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fied as an exotic option, derivesyitssvalue from the behavior of an underlying
asset. The outcome of this eptian is based on whether or not the price of the un-
derlying asset has'reached. a predetermined barrier level. Over the years, the stock
price has been represented-through continuous stochastic processes, with the
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Rengwal Process prominent onedaging the,Brownian motion process. Correspondingly, the widely
Barrier Options Pricing used Black-Scholes model has been employed. Nevertheless, it has become evi-
Floating Interest Rate dent that utilizing stochastic differential equations to characterize the stock price
Uncertain Differential Equa- process is’unsuitable and leads to a perplexing paradox. As a result, many re-
tion(UDE) searchers have turned to incorporating fuzzy or uncertain environments in such

situations.“This study presents a methodology for pricing barrier options on
stocks in an uncertain environment, in which the interarrival times are uncertain
variables. The approach employs the Liu process and renewal uncertain process,
considering the interest rate as dynamic and floating. The pricing formulas for
knock-in barrier options are derived using a-paths of uncertain differential equa-
tions with jumps.

1 Introdugtion
The pricing of'eptions holds great importance in the financial markets, and it is a subject of consider-

abletinterest in mathematical finance. Nevertheless, barrier options and vanilla options share similari-
ties, with the exception that barrier options are either activated or deactivated when the underlying asset
price touches the barrier price before the maturity time. Barrier options have been traded in the over-
the-counter (OTC) market since 1967 and have become the preferred choice among exotic options.
Different pricing methods have been widely utilized in option pricing, including the Black-Scholes [1]
and Merton's [2] option pricing theory, in which the price process for underlying assets follows the
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stochastic differential equations (SDEs). Merton [2] was the first to propose a theory for pricing rational
options, focusing on down and out options. Rich, on the other hand, contributed to the pricing of barrier
options. Subsequently, numerous researchers have explored various approaches for pricing such op-
tions. For example, Nouri, Abbasi, et al. [3, 4] introduced an enhanced Monte Carlo algorithm for pric-
ing different types of barrier options. Additionally, [5] employed a Lie-algebraic method to determine
the value of moving barrier options, and [6] conducted a study on the analytical valuation of American
double barrier options. In 2013, Liu [7] argued that the application of stochastic differential equations
to characterize the stock price process is unsuitable and leads to a perplexing paradox. This perspective
is substantiated by empirical observations, which reveal that the peak of the distribution of ‘underlying
assets exceeds that of a normal probability distribution, accompanied by heavier tails. Numerous em-
pirical studies have shown that the behavior of underlying asset prices does not conform te'theprinciples
of probability and randomness. So many researchers have applied fuzzy and uncertain environments to
compute option pricing formulas [8-10]. Considering the influence of both randomness,and human un-
certainty on financial markets, it is evident that an investor's belief holds great importance in shaping
market dynamics. As investors tend to base their decisions on their beliefs rather than solely on proba-
bilities. In support of this, Kahneman [11] demonstrated that the degrees of beliefs'exhibit a much wider
range of variation compared to frequency. In 2004 Cont and Tankov: [12] employed jump-diffusion
models as an uncertain source and demonstrated the extensive,structure these models possess for asset
pricing. In 2007 Liu [13] established a theory of uncertainty within,the framework of uncertain measure,
focusing on the degree of belief. In 2008, Liu [14] introduced the concept of uncertain process to en-
hance the modelling of uncertain phenomena. Researchers'in,[15-17] have developed various methods
for solving uncertain differential equations (UDES) based<on this work. Additionally, Yao [16] has
proposed several numerical techniques for computingiintegration and differentiation, which can be ap-
plied to renewal uncertain processes. Furthermore, Chen and Liu [15] have demonstrated the existence
and uniqueness theorem for the solutions®@f UDES, and besides Liu [18] has proven the stability of
UDEs. In 2009, Liu [18] developed several formulas for option pricing based on an uncertain stock
model. Following that, researchers/in, [19- 23] extensively explored uncertain stock pricing models.
Furthermore, Chen [24] introdueed a formula to price American options in 2011. Meanwhile, Liu [13]
highlighted the importance of,uncertain renewal processes, specifically focusing on cases where the
interarrival times are uncertain variables. Later on, Liu [25] proposed a renewal reward process that
accounted for the uncertaintysof interarrival times and rewards. In 2012, Yao [26] established a theory
on uncertainty calculus specifically for renewal processes. Jia and Chen [27] conducted a study in 2020,
uncovering notewaorthy findings on pricing formulas for Knock-in barrier options within an uncertain
stock pricing‘madel featuring a floating interest rate. Additionally, Gao, et al. [28] investigated pricing
American barrier‘option of currency model in uncertain environment. Section 2 of the paper begins
with the necessary preliminaries. Subsequently, Section 3 presents the stock pricing model in uncertain
space, which specifically focuses on real decision problems and incorporates a floating interest rate.
Section 4, offers the proof for European knock-in options pricing formulas within the framework of the
uncertain stock model. Finally, Section 5 concludes the paper by presenting a summary of the findings.

