Adv. Math. Fin. App., 2023, 8(2), P. 351-365

Advances in Mathematical Finance & Applications
www.amfa.iau-arak.ac.ir
) Print ISSN: 2538-5569
! ™ Online ISSN: 2645-4610
e Doi: 10.22034/AMFA.2022.1962838.1772

Research Paper

Generalized Krasnoselskii-Mann Type lterations for Two Non-
expansive Mappings in Real Hilbert Spaces

Sirous Moradi® *, Najmeh Mohitazar®

aDepartment of Mathematics, Faculty of Sciences, Lorestan University, 68151-4-4316, Khoramabad, Iran
bDepartment of Mathematics, Faculty of Sciences, Arak University, 38156-8-8349, Arak, Iran

ARTICLE INFO ABSTRACT

Article history: In this paper, we propose a novel Mann iterative algorithm for discovering a
Received 2022-07-10 shared fixed point of two nonexpansive mappings in real Hilbert spaces. We es-
Accepted 2022-10-25 tablish the weak convergence of this fixed-point approach under new conditions,
and additionally demonstrate its strong convergence with the inclusion of an ad-
ditional requirement. Our findings expand upon previous results presented by
Kanzow and Shehu, as well as by Cho et al. Furthermore, we showcase the ver-
satility of our main results through the presentation of various applications in the
last section, accompanied by illustrative examples.

Keywords:

Fixed point,

Hilbert space,

Mann iterative,
Nonexpansive mapping,
Maximal monotone opera-
tors.

1 Introduction and preliminaries

Let H be areal Hilbert space with inner product (.,.) and norm ||.|. An operator T :C——C (C

is a nonempty, closed and convex subset of H ) is said to be nonexpansive if
re=Ty] < [x -]

forall x,y e C. For the set of all fixed points of T, we use the notation F(T). One of the important

fixed point algorithm is the Krasnoselskii-Mann iteration [15.17]. This algorithm, is given by the fol-
lowing iterative sequence

Xon = =o)X, + o, TX, VneN,

where X, e Hand ¢, € ]Ol[ for all n € N. This algorithm was developed by a number of authors;
see for example [1-3,5-8,10,11,14,16,19,20] and the references therein. Xu and Ori [22] proposed the
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Generalized Krasnoselskii-Mann Type Iterations

implicit Mann-like iterative method for a finite family of nonexpansive mappings {Tl,TZ,...,TN } with

a real sequence {@, } in J0,1] and an initial point X, €C;
Xy =0, X0y + (L=, )T X, vneN,

where T, =T (n mod N). They obtained some weak convergence results, by using this sequence.

In 2017 Kanzow and Shehu [13] considered the following iteration and generalized the Krasnoselskii-
Mann algorithm:

Xy =X, + B, IX, +1r,  Vn=0,

where «,, 3, € ]0,1[ are satisfy «, + 3, <1, and the residual vector r,. By considering this algorithm,
they obtained the following theorem.

Theorem 1.1. Let K be a nonempty, closed and convex subset of a real Hilbert space H . Suppose
that T :H —— K is a nonexpansive mapping such that its set of fixed points F(T) is nonempty. Let

the sequence {Xn} in H be generated by choosing X, € H and using the recursion
Xoy =X, + B.TX, +1,  Vn2], (1)

where r, denotes the residual vector. Here we assume that {an} and {ﬂn} are real sequences in [0,1]
such that e, + S, <1 for all n=>1 and the following conditions hold:

@ Y afb=m
® Y| <,

© S -a,-p)<m.

Then the sequence {Xn} generated by (1) converges weakly to a fixed point of T.

The following useful lemmas are required for the main results of this article.
Lemma 1.2. [12] Let E be a uniformly convex Banach space. Let s> 0 be a positive number and
let B,(0) be a closed ball of E.There exits a continuous, strictly increasing and convex function

g: [O,oo[—)[O,oo[ with g(0) =0 such that
Jex-+by +cz-+ dw]” < alx|" +bly|" +cfz]" +d|w]" - abg Jx - y|)

forall x,y,z,we B (0)={x<cE; [x|<s }and ab,c,d [01] such that a+b+c+d =1,
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Lemma 1.3. [18] If in a Hilbert space H the sequence {Xn} is weakly convergent to X,, then for any
X # Xy,
liminf _ [x, — %[ < liminf __[x, = ] Vx, € H.

