2] was the first to propose a theory for pricing rational 

options, focusing on down and out options. Rich, on the other hand, contributed to the pricing of barrier 

options. Subsequently, numerous researchers have explored various approaches for pricing such op-

tions. For example, Nouri, Abbasi, et al. [3, 4] introduced an enhanced Monte Carlo algorithm for pric-

ing different types of barrier options. Additionally, [5] employed a Lie-algebraic method to determine 

the value of moving barrier options, and [6] conducted a study on the analytical valuation of American 

double barrier options. In 2013, Liu [7] argued that the application of stochastic differential equations 

to characterize the stock price process is unsuitable and leads to a perplexing paradox. This perspective 

is substantiated by empirical observations, which reveal that the peak of the distribution of underlying 

assets exceeds that of a normal probability distribution, accompanied by heavier tails. Numerous em-

pirical studies have shown that the behavior of underlying asset prices does not conform to the principles 

of probability and randomness. So many researchers have applied fuzzy and uncertain environments to 

compute option pricing formulas [8-10]. Considering the influence of both randomness and human un-

certainty on financial markets, it is evident that an investor's belief holds great importance in shaping 

market dynamics. As investors tend to base their decisions on their beliefs rather than solely on proba-

bilities. In support of this, Kahneman [11] demonstrated that the degrees of beliefs exhibit a much wider 

range of variation compared to frequency. In 2004 Cont and Tankov [12] employed jump-diffusion 

models as an uncertain source and demonstrated the extensive structure these models possess for asset 

pricing. In 2007 Liu [13] established a theory of uncertainty within the framework of uncertain measure, 

focusing on the degree of belief. In 2008, Liu [14] introduced the concept of uncertain process to en-

hance the modelling of uncertain phenomena. Researchers in [15-17] have developed various methods 

for solving uncertain differential equations (UDEs) based on this work. Additionally, Yao [16] has 

proposed several numerical techniques for computing integration and differentiation, which can be ap-

plied to renewal uncertain processes. Furthermore, Chen and Liu [15] have demonstrated the existence 

and uniqueness theorem for the solutions of UDEs, and besides Liu [18] has proven the stability of 

UDEs. In 2009, Liu [18] developed several formulas for option pricing based on an uncertain stock 

model. Following that, researchers in [19- 23] extensively explored uncertain stock pricing models. 

Furthermore, Chen [24] introduced a formula to price American options in 2011. Meanwhile, Liu [13] 

highlighted the importance of uncertain renewal processes, specifically focusing on cases where the 

interarrival times are uncertain variables. Later on, Liu [25] proposed a renewal reward process that 

accounted for the uncertainty of interarrival times and rewards. In 2012, Yao [26] established a theory 

on uncertainty calculus specifically for renewal processes. Jia and Chen [27] conducted a study in 2020, 

uncovering noteworthy findings on pricing formulas for Knock-in barrier options within an uncertain 

stock pricing model featuring a floating interest rate. Additionally, Gao, et al. [28] investigated pricing 

American barrier option of currency model in uncertain environment. Section 2 of the paper begins 

with the necessary preliminaries. Subsequently, Section 3 presents the stock pricing model in uncertain 

space, which specifically focuses on real decision problems and incorporates a floating interest rate. 

Section 4, offers the proof for European knock-in options pricing formulas within the framework of the 

uncertain stock model. Finally, Section 5 concludes the paper by presenting a summary of the findings. 

2 Preliminaries  
Consider Γ denote a non-empty set, and define the σ-algebra L be a collection of all the events 𝜃𝜖𝐿 over 

Γ. We can define it as a function that assigns to each event 𝜃 the belief degreeℳ{𝜃}, which represents 

our confidence in the occurrence of𝜃. Liu [14] proposed five axioms to provide an axiomatic definition 



An Uncertain Renewal Stock Model for Barrier Options Pricing with Floating Interest Rate 

 
 

   

 

[1156] 

 

Vol. 9, Issue 4 , (2024) 

 

Advances in Mathematical Finance and Applications  

 

of uncertain measure to ensure that the number ℳ{𝜃} is not arbitrary and has special mathematical 

properties; 

