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Received 20 July 2019 stochastic phenomena such as market fluctuations. Unfortunately in practice an
Accepted 28 December 2020 exact solution does not exist for these equations. This motivates us to propose a
numerical solution for n-dimensional exponential Levy equations by block pulse
Keywords: functions. We compute the jump integral of each block pulse function and present
Exponential Levy equation a Poisson operational matrix. Then we reduce our equation to a linear lower trian-
Block pulse function gular system by constant, Wiener and Poisson operational matrices. Finally using
Stochastic operational matrix the forward substitution method, we obtain an approximate answer with the con-
Jump-diffusion market vergence rate of O(h). Moreover, we illustrate the accuracy of the proposed meth-

od with a 95% confidence interval by some numerical examples.

1 Introduction

The multidimensional exponential Levy equation is a powerful tool for modelling of market fluctua-
tions, both for hedging and option pricing goals. There are a considerable volume of research articles
related to this topic in different financial mathematics journals; see [1-6]. Unfortunately, these sto-
chastic differential equations have not an exact solution and we cannot solve explicitly them. So we
have to approximate the answer by numerical methods. In this regard, during recent years various
tools such as Block Pulse Functions (BPFs), Fourier series, Chebyshev polynomials, etc., were ap-
plied to find an approximate solution for such stochastic systems, see [7-20]. Orthogonal functions
block pulse has been used for solving many problems. Specially, in stochastic systems Maleknejad et
al. [10] applied BPF for an m-dimensional linear stochastic It6—Volterra integral equation and pre-
sented the approximate solution with the convergence rate O(h). Also Maleknejad et al. [11] estimat-
ed numerical solutions of linear stochastic Volterra integral equations by BPF and stochastic opera-
tional matrix. Khodabin et al. [12] employed BPF for estimating an approximate answer for linear
stochastic Volterra—Fredholm integral equation. In all of aforementioned papers authors reduced sto-
chastic equations to the triangle system by introducing stochastic operational matrices. In current text
we extend previous works and employ BPF for multidimensional exponential Levy equations. We
propose a Poisson operational matrix for the jump integral of each BPF and convert our problem to a
linear lower triangular system by operational matrices and then solve it by the forward substitution
method. The advantage of BPF approach compared to other methods is that due to some properties
such as orthogonality, disjointness, piecewise constant trajectories, etc., calculations are simple and

effective. We consider the complete filtered probability space (Q,{]-; } P), where P is the proba-

>0

bility measure and {,7:[ }zzo is the filtration produced by the stock price process {S , }zzo' We suppose
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that the dynamic of the stock price process is modeled by the multidimensional exponential Levy
equation, as follows:

Jj=1

t
| [sam@g@on@u
0

Rt

14
S0 = (0 + f S Y, du + > f 'S (w0, AW, ) +
0 i Jo

where
e W (t) is the Wiener process.
e« N (dt,dz)=N (dt,dz )—v(dz )dt is the compensated Poisson random measure with inten-
sity measure 0(.) on R*.
e Components of p -dimensional Wiener process W =W ,,....W p) and ¢ -dimensional Pois-
son process N =(N,,...,N q) are mutually independent as well as we set p =q =n..
o p,t),o;(u,t)and ¢ (u,t),i,j=1,...,n, are measurable functions.

The current study proceeds as follows: In section 2, we summarize some basic features of BPFs. In
Section 3, we review the operational matrix [8] and the stochastic one [10]. Also, we calculate the
jump integral of each BPF and present the Poisson operational matrix. In Section 4, we simplify our
equation to a triangle system by operational matrices and then we solve it by the forward substitution
method. In section 5, we show that the convergence rate of the proposed method isO (/) . Finally, we
provide some numerical examples in section 6 and verify the accuracy of our approach with a 95%
confidence interval.

2 Block Pulse Functions (BPFs)

In this section we recall some key definitions and features of BPFs, for more details see [8, 9]. Us-
ing these relations we can simplify computations and solve our problem.

Definition 1. 4 block pulse function y,(t),i =1,2,...,n, is defined by
1 (@ —-Dh <t <ih
v, )= (2)

0 otherwise,

T
where h =— in the interval [0,T ).
n

From above definition, we derive BFSs are disjoint, i.e.,
w, ()  i=]

t//,«(t)t//j(t)={ o
0 i#7,

orthogonal with each other in [0,T], i.e.,

T h =j
ijmwmmw={0 7
0 1£],

(©)

4

and for an arbitrary function g € LZ([O, T]), as n — o0, the Parseval's identity is satisfied, i.e.,

T oo
2 _ 2 . 2
Lg@m—;anmmn,

Where
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1 ¢r
g =, 0w, 5)
fori,j=12,...,n.