Lemma 1.4.[21] Let {an} and {bn} be two nonnegative sequences satisfying the following condition:
a,, <a,+b, vn=>1.

n+1

n—o 7N

If an < oo, then lim__ a_ exists.
n=1

Lemma 1.5. [4] Let E be a real uniformly convex Banach space, C be a nonempty, closed and
convex subset of E and let T : C—— C be a nonexpansive mapping. Then | =T is demiclosed at

zero, that is, X, ——>X and X, —Tx, ——0 imply that TX = X.

In Section 2, by using lemma 1.2, we give a new proof and develop a novel Mann-type approach for
two nonexpansive mappings and show that it is weakly convergent by considering new requirements.
In Section 3, we show that the algorithm proposed in Section 2 has strong convergence to a common
fixed point of two nonexpansive mappings by considering an extra criterion.

2 Weak Convergence

In this section, we first describe a new generalized Krasnoselskii-Mann algorithm for identify-
ing a common fixed point of two nonexpansive mappings, as well as explore its weak conver-
gence. The following theorem, is the main results of this section. In particular, the following
theorem is a fairly stright forward generalization of Theorem 4 of [13], which considers two
functions.

Theorem 2.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H.
Suppose that T;,T, :C——C are two nonexpansive mappings with F(T,) " F(T,) # ¢.

Let the sequence {x, } in H be generated as follows:
Xy =0 X, + B TX, + 7, TLX, + A5, vnz=1 @)

where x, € H, {rn} denote the residual vector, and where {an}, {ﬂn}, {yn} and {/In} are real
sequences in [0,1] such that o, + S, +y, + 4, =1 for all n>1, and the following conditions
hold:

@ 4, <o

0 D a,B,=D ay, =»;
n=1 n=1
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(c) {rn} is bounded.

Then the sequence {x_ } generated by (2) converges weakly to some x € F(T,) A F(T,).
proof. Let us first observe that the sequence {xn} is bounded. For this purpose, suppose
X" e F(T,)nF(T,). Forall n e N,

X

-x]=

a, X, +ﬂn Tlxn +}/nT2Xn +ﬂ’nrn —X H

n+1

Xy + Ly TiXy + 7, X, + A — (o, + By + 7, + /1n)x*H

<a,

Xy = X" [ Bo| Ty = X[+ 70 [[Tox = X7+ Ao, - xH )
According to the above inequality and the nonexpansiveness of T, and T,, we get:

X

.
—XHSan

Xo = X" [+ Bo] %o = X[ 74X = X[+ A, — XH

<(a,+ B, +7:)

<

n+l

Xy = X[ A,y - XH

Xy = X[+ A, v, - XH

By using Lemma 1.4, and from the condition (a), we see that lim

X — X H exists. This

shows that the sequence {Xn} is bounded. Now, there exists a function g, that satisfies the
conditions in Lemma 1.2 such that, for all n € N:

«||2 12
Xpq — X H = | X, +ﬂn Tlxn +7/nT2Xn +ﬂ“nrn —X H
<112
=% X, +ﬂn Tlxn +7nT2Xn +ﬂ’nrn _(an +ﬂn +7n +/1n)x H
* * * * 2
= an(xn —-X )+:Bn (Tlxn _Tlx )+7/n(T2Xn _T2X )+2’n(rn —-X )H
2
<a,|x,-X H2+,Bn T.X, —Tlx*H2+;/n T, X, —TZX*H"'+/1n r - XH
_anﬂngl(”Xn _Tlxn”)
* || 2 *|[|2 *|| 2 * 2
<a,|X, — X H +B.1 X, — X H +7,1X, — X H +A4,|, — X H
_anﬂngl(”Xn _Tlxn”)'
It follows that
2
* * 2 *
anﬁngl(”Xn _Tlxn”) < (an +ﬂn +7/n) X, —X = Xy — X H +2’n rh—X
2
x |2 * 2 *
<Xy = X Xy — X H + A ||, — X

and hence:
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2

2 *
I - x

2 k

+>. 2,
n=1

From above inequality, and by using the condition (a), we conclude that:

Zanﬂngl(nxn _Tlxn”) < HXO - X H + Zﬂ“n
n=1 n=1

and hence we get from the condition (b) that

Iimn—m gl(”Xn _Tlxn”) =0.