1: (Normality axiom) ℳ(𝛤)  =  1 ; 

2: (Monotonicity axiom) ℳ(𝜃1)  ≤  ℳ(𝜃2) whenever 𝜃1  ⊆ 𝜃2 ; 

3: (Duality axiom) ℳ(𝜃)  +  ℳ(𝜃𝑐)  =  1 for every event 𝜃; 

4: (subadditivity axiom) For each sequence of events {𝜃𝑖} , that can be 

counted, we have 

ℳ(⋃ Θ𝑖

∞

𝑖=1

) ≤ ∑ ℳ

∞

𝑖=1

(Θ𝑖) 

 

(1) 

Definition 1. [18]. The set function ℳ which satisfies the above axioms, is called an uncertain 

measure. 

 

Definition 2. [18]. Consider 𝛤 be a non-empty set, the 𝜎 -algebra 𝐿, be a collection of all the events 

over 𝛤 and ℳ be an uncertain measure according to the above definition. Then the triple (𝛤, 𝐿, ℳ) is 

called an uncertain space. 

5: (Product Measure Axiom) [18]. Let the triple (𝛤𝑘 , 𝐿𝑘, ℳ𝑘) where 𝛤 =𝛤1 × 𝛤2 × … and  𝐿 = 𝐿1 ×

𝐿2 ×... be uncertainty space for 𝑘 = 1,2, . . . , n , then product uncertain measure ℳ is an uncertain 

measure on the product 𝜎 -algebra satisfying the product uncertain measure ℳ is uncertain measure 

satisfying, 

ℳ {∏ θ𝑘

∞

𝑘=1

} = ⋀ ℳ𝑘{θ𝑘} 

∞

𝑘=1

 

 

(2) 

Where θ𝑘, are arbitrary chosen event from 𝐿𝑘  for 𝑘 =  1,2, . . . , 𝑛 , respectively. 

Definition 3. [18]. The uncertainty distribution for an uncertain variable such as ξ is defined by func-

tion 𝛷 ∶  𝑅 →  [0,1] that  Φ(x)  =  ℳ{ξ ≤  x} . 

Definition 4. Following uncertainty distribution is called normal 

𝛷(𝑥) = (1 + exp (
𝜋(𝑒 − 𝑥)

√3𝜎
))−1,      𝑥 ∈ ℝ, (3) 

If ξ be an uncertain variable, in this case  𝜎 >  0 and 𝑒 are real numbers and it is shown by𝑁(𝑒, 𝜎). 

The normal uncertainty distribution can be called standard, if 𝑒 =  0  and𝜎 =  1. So 𝛷−1(𝛼)،  𝛼 ∈

 (0،1) is the inverse uncertainty distribution of  ξ, if it exists. The expected value of an uncertain vari-

able ξ is defined as 

𝐸[𝜉] = ∫ 𝛷−1(𝛼)𝑑𝛼
1

0

, (4) 
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    Definition 5. [14] following UDE (uncertain differential equation), 

𝑑𝑋𝑡 = ℎ(𝑡, 𝑋𝑡)𝑑𝑡 + 𝑘(𝑡, 𝑋𝑡)𝑑𝐶𝑡 ,  (5) 

Has an α-path 𝑋𝑡
𝛼 (0 < 𝛼 < 1), if it solves the bellow corresponding ODE 

𝑑𝑋𝑡
𝛼 = ℎ(𝑡, 𝑋𝑡

𝛼)𝑑𝑡 + |𝑘(𝑡, 𝑋𝑡
𝛼)|Φ−1(𝛼)𝑑𝑡,  (6) 

Where 𝛷−1(𝛼) is the inverse standard normal uncertainty distribution, i.e., 

Φ−1(𝛼) =
√3

𝜋
𝑙𝑛

𝛼

1 − 𝛼
 (7) 

Definition 6. [18]. Liu process is an uncertain process 𝐶𝑡 which have bellow properties 

1- C0  =  0; 

2- Ct has independent and stationary increments; 

3- Almost all sample paths are Lipschitz continuous; 

4- All increments Ct+s - Cs are normal uncertain variables with expected value 0 and variance t2.  