Then we can write

yi@) 0 0
wow o= 0O 0 ®
0 0 ey (1) .
YY) =1,
and
g 0
YO¥ OGT =, 5 ¥ (1), (7
o 0 ... g,

where W(t) = (w,(t), v, (t),...,w,(t)) , G =(g,,8,,-...g,) and g, s are obtained by (5).

Also by block pulse series representation, we can approximate any arbitrary real bounded function
g €L*([0,T]) as follows:

9 = > g = 6T¥(®) = ¥ ()G ®)
i=1

As well as for any two variables function f (u,) € L ([O,T )x[0,T, )) , we have
fw,0)=0" @)FY(@)="Y" ()F Ow), )

where @ (1) and W(¢) are n, and n, dimensional vectors of BFSs, respectively, and F' is a

n, xn, matrix with entries

LI L (P £)dtd 10
f,—ﬁjo [F @08 @, ()drdu, (10)
1 T2
where hy =—, h, =—_. Alsoweset n, =n, =n.
nl n2

3 Operational Matrices

Operational matrices have the special role in solving deterministic and stochastic integrals of BPF.
Here, first in two subsections we review calculations of two operational matrices [8] and [10], for
convenience name them constant and Wiener operational matrices, respectively. Then in the third
subsection we solve the jump integral of BPF and present the Poisson operational matrix.
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3.1 The Constant Operational Matrix
From [7], we can write

0 0<t <@ -,
[[w )=t =Dk G -Dh <t <ih,
h ih <t <T.

h
With assumption ¢ —(i —1)h = > at the mid-point of [( —1)A,ih), we can write

t
f Wi (Wdu = (0, Ogh OLZ26)
0

h . -
where 5 inserts in I th place of vector. Therefore,

t 11
J ¥(u)du = M (¥(1)), (1
0
where M _ is a constant operational matrix, as follows:
12 2 .. 2
N o1 2 .- 2
M,=—|0 0 1 -+ 2
20, .. .
000 - 1)
So, for every function g(¢)
(12)

t t
J gw)du zj GT¥Y(w)du = GTPY(t)
0 0

3.2 The Wiener Operational Matrix

For computing the Ito integral of BPFs we proceed as follows, [10]:
0 0<t<(@-Dh
I;wi(u)dW(u)z W@)-w (@ -Dh) G-Dh<t<ih
W (ih)-W (@ —1D)h). ih<t<T

At the mid-point of [(i —1)h,ih), we set W (1) =W (i =1)h) =W (i —0.5)h )W ((i =1)h).
Then

jo v, @)dw )0 (0,....0 (G -0.5))-w (G -1)h),
w (i) - (G =Dh),...w (ih)-w (@ =Dh))¥ @),
where W ((l —O.S)h) -w ((l —l)h) is 7 th component. Therefore,

d = M,,
fo Y )dW () = M, (1) (13)
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where M is the Wiener operational matrix, as follows:

W (h/2) W (h) W (h) W (h)
0 WQGhI-WHh) WQRhY-WH) .. W 2h)—W (h)
M. =| 0 0 W (5h/2)-W (2h) ... W (3h)—W (2h)
0 0 0 . w(@n-vmyr2)-w((n-nhr))
Thus,

Jy gdw (W) = [, 6T ¥ (w)dW (u) = GTM, ¥ (t),
(14)

for every function g (¢).

3.3 The Poisson Operational Matrix

We compute the jump integral of BFSs, as follows:
0 0<t<(i-1h

‘ N | 1@@ @ dz) - N - Dhd2) (- Dh<t<ih
f fwwi ()N (du, dz) = fR
f 1(2) (N (ih, dz) — N((i — 1Dh, dz)) ih<t<T
]R+
Assuming

fwr](z)(ﬁ(t, dz) — N((i — 1)h,dz)) = fR+n(z)(ﬁ((i —0.5)h,dz) — N((i — 1)k, dz))

at the mid-point of [(i —1)k,ih) we have
j: fR+lpi wn(z)N(du,dz) = (0, ...,0, fR+n(Z)(N((i —0.5)h,dz) — N((i — 1)h, dz)),
J 1(2)(N(ih, dz) — N((i = 1)h, dz)), ...,
Rt

fwn(z) (N(ih, dz) = N((i = 1h,dz)))¥ (1),

where fR+ n(z2)(N((i — 0.5)h,dz) — N((i — 1)h,dz)) is i th member of the vector. Then

t
[ [ # o do = e, (15)
o JR*

where M, is the Poisson operational matrix, as follows:

f n(2)N(h/2,dz) f n(2)N(h, dz) f n(2)N(h, dz) f n(2)N(h, dz)