2 Preliminaries

Consider I" denote a non-empty set, and define the o-algebra L be a collection of all the events 8¢L over
I'. We can define it as a function that assigns to each event 8 the belief degreeM {6}, which represents
our confidence in the occurrence of6. Liu [14] proposed five axioms to provide an axiomatic definition
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of uncertain measure to ensure that the number M {6} is not arbitrary and has special mathematical
properties;

1: (Normality axiom) M'(I') = 1;

2: (Monotonicity axiom) M'(6;) < M (68,) whenever 8; < 0,;

3: (Duality axiom) M'(68) + M (6¢) = 1 for every event 6;

4: (subadditivity axiom) For each sequence of events {6;} , that can be

counted, we have
M (U 0;) < Z M (©;) (1)
i=1 i=1

Definition 1. [18]. The set function M which satisfies the above axioms, is called an uncertain
measure.

Definition 2. [18]. Consider I" be a non-empty set, the ¢ -algebra L, be,acollection of all the events
over I and M be an uncertain measure according to the above definition. Then the triple (I, L, M) is
called an uncertain space.

5: (Product Measure Axiom) [18]. Let the triple (I}, Lif M) )where I' =I; X I, X ...and L = L; X
L, X... be uncertainty space for k = 1,2,...,n, then’product uncertain measure M is an uncertain
measure on the product o -algebra satisfying thegroduct/uncertain measure M is uncertain measure
satisfying,

M{f{ ek} = k/:.\le{ek} 2

=1

Where 6, are arbitrary,chosen event from L, for k = 1,2,...,n, respectively.

Definition 3. [18].The uncertainty distribution for an uncertain variable such as € is defined by func-
tion®: R — [0,2)that ®(x) = M{E < x}.

Definition 4. Fellowing uncertainty distribution is called normal

@ (en= (1 + exp <?))‘1, x ER, €))
o

If § be an uncertain variable, in this case ¢ > 0 and e are real numbers and it is shown byN (e, o).
The normal uncertainty distribution can be called standard, ife = 0 ando = 1.S0 @ (a)< a €
(0¢1) is the inverse uncertainty distribution of &, if it exists. The expected value of an uncertain vari-

able € is defined as
1

E[¢] =f0<l>‘1(a)da, 4
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Definition 5. [14] following UDE (uncertain differential equation),
dX, = h(t,Xp)dt + k(t,X,)dC,, (5)
Has an a-path X7 (0 < a < 1), if it solves the bellow corresponding ODE
dXg = h(t,X®)dt + |k(t, X{)| P Y (a)dt, (6)
Where &~ 1(a) is the inverse standard normal uncertainty distribution, i.e.,

V3 a
o1 =—1
(@ T nl—a

(7)

Definition 6. [18]. Liu process is an uncertain process C; which have bellow properties

1-Cy = 0;
2- C; has independent and stationary increments;
3- Almost all sample paths are Lipschitz continuous;
4- All increments Cq, ¢ - C5 are normal uncertain variables with’expected valde 0 and variance t2.
Theorem 1. Let X, be the solution of the UDE eq. (5) and g -path X e the solution of ODE eq. (6).
Then

M{X: < X7, vt e [0,T]} =a,

8
M{X, > X%, Vte[0,T]}=1-a, ®
Definition 7. [14] The uncertain process
Ny = max{n | Sn < t} 9)
n=0

is called an uncertain renewal process, ifi€y/€,)E5, . .. be iid positive uncertain variables. Also Sy = 0

and Sn = anl En-
The uncertain renewal process N#has an expected value

E[N:] = z CD(%) (10)
k=1

Where @ denote the uncertainty distribution of &;s.