Theorem 1. Let X𝑡 be the solution of the UDE eq. (5) and 𝛼 -path 𝑋𝑡
𝛼 be the solution of ODE eq. (6). 

Then 

ℳ{𝑋𝑡 ≤ 𝑋𝑡
𝛼 , ∀𝑡 ∈ [0, 𝑇]} = 𝛼,        

ℳ{𝑋𝑡 > 𝑋𝑡
𝛼 , ∀𝑡 ∈ [0, 𝑇]} = 1 − 𝛼,

 (8) 

  

    Definition 7. [14] The uncertain process 

𝑁𝑡 = 𝑚𝑎𝑥
𝑛≥0

{𝑛 ∣ 𝑆𝑛 ≤ 𝑡} (9) 

is called an uncertain renewal process, if ξ1, ξ2, ξ3, . .. be iid positive uncertain variables. Also S0 = 0 

and Sn = ∑ ξnn≥1 . 

The uncertain renewal process 𝑁𝑡 has an expected value 

𝐸[𝑁𝑡] = ∑ Φ(
𝑡

𝑛
)

∞

𝑘=1

   (10) 

Where Φ denote the uncertainty distribution of 𝜉is. 

 

    Definition 8. [29] Consider that 𝜉1, 𝜉2, 𝜉3, . .. indicate the interarrival times of sequential events. Hence, 

𝑁𝑡 is the number of renewals in (0, 𝑇 ] and 𝑆𝑛 is the total waiting time before the 𝑛th event occurs. The 

relation between the fundamental formulas of an uncertain renewal process are as below: 

𝑁𝑡 ≥ 𝑛 ⇔ 𝑆𝑛 ≤ 𝑡,

𝑁𝑡 ≤ 𝑛 ⇔ 𝑆𝑛+1 > 𝑡,
                        (11) 

 

   Theorem 2. [29] Consider 𝑁𝑡 be an uncertain renewal process, if interarrival times 𝜉1, 𝜉2, 𝜉3, . .. have 

an uncertainty distribution Φ, then 𝑁𝑡 has an uncertainty distribution 

Υ𝑡(𝛼) = 1 − Φ(
𝑡

⌊𝛼⌋ + 1
), (12) 

for all  𝛼 ≥ 0, where ⌊𝛼⌋ denotes the largest integer that is less than or equal to 𝛼. 
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3. Uncertain Model for Stock Pricing with Floating Interest Rate 

Assume that the stock price 𝑆𝑡 and interest rates 𝑟𝑡 follows: 

{
𝑟𝑡 = 𝜇1 + 𝛿

𝑑𝐶1𝑡

𝑑𝑡
,                                      

𝑑𝑆𝑡 = 𝜇2𝑆𝑡𝑑𝑡 + 𝜎2𝑆𝑡𝑑𝐶2𝑡 + 𝜈2𝑆𝑡𝑑𝑁𝑡 .
 (13) 

 

where 𝐶1𝑡 and 𝐶2𝑡 are independent Liu process, 𝛿 is a positive real number,  𝜇1 is the riskless interest 

rate, 𝜇2 is log-drift, 𝜎2 is log-diffusion, 𝜈2 is the stock price jump size and 𝑁𝑡 is an uncertain renewal 

process. Based on these assumptions, the discount rate is 

𝑒− ∫ 𝑟𝑡
𝑠

0
𝑑𝑡 = 𝑒

− ∫ (𝜇1+𝛿
𝑑𝐶1𝑡

𝑑𝑡
)

𝑠

0
𝑑𝑡

= 𝑒−𝜇1𝑠−𝛿𝐶1𝑠 
(14) 

By solving the differential equation 

𝑑𝑆𝑡
𝛼 = 𝜇2𝑆𝑡

𝛼𝑑𝑡 +
√3

𝜋
𝑙𝑛

𝛼

1 − 𝛼
𝜎2|𝑆𝑡

𝛼|𝑑𝑡 + 𝜈2𝑆𝑡
𝛼𝑑𝑁𝑡 (15) 

 have an 𝛼-path for 𝑆𝑡 as 

𝑆𝑡
𝛼 = 𝑆0𝑒𝜇2𝑡+

√3𝜎2𝑡
𝜋

𝑙𝑛
𝛼

1−𝛼(1 + 𝜈2)𝑁𝑡 (16) 