Rt R+ R+ R+
0 fn(z)(IV(3h/2,dz)—IV(h,dz)) fn(z)(N(Zh,dz)—IV(h,dz)) fr](z)(IV(Zh,dz)—IV(h,dz))
_ R+ Rt R
M”_l 0 0 fn(z)(ﬁ(Sh/z,dz)—N(zn,dz)) fn(z)(ﬁ(sh,dz)—ﬁ(Zh,dz)) I
| : ; : ; : : |
\ 0 0 0 f n(z)(ﬁ(((Zn—1)h)/z,dz)—ﬁ((n—l)h,dz))/
Rt nxn

So, for every function g(¢)
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j f g Wn(2)N(du,dz) ~ j f G ¥ (wn(2)N(du,dz) =~ G"M,¥ ().
R* R*
0 0

4 An Approximate Answer for Exponential Levy Equation

We apply results of previous sections to find an approximate answer for equation (1).
Using (8) and (9), we can write

S) =STP () =¢T(@)S,

r(t) = RTY(t) = YT ()R,

pu, t) = dTIrY () = Orrew),

o;(u,t) = T(WZWY(@) =PYTO)o(w),i=1,..,n,

Gwt) = T(WEY@R) =PI o(w),i=1,..,n,

where S and R are block pulse coefficient vectors. Also I', £, and E,, i =1,...,n, are block

(16)

pulse coefficient matrices. Substituting (16) in equation (1), we have

STY(t) = RT¥(t) + ST(J; ® (w)dT (w)dw)[¥ (¢) + ST(Z;( [3 @ T WdW;(w) Z)¥ (1)

ST (g fer @ OOT NN, (dut d2) E)¥ ().
From (6) and (11), we get

t ¢ MY (O (¢)
( J PW)PT Wdw)I'P(¢) = ( J )P (WdwWI'Y(t) = Mcz’l’(t)f 2w (1)
: ’ M?W(tjl“”‘l/(t) (17)
MEDp
MEDrz () = cw (o),
M™Dn

where '/ and MC’ , J =L2,...,n, are the j th row of matrices I' and M _, respectively. Drj isa

diagonal matrix which I'/ s are its diagonal entries and

Yno 2%, 27 - 2,
; 0 7n 27y - 27,
C=— 0 0 yy3 ... 2y, ,
2 . . : . .
0 0 0 ... 7,

nxn

as well as y, s are entries of the matrix I".

For the Ito integrals, we obtain

[252] Vol. 5, Issue 2, (2020) Advances in Mathematical Finance and Applications



Bakhshmohammadlou and Farnoosh

(J.;(D(u)(br(u)dW (u))z,.\y(t):(jo’\y(u)w(u)dw (u))z,.\y(z)
MivnHzwe)) [MaDy

MY OO | I MIDyy wway, g
MW O Mw’,’:Dz,,

where M M’ and Z,/ ,j =1,2,...,n, are the j throw of matrices M and X, , respectively. Dz; isa

diagonal matrix which Zl’ s are its diagonal entries and

W (h/2) W (h) W (h) W (h)
0 W eh)-wm) W en-wn) .. o (W (2h)—w ()
w= 0 0 o (W sh12-w @h)) .. o (W B3h) - (2h))
0 0 0 .o (W(((zn 71)h)/2)7W((n—1)h))

as well as o, sare entries of the matrix X .

Also for the jump integrals, we can write

( [[[ @@ @nE)N (du,dz))E,.‘P(t) =(j0 [ w@)¥" @me)N (du,dz))Ei‘P(t)

1
MIYORY@)) | ML
MY (OHE2P(t M’D_,
_ p(?,(): P g
MJP@OEY@)) | MD

A0 (19)

where M; and E/,j =1,2,...,n, are the j th row of matrices M , and =, , respectively. DEj is

the diagonal matrix that =/ s are its diagonal components and

& [ n@Re/2.a £ [ @Az & [ n@Ahaz & [ n@Nhaz
R* R R* R+
0 7 f 0 (2)(N@Bh/2,dz) - N(h,dz)) &7 f 7 (2)(N(2h, dz) — N(h,dz)) .. & f 1 (2)(N(2h,dz) - N(h, dz))

R* R+ R*

k=] 0 0 §§3f 0@ (N(Gh/2,dz) — N(2h,dz)) ... e?"f 1 (@) (N (3h, dz) — N(2h, dz)) I
R+ R

k 0 0 0 {’i""f 7 (@) (N(((2n— 1)h)/2,dz) = N(n — 1)h,dz)))

e

as well as & s are components of the matrix Z . Thus

STY®) ~RTY () + STC¥ () + ST( ) W)HW() +ST( ) PHY(b),
2 2
and

n n
sTU—c —Z‘Wi —Z?i) ~ RT.
i=1 i=1

T
AssumingA = (I —C— Zn 1Wi - Zn 1Pi) , we obtain the following linear lower triangular system
i= i=
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AS =~ R.
Finally, by the forward substitution method, we can easily solve the latter equation.