Definition 84[29] Consider that &;, &5, &3, ... indicate the interarrival times of sequential events. Hence,
N, is the number-ef renewals in (0, T ] and S,, is the total waiting time before the nth event occurs. The
relation between the fundamental formulas of an uncertain renewal process are as below:

N, >ne S, <t
L =M on = (12)
Nt S‘n<=>5n+1 >t,
Theorem 2. [29] Consider N, be an uncertain renewal process, if interarrival times &, &5, &3, ... have
an uncertainty distribution @, then N; has an uncertainty distribution
t
Yi(@) =1— (), 12

(@) (7D (12)

for all @ = 0, where |«| denotes the largest integer that is less than or equal to a.
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3. Uncertain Model for Stock Pricing with Floating Interest Rate

Assume that the stock price S; and interest rates r; follows:
_ 5 dCi;
T (13)

dSt = l,lzstdt + O-ZStdCZt + VZStht'

where C;+ and C,; are independent Liu process, § is a positive real number, u; is the riskless interest
rate, u, is log-drift, o, is log-diffusion, v, is the stock price jump size and N; is an uncertain‘renewal
process. Based on these assumptions, the discount rate is

[ dcCy;
e —e L(I’Lﬁ-g dt )dt = g M15—8Css (14)

By solving the differential equation

- fgr‘tdt

V3
dSE = i SEdt + = In—— oy |SE|dt + v, SEdN, (15)

a
l1—a
have an a-path for S; as

30,t

We have

ds*

Sta_ = Uy dt + O'det + Vo dNt (17)
Integrating both sides, we get
N¢

tds,®
f <@ = Mat+ oG+ Z In(1 + vg,) (18)
0 -t i=1

This means
N¢

InS;* — InSy = pyt + 0, GFF 2 (1 +vs,),
iz1
InS;* = InSy + p,t'+ 0,C; + Z?Iztl In(1+vs,),
N¢
Si¢ = Spexplu,t #o,Ce + Z In(1 +vs,)]
i1 (19)
N¢
= Spexp(ust + 0,Cy) 1—[(1 + vsi)
i=1
= Spexp(pat + 0,C) (1 + )Nt

3o0,t 04
1 14 vy )Nt
n 1 0()( v2)

=S t+
0exP(Ht + ——=In——

Which is a solution to "Eq. (13)".
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4 European Knock- In Options

One kind of barrier options is knock-in option which contract that only comes in existence when under-
lying asset crosses a certain price level. This means that traders can buy or sell this type of options only
at the moment and after that the price reaches a particular prespecified level. If the knock-in price level
has touched at any time during the lifetime of the options contract, the payoff of the option is converted
into a vanilla option and the knock-in barrier option expires worthless. In this section we have presented
formula of pricing European UIC (up-and-in call) option which asset price follows Eqg. (13) the renewal
uncertain model with floating interest rate.

4.1 Pricing Formula for Call Options

Consider an UIC option which in that barrier level is L,The exercise price is K, and the/maturity time
is T . This call option is invalid and has payoff equal to 0, if before the maturity T , the'Spot price

S always be under the barrier level L, i.e.,

sup S; <L. (20)
0st<T

If the price of underlying asset S; hits the designated barrier L and goes‘above that before the ma-
turity, i.e.,

sup S; = L. (21)
0sts<T

Then, this UIC option will become into existence, and itspayoff will be max(S; — K, 0) on the ma-
turity date. Now we assign n* = max(n, 0) and apply @n’indicator function
(1, n=1L,
B0 =g n<L (22)