We have 

dSt
α

St
α = μ2dt + σ2dCt + 𝜈2dNt (17) 

Integrating both sides, we get 

∫
dSt

α

St
α

t

0

= μ2t + σ2Ct + ∑ ln(1 + 𝜈si
)    

Nt

i=1

 (18) 

 

This means 

lnSt
α − lnS0 = μ2t + σ2Ct + ∑ ln(1 + 𝜈si

),    

Nt

i=1

 

 lnSt
α = lnS0 + μ2t + σ2Ct + ∑ ln(1 + 𝜈si

) ,
Nt
i=1  

 St
α = S0exp [μ2t + σ2Ct + ∑ ln(1 + 𝜈si

)]
 

Nt

i=1

 

 = S0 exp(μ2t + σ2Ct) ∏(1 + 𝜈si
)

Nt

i=1

 

 = S0exp (μ2t + σ2Ct)(1 + 𝜈2)Nt 

= S0exp (μ2t +
√3σ2t

π
ln

α

1 − α
)(1 + υ2)Nt 

(19) 

 

Which is a solution to "Eq. (13)". 
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4 European Knock- In Options 

One kind of barrier options is knock-in option which contract that only comes in existence when under-

lying asset crosses a certain price level. This means that traders can buy or sell this type of options only 

at the moment and after that the price reaches a particular prespecified level. If the knock-in price level 

has touched at any time during the lifetime of the options contract, the payoff of the option is converted 

into a vanilla option and the knock-in barrier option expires worthless. In this section we have presented 

formula of pricing European UIC (up-and-in call) option which asset price follows Eq. (13) the renewal 

uncertain model with floating interest rate. 

 

4.1 Pricing Formula for Call Options 

Consider an UIC option which in that barrier level is 𝐿,The exercise price is 𝐾, and the maturity time 

is 𝑇 . This call option is invalid and has payoff equal to 0, if before the maturity T , the spot price 

St always be under the barrier level L, i.e., 

sup
0≤t≤T

St < L. (20) 

 

If the price of underlying asset  St hits the designated barrier L and goes above that before the ma-

turity, i.e., 

sup
0≤t≤T

St ≥ 𝐿.   (21) 

Then, this UIC option will become into existence, and its payoff will be 𝑚𝑎𝑥(𝑆𝑡 − 𝐾, 0) on the ma-

turity date. Now we assign 𝜂+ = 𝑚𝑎𝑥(𝜂, 0) and apply an indicator function 

BL(η) = {
1,                          η ≥ L,
0,                          η < L.

 

 

(22) 

Hence, the payoff on the maturity time is written as; 

payoff = (St − K)+BL( sup
0≤t≤T

St)  (23) 

By taking into account the discount rate on the initial date, the discounted expectation of payoff is 

𝑈𝑖𝑐 = 𝑒𝜇1𝑡+𝛿𝐶1𝑡(𝑆𝑡 − 𝐾)+𝐵𝐿( 𝑠𝑢𝑝
0≤𝑡≤𝑇

𝑆𝑡) (24) 

and a fair price of this kind of barrier options (UIC option) is 

𝑓𝑢𝑖
𝑐 = 𝐸[𝑈𝑖𝑐] = 𝐸[𝑒𝜇1𝑇+𝛿𝐶1𝑡(𝑆𝑡 − 𝐾)+𝐵𝐿( 𝑠𝑢𝑝

0≤𝑡≤𝑇
𝑆𝑡)]  (25) 

    Theorem 3. Consider an up-and-in call (UIC) option for stock pricing model that underlying uncer-

tain Eq. (13) has a barrier level  𝐿, exercise price 𝐾, and the maturity data 𝑇. Then the fair price of the 

option is defined by 

fui
c = ∫ e−μ1T−

√3δT
π

ln
1−α

α

1

α0

. Υ(α)dα (26) 