Since g, is strictly increasing and continuous, and from g,(0)=0, we obtain that

lim,_,..[x, —T.x,[ =0. ©)

Again, there exists a function g, that satisfies the conditions in Lemma 1.2 such that

"~

<a

r,—Xx

k
Zanﬂngl(nxn _Tlxn”) < HXO X
n=1

2 k
+> 2,
n=1
2

s”xo—x r,—X

12
I’n—XH < 00

*

N 2
X X a X, + B, TX, + 7, X, + 4., —X

n+

2

a, (Xn - X*) +:Bn (Tlxn _Tlx*) +7n (T2Xn _T2X*) +2’n(rn - X*)

|2
nl[Xn — X “ +ﬂn

—a,7,9; (”Xn _T2Xn||)'
Using the same technique as in the previous case, the same result may be derived for T,. Hence
lim,_,..[x, = T,X,[=0.

L2
r,-x|

*|2
X, = X'[*+7,

|| 2
Xy — X H +4,

Then we show that the sequence {xn} converges weakly. Since {xn} is bounded, then 1 (4)
exists a subsequence {xnk } such that {Xnk } converges weakly to some xeC. Note from Lemma

1.5 and the relations (3) and (4) that X e F(T,)NF(T,).

Next we show {xn} converges weakly to some X. Suppose the contrary, then there exists some

subsequence {x, | of {x,} such that {x, | converges weakly to some XeC, where X#X.

*

Similarly, we can show X € F(T,) " F(T,). Notice that we have proved that lim,__|x, —X

n—o

exists for each x* € F(T,) " F(T,). Assume that lim __|X, —x|=d. By Lemma 1.3; we see

that

A AN -
d=Ilim_,_Ix,=x|=lim, x, —xi<liminf,__jx —x|=lim_ X —X

=lim,__|IX, —X|=liminf,__ix —x|<liminf,__ix, —xj=1Iim__ ix —x|=d.
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This is a contradiction. Hence X=X and this completes the proof. O

By taking T,=T and T,=1 andreplacing g, and 7, in Theorem 2.1 by % we conclude the

following corollary.

Corollary 2.2. Let C be a nonempty, closed and convex subset of a real Hilbert space H.
Suppose that T : C—— C is a nonexpansive mapping with F(T) # ¢.

Let the sequence {xn} in H be generated as follows:
X = O X, + /BnTXn + ﬂ«n r, vn>1 (5)

where x, e H, {r.} denote the residual vector, and where {a,}, {£,} and {4} are real se-
quences in [0,1] such that «, + , + 4, =1 for all n>1, and the following conditions hold:

@ Y4, <o

©) Y af, ==
(c) {rn} is bounded.

Then the sequence {xn} generated by (5) converges weakly to some >A(e F(T).

We can consider the general case of Theorem 2.1 as follows, that extends the previous result
given by Cho at et. al. [9].

Theorem 2.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H.
Suppose that T,, T,,..., T, :C——C are nonexpansive mappings with F(T,) n...nF(T) # ¢.

Let the sequence {xn} in H be generated as follows:
N

Xog = QX + O BT X + AN, Vnx1
i=l

where x, e H, {r.} denote the residual vector, and where {a,}, {£,} and {4} are real se-

N
quences in [0,1] such that «, + Z,Bin + A, =1 forall n>1, and the following conditions hold:
i=1
@ > 4, <o
n=1

0 Y a,B, = 1<i<N;
n=1
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(c) {rn} is bounded.

A N
Then the sequence {x, } converges weakly to some x € ~F(T,).
i=1

proof. The proof is similar to the proof of Theorem 2.1. O

Example 2.4. Suppose H = R, T;,T,: R — R be defined by T,;x=0, T,x=x forall xe R.
Then it is clear that T,, T, are nonexpansive and 0e F(T,) " F(T,). Furthermore, let us take

a, :3%, L. =7, :%(1—3—1n), A, =0, r, =0 for all n>1, Then it is easy to see that, the
sequence {rn} is bounded and the following conditions hold.