Hence, the payoff on the maturity time is/Writtenas;

payoff = (S; — K)+BL(OS<1:ETSt) (23)
By taking into account the discount rate,on the initial date, the discounted expectation of payoff is
Uie = etat*0Ce(S, — K)* B, (sup S;) (24)
0<t=<T

and a fair price of this kind,of barrier options (UIC option) is
fii = ElUic] = E[e/TH 7S, — K )" B(sup S0)] (25)
Theorem 3. Consider:an up-and-in call (UIC) option for stock pricing model that underlying uncer-

tain Eq.(13) has a barrier level L, exercise price K, and the maturity data T. Then the fair price of the
option is defined by

1
V38T, 1-«

flfi:f T lnT.Y(O()doc (26)

Qo
Where

t(In(Sg)—InL+u, T+nin(1+v,))

ag=(1+e V3o, T )1 (27)
and
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V3, o«
ln(K+?ln1_a

T ) — In(So) — uoT —nin(1 +v,) (28)
Y(a) = sup(P(2) A (1 - d( ))
nz0 n O-2T
Here @ represents the uncertain standard normal distribution of uncertain variables, and W represents

the distribution of the interarrival times in uncertain environment for the uncertain renewal process.

Proof. For eachx > 0, we arrive

M{(Sy —K)* >x} = M{Soel292C2e(1 + v,)% > K + x}
In(K + x) — In(Sy) — u,T —nin(1 + vz)}

O-
(K + ) — In(So) ~ T — nin(1 + vl (29)

= supM{Ny = n} AM{Cy; =
nz0

= supM{S, < T} AM{Cy; =
nz0 03
In(K +x) —In(Sy) — u,T —nin(1 +v)

T
= f}z‘ﬁ’(‘p(ﬁ)) A1 —d( ol ) 7 Y(x)

[0d

Now with Substitute x = & (@) = 2 In -

V3

i

o
1—«a

In(K+—1In ) —In(Sp) =, T — nln(1 + v,)
0 2 2 ) (30)

GzT

T
Y(a) = sup(W(=)) A (1 — &(
n=0 n
and so
1 \/'_5
38T, 1—-«a
fe. = j e MT T "% Y()da (31)
0

note that

Bp(sup S¢) =1 (32)
0st<T

if and only if

sup S¢'= L, (33)

0<t<T

and

BL(sup S{) =0 (34)

0<t<T

if and only if

sup Sf < L. (35)

0<t<T

in addition
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\V30,T,  a
T

SE =Spet?™ T Mea(14vy)Ne > L
'\/§O'2T a
=  In(Sy) + (u, T + - In— a) +nin(l+v,) = Inl
a \/§O-2T
= In(Sy) —InL+ p,T+nln(l+v,) = —In T o
— T
T (In(Sy) — InL + t,T + nin(l +v,)) = In——2 (36)

> n —In nin vy)) = In

V3a,T 0 H2 2
N eﬁZZT(ln(SO)—lnL+u2T+nln(1+v2)) > 1—a

a
L oq4 eﬁ%ﬂ(ln(so)—lnL+;12T+nln(1+v2)) S l
a
Y
- a> (1 n em(ln(so)—lnL+u2T+nln(1+v2)) -1 2,
SO
' V3
36T, 1-a
f& = j e T 7 "o Y(a)da. (37)
Qo

Example 1. Assume the initial stock price Sy = 15, risk-less interest rate u; = 0.02, log-drift p, =
0.06, log-diffusion o, = 0.3, jump size of stock prices, =10.2{ barrier level L = 26, strike price
K = 20, time to maturity T = 1, parameter § = 0.005.and n = 1 . Then the price of an up-and-in call
option is 0.1039.

4.2 Pricing Formula for Put Option
Consider a DIP (down-and-input) option/which, in that barrier level is L, exercise price is K, and the
maturity time is T . This put option is‘invalidgand has payoff equal to 0, if before the maturity T , the
spot price S; consistently remains@bove the barrier level L, i.e.,

inf S; > L. (38)

0<t<T
If the price of underlying asset Sg hits the designated level L and goes below of that before the ma-
turity , i.e.,
inf S, <L. (39)

0<t<T
Then, this' DIRoptionwill come into existence, and its payoff will be max(K — S;, 0) on the maturity
date. Now We assign n* = max(n, 0) and apply an indicator function