Where 

𝛼0 = (1 + 𝑒
𝜋(𝑙𝑛(𝑆0)−𝑙𝑛𝐿+𝜇2𝑇+𝑛𝑙𝑛(1+𝜈2))

√3𝜎2𝑇 )−1 
(27) 

and 
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Υ(𝛼) = 𝑠𝑢𝑝
𝑛≥0

(Ψ(
𝑇

𝑛
)) ∧ (1 − Φ(

𝑙𝑛(𝐾 +
√3
𝜋

𝑙𝑛
𝛼

1 − 𝛼
) − 𝑙𝑛(𝑆0) − 𝜇2𝑇 − 𝑛𝑙𝑛(1 + 𝜈2)

𝜎2𝑇
)) 

(28) 

Here Φ  represents the uncertain standard normal distribution of uncertain variables, and Ψ represents 

the distribution of the interarrival times in uncertain environment for the uncertain renewal process. 

 

  Proof. For each𝑥 ≥  0, we arrive  
 

𝑀{(𝑆𝑇 − 𝐾)+ ≥ 𝑥} = 𝑀{𝑆0𝑒𝜇2𝑇+𝜎2𝐶2𝑡(1 + 𝜈2)𝑁𝑡 ≥ 𝐾 + 𝑥}                                                                    

= 𝑀{𝜎2𝐶2𝑡 + 𝑁𝑡𝑙𝑛(1 + 𝜈2) ≥ 𝑙𝑛(𝐾 + 𝑥) − 𝑙𝑛(𝑆0) − 𝜇2𝑇}                                  

= 𝑠𝑢𝑝
𝑛≥0

𝑀{𝑁𝑇 ≥ 𝑛} ∧ 𝑀{𝐶2𝑡 ≥
𝑙𝑛(𝐾 + 𝑥) − 𝑙𝑛(𝑆0) − 𝜇2𝑇 − 𝑛𝑙𝑛(1 + 𝜈2)

𝜎2

}        

= 𝑠𝑢𝑝
𝑛≥0

𝑀{𝑆𝑛 ≤ 𝑇} ∧ 𝑀{𝐶2𝑡 ≥
𝑙𝑛(𝐾 + 𝑥) − 𝑙𝑛(𝑆0) − 𝜇2𝑇 − 𝑛𝑙𝑛(1 + 𝜈2)

𝜎2

}        

= 𝑠𝑢𝑝
𝑛≥0

(Ψ(
𝑇

𝑛
)) ∧ (1 − Φ(

𝑙𝑛(𝐾 + 𝑥) − 𝑙𝑛(𝑆0) − 𝜇2𝑇 − 𝑛𝑙𝑛(1 + 𝜈2)

𝜎2𝑇
)) = Υ(𝑥)

 (29) 

 

Now with Substitute x = Φ−1(α) =
√3

π
ln

α

1−α
 

Υ(α) = sup
n≥0

(Ψ(
T

n
)) ∧ (1 − Φ(

ln(K +
√3
π ln

α
1 − α) − ln(S0) − μ2T − nln(1 + ν2)

σ2T
)) 

(30) 

 

and so 

fui
c = ∫ e−μ1T−

√3δT
π

ln
1−α

α .

1

0

Υ(α)dα (31) 

note that 

BL( sup
0≤t≤T

St
α) = 1 (32) 

if and only if 

sup
0≤t≤T

St
α ≥ L. (33) 

and 

BL( sup
0≤t≤T

St
α) = 0 (34) 

if and only if 

𝑠𝑢𝑝
0≤𝑡≤𝑇

𝑆𝑡
𝛼 < 𝐿. (35) 