> 2, =0<o0;

n=1

= =1 1 1

ganﬂn §3n><2( ) =%

zanynz ixl(l_i)zoo

pory =3n 2 3n

Now, for any initial point X, € R, our iterative scheme (2) becomes
1 1 1 1 1 1 1 1
=—X, +=-(1-—)0)+=1-—)x, +0=(=+——-—)X,.
n+l 3n n 2( 3n)( ) 2( 3n) n (2 3n 6n) n

It is then clear that, the sequence {xn} converges to 0e F(T,)) N F(T,).

X

3 Strong Convergence

In this section, by considering an additional condition in Theorem 2.1, we prove the strong
convergence of the sequence {xn} that introduced in Theorem 2.1.

Theorem 3.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H.
Suppose that T;,T, :C——C are two nonexpansive mappings with F = F(T,) " F(T,) # ¢.

Let the sequence {xn} in H be generated as follows:
Xn+l = an Xn + ﬂnT]_Xn + 7nT2Xn + 5nun, Vn Z 1 (6)

where x, e H, {u,} is a bounded sequence, and where {,}, {8,}, {r,} and {5,} are real
sequences in [0,1] such that «, + B, + 7, +J, =1 for all n>1, and such that the following
conditions hold:

@ 36, <o

0 D a,B, =D ay, =»;
n=1 n=1
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(c) there exists a nondecreasing function f : [0, o[ ——][0, [ with f~(0) = {0} such
that f(d(x,F))<[x-Tx|+[x-T,x| forall xe X,
Then the sequence {xn} generated by (6) converges strongly to some X" € F.

proof. First we show that the sequence {xn} is bounded. Suppose x” € F. From (6), forall ne
N, we have

X

n+1

-x]=

a, X, +ﬁn Tlxn +7/nT2Xn +§nun - X H

a, X, +ﬂn Tlxn +}/nT2Xn +é‘nun _(an +ﬁn + 7, +5n)X*H

<a,

Xy = X" [+ B Toxy = X[+ 74 [[Tox, = X7 |+ 8, Ju, - XH

Then we obtain from x” e F, recent relation and the nonexpansiveness of T,,T, that

X 4 — XH <ay X, = X" | Bo| %0 = X[+ 70l X0 = X7+ S, lun — xH
< (ot + By + 70X, = X |+ S, lun — XH
Thus:
X, — XH <[x, = X[+ 8, u, — XH )

From Lemma 1.4, we see by using the restriction (a) that lim

n—o0

X, — XH exists. It follows that

the sequence {xn} is bounded.

Now by using Lemma 1.2 there exists a mapping g, (that satisfies the conditions in Lemma
1.2) such that forall n e N

L2 12
Kpg — X H = | X, +ﬂn Tan +7nT2Xn +5nun —X H
* * * s 2
= an(xn —X )+ﬂn (Tlxn _Tlx )+}/n(T2Xn _TZX )+5n(un —X )H
2
<a,|x, - X" H2+ﬂn T,X, —Tlx*H2+;/n ,X, —TZX*HZ+5n u, — XH
_anﬂngl(”Xn _Tlxn”)
< * || 2 *|(| 2 *|[| 2 * 2
<a,|X, — X H +B,| X, — X H +7nllXn — X H +06,|lu, — X
_anﬂngl(”Xn _Tlxn”)'
The above inequality shows that
2
. 8,9 (%, —ToXo ) < (@ + By + 70)[Xe = X7 ||| Xpus = X i lu—x
n/~nJ1 n 1n n n 7/n n n+1 n n
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2 *2 *2
< —|IX X +0,|u, = X7 .

X, — X

n+l

Therefore,

2

u, —x"

k k
> afai% -TxD <o —x [ + X4,
n=1 n=1
By the condition (a), we have

<112
i, x| <

Zanﬁn gl(”Xn _Tan”) < HXO -X
n=1

? + ién
n=1

Now we conclude from the condition (b) that,
Iimnaw gl(”Xn _Tlxn”) =0.
By using the properties of g,, we obtain from the above inequality that

lim,_,_[x, —T;x,|=0. (8)
By a similar method used for T,, we conclude that
lim,,_ [x, - T,x,| =0. (9)

Now we obtain from (8), (9) and by taking the limsup as n— o of the inequality in the condi-
tion (c) that
lim_ f(d(x,,F))=0

And hence
lim_ , d(x, F)=0.