AR iy (40)
Hence, the payoff on the maturity time is written as

payoff = (K = 5)*(1 = B,( inf 5) (41)
By taking into account the discount rate on the initial date, the discounted expectation of payoff is
Dy, = eMt*0Ge (K — §)* (1~ B.( inf S0) (42)
and a fair price of this kind of barrier options (DIP option) is

£} = E[Dyp] = E[eMT+3Cu(K — $)*(1 — B, (inf So)] 43)

0<tsT
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Theorem 4. Consider a down-and-input (DIP) option for stock pricing model which follows the uncer-
tain Eq. (13) has a lower barrierL, exercise priceK, and the maturity dataT. Then the fair price of the
option is

o
V38T, «a
fP = f e M7 M-z Y(a)da (44)
0

Where

g = (1 + e\/%ﬂ(ln(so)—lnL+u2T+nln(1+v2)))_1 (45)
And

i) = L T N In(K — glnﬁ) — In(Sy) — up, T — nin(F+w,) (46)

(@) = sup(1 = ¥(—) A — )

Here @ represents the uncertain standard normal distribution of uncertain,variables, and ¥ represents
the distribution of the interarrival times in uncertain environment fer.the uncertain renewal process.

Proof. For each x € [0, K ], we arrive
M{(K - ST)+ 2 x} = M{Soe#2T+O-ZCZt(1 + Vz)Nt 2 K - x}
= M{UZCZt + Ntln(l + Vz) 2 ln(K - x) - ln(SO) - ‘UzT}

In(K #%y= In(S;) — u,T — nin(1 +
:SUPM{NTSn}AM{CZtSn( )= In€S,) — 1T — nin( Vz)}

nz0 0,
—x)— — 1, T — nin(1
= SupM (S, 2 T} A M(Cy, s ? 0~ T Z (¥ va), 47
nz0 2
_ T In(K — x) — In(Sy) — i, T —nin(1 +v,)
= 5;‘%3(1 - lp(m)) A(D( T )
=Y(x)
Now with Substitute x = &~ ()%= glnﬁ
Vi) = L T N\ In(K — glnﬁ) —In(Sy) — u,T —nin(1 +v,) (48)
(a) = g};g( C—) A o( o7 )
and so
1
VBOT, 1-a
fP = f e M Y(a)da (49)
0
note that
1—-Bjtinf S %) =1 (50)
0=<t=<T
if and only if
inf S* < L. (51)
0<t<T
and
1-B,(inf SF7%) =0 (52)
0<t<T
if and only if
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inf S{~* > L. (53)
0<t<T
Moreover
V30,T, 1-a
Sk = Spet? ™ m Ma (14 vy)Ne <L
V30,7 1-—
=  In(Sy) + (u, T + In ) +nin(l+v,) < InL

V30,7 1-a
= InL—In(Sy) —nin(1 +vy) — u,T = - In

a
- —
= ol (InL — In(Sy) —nin(1 +v,) —u,T) = In (54)
)
T
I ﬁazT(lnL—zn(so)—uzr—nzn(uvz)) > 1—«a
a
S 14 e\/_a T(lnL In(So) - T—nin(1+vy)) S l
a
InL-In(Sp)— i T—nin(1+v,)
= a>(1+e‘/_‘7T(n R T=1-aq
SO
1 \/_ Xo V3
36T 1 a 30T, ha
= j e T "o Y(a)da = f e T ISk Y(a)da (55)
1 [243) 0

Example 2. Assume the initial stock price S, = 20, risk-less interest rate p; = 0.02, log-drift p, =
0.06, log-diffusion o, = 0.3, jump size of stock price vy, =40.2, barrier level L = 8, strike price K =
15, time to maturity T = 1, parameter § = 0.005andn = 1. Then the price of a down-and-in put
option is 0.0028.

5 Conclusion

Since the probability space and randomness aren't sufficient space for simulation of investor decisions,
many researchers propose Liu uncertainspace for using in such cases. In this paper, we have presented
an uncertain renewal processyin Whieh interarrival times are uncertain variables to compute the prices
of barrier options on stocks, using the Liu process and renewal uncertain process which in the interest
rate is floating and dynamic."Fermulas for pricing two kinds of knocked-in options (up-and-in call op-
tions and down-and-in, put/options) are arrived by a-paths of UDEs with jumps.
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