in addition 
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𝑆𝑡
𝛼 = 𝑆0𝑒𝜇2𝑇+

√3𝜎2𝑇
𝜋

𝑙𝑛
𝛼

1−𝛼(1 + 𝜈2)𝑁𝑡 ≥ 𝐿                             

⇒ 𝑙𝑛(𝑆0) + (𝜇2𝑇 +
√3𝜎2𝑇

𝜋
𝑙𝑛

𝛼

1 − 𝛼
) + 𝑛𝑙𝑛(1 + 𝜈2) ≥ 𝑙𝑛𝐿

⇒ 𝑙𝑛(𝑆0) − 𝑙𝑛𝐿 + 𝜇2𝑇 + 𝑛𝑙𝑛(1 + 𝜈2) ≥ −𝑙𝑛
𝛼

1 − 𝛼

√3𝜎2𝑇

𝜋

⇒
𝜋

√3𝜎2𝑇
(𝑙𝑛(𝑆0) − 𝑙𝑛𝐿 + 𝜇2𝑇 + 𝑛𝑙𝑛(1 + 𝜈2)) ≥ 𝑙𝑛

1 − 𝛼

𝛼

⇒ 𝑒
𝜋

√3𝜎2𝑇
(𝑙𝑛(𝑆0)−𝑙𝑛𝐿+𝜇2𝑇+𝑛𝑙𝑛(1+𝜈2))

≥
1 − 𝛼

𝛼
                            

⇒ 1 + 𝑒
𝜋

√3𝜎2𝑇
(𝑙𝑛(𝑆0)−𝑙𝑛𝐿+𝜇2𝑇+𝑛𝑙𝑛(1+𝜈2))

≥
1

𝛼
                            

⇒ 𝛼 ≥ (1 + 𝑒
𝜋

√3𝜎2𝑇
(𝑙𝑛(𝑆0)−𝑙𝑛𝐿+𝜇2𝑇+𝑛𝑙𝑛(1+𝜈2))

)−1 = 𝛼0          

 (36) 

 

so 

𝑓𝑢𝑖
𝑐 = ∫ 𝑒−𝜇1𝑇−

√3𝛿𝑇
𝜋

𝑙𝑛
1−𝛼

𝛼

1

𝛼0

. Υ(𝛼)𝑑𝛼.  (37) 

Example 1. Assume the initial stock price S0 = 15, risk-less interest rate μ1 = 0.02, log-drift μ2 =

0.06, log-diffusion σ2 = 0.3,  jump size of stock price ν2 = 0.2, barrier level L =  26, strike price 

K =  20, time to maturity T =  1, parameter δ = 0.005 and n = 1 . Then the price of an up-and-in call 

option is 0.1039. 

 

4.2 Pricing Formula for Put Option 

Consider a DIP (down-and-input) option which, in that barrier level is 𝐿, exercise price is 𝐾, and the 

maturity time is 𝑇 . This put option is invalid, and has payoff equal to 0, if before the maturity 𝑇 , the 

spot price 𝑆𝑡 consistently remains above the barrier level 𝐿, i.e., 

inf
0≤𝑡≤𝑇

𝑆𝑡 > 𝐿.  (38) 

If the price of underlying asset St hits the designated level L and goes below of that before the ma-

turity  , i.e., 

inf
0≤t≤T

St ≤ L. (39) 

Then, this DIP option will come into existence, and its payoff will be max(K − St, 0) on the maturity 

date. Now we assign η+ = max(η, 0) and apply an indicator function 

BL(η) = {
1,                          η > L,
0,                          η ≤ L.

 (40) 

Hence, the payoff on the maturity time is written as 

𝑝𝑎𝑦𝑜𝑓𝑓 = (𝐾 − 𝑆𝑡)+(1 − 𝐵𝐿( 𝑖𝑛𝑓
0≤𝑡≤𝑇

𝑆𝑡)) (41) 

By taking into account the discount rate on the initial date, the discounted expectation of payoff is 

𝐷𝑖𝑝 = 𝑒𝜇1𝑡+𝛿𝐶1𝑡(𝐾 − 𝑆𝑡)+(1 − 𝐵𝐿( 𝑖𝑛𝑓
0≤𝑡≤𝑇

𝑆𝑡)) (42) 

and a fair price of this kind of barrier options (DIP option) is 

𝑓𝑑𝑖
𝑝

= 𝐸[𝐷𝑖𝑝] = 𝐸[𝑒𝜇1𝑇+𝛿𝐶1𝑡(𝐾 − 𝑆𝑡)+(1 − 𝐵𝐿( 𝑖𝑛𝑓
0≤𝑡≤𝑇

𝑆𝑡))] (43) 
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Theorem 4. Consider a down-and-input (DIP) option for stock pricing model which follows the uncer-

tain Eq. (13) has a lower barrier𝐿, exercise price𝐾, and the maturity data𝑇. Then the fair price of the 

option is 

𝑓𝑑𝑖
𝑝

= ∫ 𝑒−𝜇1𝑇−
√3𝛿𝑇

𝜋
𝑙𝑛

𝛼
1−𝛼

𝛼0

0

. Υ(𝛼)𝑑𝛼 (44) 