Next, we show that {xn} is a Cauchy sequence. Since lim___d(x,, F) =0 then forany & >0,

there exists a positive integer N such that d(x,, F) <§ forall n> N. Putting8, =6, |u, — xH

we see from (7) that
X — XX, =X

+0..

ndl

For all n € N there exists X" € F such that

&
<d(x,F)+—.
O F)+2

X, = X"

Thus for any positive integers m,n, with m>n, we have
+ 2.0,
j=n+1
& m
<d(x,, F)+§+ >0,

j=n+l
m
<&+ Z 9j

j=n+l

X, —X*HS

X, — X'
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and therefore

X, — X, — X +X X, — X

+i<9j.

[, =] =

< Hxn —X*H+

X, —X*HSZ

This implies that
m
%, —Xu <26+ > 6;.
j=n+1

It follows from the restriction (a) that {Xn} is a Cauchy sequence in C and so {xn} converges

strongly to some Xe C. Since F =F(T,) nF(T,) is closed, we obtain that xeF. This com-

pletes the proof. O

By taking T, =T and T, =1 and replacing £, and y, in Theorem 3.1 by % we conclude

the following corollary.

Corollary 3.2. Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Suppose that T : C——C is a nonexpansive mapping with F(T) # ¢ . Let the sequence {xn}

in H be generated as follows:
X,y =a,X, +BTIX +5,U, vn>1 (10)
where x, e H, {u,} denotes the residual vector, and where {o, }, {3} and {5,} are real se-

quences in [0,1] such that o, + 5, + 6, =1 for all n>1, and the following conditions hold:

@ 36, <o

(b) D>, f, =0
n=1

(c) there exists a nondecreasing function f :[0,00]——[0, 0] with f*(0) = {0} such
that f(d(x,F))<|x-Tx]| forall x e X.

Then the sequence {xn} generated by (10) converges strongly to some )A(e F(T).

The following theorem, is a general case of Theorem 3.1 for finite family of nonexpansive
mappings.

Theorem 3.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Suppose that T,, T,,..., T, : C——C are nonexpansive mappings with F(T,) N...nF(T) # ¢.

Let the sequence {xn} in H be generated as follows:

[360]  Vol. 8, Issue 2, (2023) Advances in Mathematical Finance and Applications
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N
Xn+1:anxn+2ﬂinTan+5nun’ vn=1
i=1
where X, € H, {un} is a bounded sequence, and where {an}, {ﬂn} and {§n} are real se-
N
quences in [0,1] such that «, + Zﬂin +0, =1 forall n>1, and the following conditions
i=1

hold:
@ .6, <
n=1

(0) Ya,f, =0 1<i<N;
n=1
(c) there exists a nondecreasing function f : [0, o[ ——][0, [ with f(0) = {0} such

N
that f(d(x,F))<> [x-T,x| forall xe X.
i=1

A N
Then the sequence {xn} converges strongly to some x e ~F(T;).
i=1
Proof. The proof is similar to the proof of Theorem 3.1. O
: X 1
Example 3.4. Suppose H = R, T;, T,: R —» R be defined by T)x=-x+2, T,x= E+E for all

xe R. Thenitis clear that T,, T, are nonexpansive and F(T,) " F(T,) = {L}. Furthermore, let us

1 1 1 X i
take o, =1-—-—, y=—,0,=——>,u =0forall n>1,and f(x)=—.Thenit
" 2n 2n2 Pn=r 4n 2n° ) 5
is easy to see that
0 0 1
0, =) — <
zl " ;2#
Zanﬂnzzanyn Z(l____)
n=1 n=1 n=1 2n

and forevery xe R

d(x 1) 1

f(d(xl))<||x (- x+2)||+

e —)H_||2x 2+ %

+2< 3y,

Therefor all conditions in Theorem 3.1 are hold. Now, for any initial point X, € R, our iterative
scheme (6) becomes

1 1 1 1 1
Xnug = ( _%_F) ™ — (=X, +2)+—(— EHWXO
5 1 5
( 8n 2n2) " 8n
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Then it is clear that the sequence {xn} convergence to X =1.