Where 

𝛼0 = (1 + 𝑒
𝜋

√3𝜎2𝑇
(𝑙𝑛(𝑆0)−𝑙𝑛𝐿+𝜇2𝑇+𝑛𝑙𝑛(1+𝜈2))

)−1 (45) 

 

And 

Υ(𝛼) = 𝑠𝑢𝑝
𝑛≥0

(1 − Ψ(
𝑇

𝑛 + 1
)) ∧ Φ(

𝑙𝑛(𝐾 −
√3
𝜋

𝑙𝑛
𝛼

1 − 𝛼
) − 𝑙𝑛(𝑆0) − 𝜇2𝑇 − 𝑛𝑙𝑛(1 + 𝜈2)

𝜎2𝑇
) 

(46) 

Here Φ represents the uncertain standard normal distribution of uncertain variables, and Ψ represents 

the distribution of the interarrival times in uncertain environment for the uncertain renewal process. 

 

Proof. For each 𝑥 ∈ [0, 𝐾 ], we arrive 

𝑀{(𝐾 − 𝑆𝑇)+ ≥ 𝑥} = 𝑀{𝑆0𝑒𝜇2𝑇+𝜎2𝐶2𝑡(1 + 𝜈2)𝑁𝑡 ≥ 𝐾 − 𝑥}                                                             

= 𝑀{𝜎2𝐶2𝑡 + 𝑁𝑡𝑙𝑛(1 + 𝜈2) ≥ 𝑙𝑛(𝐾 − 𝑥) − 𝑙𝑛(𝑆0) − 𝜇2𝑇}                           

= 𝑠𝑢𝑝
𝑛≥0

𝑀{𝑁𝑇 ≤ 𝑛} ∧ 𝑀{𝐶2𝑡 ≤
𝑙𝑛(𝐾 − 𝑥) − 𝑙𝑛(𝑆0) − 𝜇2𝑇 − 𝑛𝑙𝑛(1 + 𝜈2)

𝜎2

}

= 𝑠𝑢𝑝
𝑛≥0

𝑀{𝑆𝑛 ≥ 𝑇} ∧ 𝑀{𝐶2𝑡 ≤
𝑙𝑛(𝐾 − 𝑥) − 𝑙𝑛(𝑆0) − 𝜇2𝑇 − 𝑛𝑙𝑛(1 + 𝜈2)

𝜎2

}

= 𝑠𝑢𝑝
𝑛≥0

(1 − Ψ(
𝑇

𝑛 + 1
)) ∧ (Φ(

𝑙𝑛(𝐾 − 𝑥) − 𝑙𝑛(𝑆0) − 𝜇2𝑇 − 𝑛𝑙𝑛(1 + 𝜈2)

𝜎2𝑇
))

= Υ(𝑥)                                                                                                                         

 (47) 

Now with Substitute x = Φ−1(α) =
√3

π
ln

α

1−α
 

Υ(𝛼) = 𝑠𝑢𝑝
𝑛≥0

(1 − Ψ(
𝑇

𝑛 + 1
)) ∧ Φ(

𝑙𝑛(𝐾 −
√3
𝜋 𝑙𝑛

𝛼
1 − 𝛼) − 𝑙𝑛(𝑆0) − 𝜇2𝑇 − 𝑛𝑙𝑛(1 + 𝜈2)

𝜎2𝑇
) 

(48) 

and so 

𝑓𝑑𝑖
𝑝

= ∫ 𝑒−𝜇1𝑡−
√3𝛿𝑇

𝜋
𝑙𝑛

1−𝛼
𝛼

1

0

. Υ(𝛼)𝑑𝛼  (49) 

note that 

1 − 𝐵𝐿( 𝑖𝑛𝑓
0≤𝑡≤𝑇

𝑆𝑡
1−𝛼) = 1 (50) 

if and only if 

𝑖𝑛𝑓
0≤𝑡≤𝑇

𝑆𝑡
1−𝛼 ≤ 𝐿. (51) 

and 

1 − 𝐵𝐿( 𝑖𝑛𝑓
0≤𝑡≤𝑇

𝑆𝑡
1−𝛼) = 0 (52) 

 if and only if 
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𝑖𝑛𝑓
0≤𝑡≤𝑇

𝑆𝑡
1−𝛼 > 𝐿. (53) 

 Moreover 

𝑆𝑡
1−𝛼 = 𝑆0𝑒𝜇2𝑇+

√3𝜎2𝑇
𝜋

𝑙𝑛
1−𝛼

𝛼 (1 + 𝜈2)𝑁𝑡 ≤ 𝐿                                  

⇒ 𝑙𝑛(𝑆0) + (𝜇2𝑇 +
√3𝜎2𝑇

𝜋
𝑙𝑛

1 − 𝛼

𝛼
) + 𝑛𝑙𝑛(1 + 𝜈2) ≤ 𝑙𝑛𝐿                 

⇒ 𝑙𝑛𝐿 − 𝑙𝑛(𝑆0) − 𝑛𝑙𝑛(1 + 𝜈2) − 𝜇2𝑇 ≥
√3𝜎2𝑇

𝜋
𝑙𝑛

1 − 𝛼

𝛼
                     

⇒
𝜋

√3𝜎2𝑇
(𝑙𝑛𝐿 − 𝑙𝑛(𝑆0) − 𝑛𝑙𝑛(1 + 𝜈2) − 𝜇2𝑇) ≥ 𝑙𝑛

1 − 𝛼

𝛼
                 

⇒ 𝑒
𝜋

√3𝜎2𝑇
(𝑙𝑛𝐿−𝑙𝑛(𝑆0)−𝜇2𝑇−𝑛𝑙𝑛(1+𝜈2))

≥
1 − 𝛼

𝛼
                                             

⇒ 1 + 𝑒
𝜋

√3𝜎2𝑇
(𝑙𝑛𝐿−𝑙𝑛(𝑆0)−𝜇2𝑇−𝑛𝑙𝑛(1+𝜈2))

≥
1

𝛼
                                           

⇒ 𝛼 ≥ (1 + 𝑒
𝜋

√3𝜎2𝑇
(𝑙𝑛𝐿−ln(𝑆0)−𝜇2𝑇−𝑛𝑙𝑛(1+𝜈2))

)−1 = 1 − 𝛼0                  

 (54) 

so 

𝑓𝑑𝑖
𝑝

= ∫ 𝑒−𝜇1𝑇−
√3𝛿𝑇

𝜋
𝑙𝑛

1−𝛼
𝛼

1

1−𝛼0

. Υ(𝛼)𝑑𝛼 = ∫ 𝑒−𝜇1𝑇−
√3𝛿𝑇

𝜋
𝑙𝑛

𝛼
1−𝛼

𝛼0

0

. Υ(𝛼)𝑑𝛼  (55) 

Example 2. Assume the initial stock price S0 = 20, risk-less interest rate μ1 = 0.02, log-drift μ2 =

0.06, log-diffusion σ2 = 0.3,  jump size of stock price ν2 = 0.2, barrier level L =  8, strike price K =

 15, time to maturity T =  1, parameter δ = 0.005 and n = 1 . Then the price of a down-and-in put 

option is 0.0028. 

 

5 Conclusion 

Since the probability space and randomness aren't sufficient space for simulation of investor decisions, 

many researchers propose Liu uncertain space for using in such cases. In this paper, we have presented 

an uncertain renewal process, in which interarrival times are uncertain variables to compute the prices 

of barrier options on stocks, using the Liu process and renewal uncertain process which in the interest 

rate is floating and dynamic. Formulas for pricing two kinds of knocked-in options (up-and-in call op-

tions and down-and-in put options) are arrived by 𝛼-paths of UDEs with jumps. 
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