4 Applications

In this section, some applications of the main results are shown. To begin, we demonstrate how
our results may be used to the Douglas-Rachford splitting method for obtaining the zeros of an
operator T that is the sum of two maximal monotone operators, i.e. T=A+B where

A, B:H — 2" are maximal monotone multi-functions on a real Hilbert space H . The method

was originally introduced in [12] in a finite-dimensional setting, its extension to maximal mon-
otone mappings in Hilbert spaces can be found in [21].

Theorem 4.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Suppose that A,B:H — 2" are two maximal monotone operators with A™(0) nB™(0) # ¢.

Let J A, J B:H —C be resolvant operators that induced by A and B, respectively. Let the
sequence {xn} in H be generated as follows:

vn>1 (11)
where x, € H, the bounded sequence {rn} denote the residual vector, and where {an}, 8.1,

{r,} and {1, } are real sequences in [0,1] such that e, + 3, +7, + 4, =1 for all n>1, and the
following conditions hold:

(@) iﬂn < 0]

Xou = X, + B d A +7,d BX + AT,

n'n?

0 D a,B,=D ay, =»;
n=1 n=1

(¢) {r,} is bounded.
Then the sequence {X, | generated by (11) converges weakly to some x" e A™(0) ~ B™(0).
Proof. We know the corresponding resolvant operators J A,J B are (firmly) nonexpansive
then by using Theorem 2.1, the result is obtained. O

Theorem 4.2. Let A,Bc H be two nonempty, closed, and convex subsets of a real Hilbert
space H, and suppose that A B = ¢. Let the sequence {xn} in H be generated as follows:

Xoo = X, + B, Py X, + 7, PeX, + 4,1, vn>1 (12)
where X, € H, the bounded sequence {rn} denote the residual vector, and where {an}, 6.1

{r,} and {1,} are real sequences in [0,1] such that &, + 3, + 7, + 4, =1 for all n>1, and the
following conditions hold:

@ Y2, <
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0 D a,B,=D ay, =»;
n=1 n=1

(c) {rn} is bounded.
Then the sequence {xn} generated by (12) converges weakly to some x” € AN B.

Proof. We know the corresponding projection operators P,, P, are (firmly) nonexpansive then
by using Theorem 2.1, the result is obtained. 0

Considering an additional condition, we show in the following theorems that the algorithm
introduced in the above theorems has a strong convergence.

Theorem 4.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Suppose that A,B:H — 2" are two maximal monotone operators with A™(0) nB™(0) # ¢.
Let J A/ J,B:H —C be resolvant operators that induced by A and B, respectively.

Let the sequence {xn} in H be generated as follows:

X = O X, +ﬂnJ7Axn +7/nJyan +o.u

n~n?

vn>1 (13)
where x, e H, {u,} is a bounded sequence, and where {a,}, {8,}, {r,} and {5,} are real

sequences in [0,1] such that o, + g, + 7, + 9, =1 for all n>1, and such that the following
conditions hold:

@ Y6, <

(b) zanﬁn zzanyn =0,
n=1 n=1

(c) there exists a nondecreasing function f : [0, 00[ ——][0, [ with f(0) = {0} such
that f(d(x,F))<[x-J,Ax|+[x—J,Bx| forall xe X.

Then the sequence {X, } generated by (13) converges strongly to some x™ e A(0) ~B(0).
Proof. We know the corresponding resolvant operators J A,J B are (firmly) nonexpansive
then by using Theorem 3.1, the result is obtained. O

Theorem 4.4. Let A,Bc H be two nonempty, closed, and convex subsets of a real Hilbert
space H, and suppose that A B # ¢. Let the sequence {xn} in H be generated as follows:

Xn+1=anxn+ﬂnPA Xn+7/nPBXn+5nun’ vnz1 (14)
where x, e H, {un} is a bounded sequence, and where {an}, {ﬂn}, {7n} and {5n} are real

sequences in [0,1] such that o, + g, +y, + 9, =1 for all n>1, and such that the following
conditions hold:

(@) i&n < o0;
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(B) D @By =2 =,
n=1 n=1
(c) there exists a nondecreasing function f : [0, 0] —[0,0] with f~*(0) = {0} such
that f(d(x, F)) <|x—P.x|+|x—Pyx]| forall xe X.
Then the sequence {xn} generated by (14) converges strongly to some x € AN B.

Proof. We know the corresponding projection operators P,, P, are (firmly) nonexpansive then
by using Theorem 3.1, the result is obtained. 0
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