5 The Order of Convergence

The current section confirms that the convergence rate of the proposed method is O (%) .

Theorem 1. [10]: Suppose that g(t)zz g, (t) is the block pulse representation for

i=1

g(t)eL’[0,1). Then || E(t) II=I g(&) = §(t) I< 575 75 G Sup, ||g @© 1.

Theorem 2. [10]: Suppose that f (u,t)= ZZfUQ )y, (t) is the block pulse representation for

i=1 j=1

£ @,t) e L*([0,1)%[0,1)) . Then

. h
IEQ, ) =1 f(u,t) = f(w t) IS == sup [Ifg G MI*+ sup |Iff I
2V3 “y)er (xy)er
where T =[0,1)x[0,1).

Theorem 3: Suppose that S (t) and S (t) are exact and approximate solution of (1), respectively, as
well as
IS ISy,
I u(u,t) II< p,
lo(w) IS y,i=1,..,n
Il G(uwt)I<d;,i=1,..,n
A<,
fort €[0,1) and (u,t)eT =[0,1)x[0,1), where
n

n
A=p+V(h) + Z(Xi +K;(h)) sup [[W;(D]l + 2(51' +Q;(R)) sup ||f N; (t,d2)||
= tef0,1) = tef0,1) R+

Then

I SE) — Sy < (Ti t €[0,1)
where
I15(0) 1= (E[S* (D",
h
N(h) =ﬁ(t§%§ [ @I1D,
h
VW = 5= s WG+ sup 1 eI
K;(h) =L( sup, o, e, W + Sup lloge Ce, MDY= 1,.
i 2\/— u it
h
Qi(h) = \/—( sup 1G5 Ce, MII? + Sup IS Co MIDY2i=1,.
o(h) = N(h) +V(h)v+v21< () sup WO +”Z Qi (W) sup |1 | Ny cdzll.
tefo,1) JRr+
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Proof.

Regarding to theorem 3 of [10], we can obtain || S(t) — S(t) lI= 0(h).

6 Numerical Examples

In this section, we check the accuracy of the presented approach by some numerical examples.
The solution of SDE (1) is:

5@ =r@exp(([] [ute.0) -2 Y0 0¥+ Y[ 0, w)al, @)

#3001 (0010 ) ) =6 ), .0) o Yl

+le° [ .n(i+n()g, @.O)N, (du.dz)).

Since there is not an exact solution for Ito and jump integrals, we approximate them by the Simp-
son method. Then, we compare the final answer of the Simpson method with the solution of the pre-
sented method. Furthermore, we suppose that the jump component has the Gamma distribution and
simulate it by the Poisson weighted algorithm of [21] in Matlab software.

u,t €[0,1)

Example 1. Let k =1, 7()=0.005, 1(u,t)=0.04, o(u,t)=0.02, n(z)=z, <(u,t)=0.02.

Table 1 shows the results of this example. M, and S, show the mean and the standard deviation of

the error, respectively. Also, Fig. 1 depicts paths of approximate solutions of the stock price process
by Simpson and the proposed methods.

Table 1: Numerical Solutions of Example 1 with m =1000 Iteration

n M, S, 0.95CI ,
Lower Upper
10| 3.09040¢ — 04 7.48017¢—05 3.04404¢— 04 3.13676e—04
25 | 5.09588¢—04 8.19198¢—05 5.04511c— 04 5.14666¢ — 04
40| 6.45761c—04 8.65358¢—05 6.40398¢ — 04 6.51125¢— 04
55 | 7.54360c—04 8.44626¢—05 7.49125¢— 04 7.59595¢ — 04
70| 8.54824¢—04 8.51983¢—05 8.49544¢— 04 8.60105¢ — 04
85 | 9.44408¢c—04 9.33951¢—05 9.38619¢— 04 9.50196¢— 04
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x10°

—*— Approximation solution by proposed method
—+— Approximation solution by Simpson method

. .
0.2 04

0.6

08

1

Fig. 1: Numerical Results of Example 1 with # =80 and m =500

Example 2. Let

k=2 r(t)=001 u@u,t)=u’, O'I(u,t)=0.1u2, az(u,t):0.12u3,

m(z)=z2% mE)=z% G.0)=0.02, &u,t)=0.04.
In two dimensions, the results are shown in Table 2 and Fig. 2.

Table 2: Numerical solutions of Example 2 with m =1000 iteration

n M, S, 0.95CI ,
Lower Upper
10 1.69490e — 03 2.26317¢-03 1.55463e—-03 1.83517¢-03
25 2.35791e—-03 4.32536e-03 2.08982¢-03 2.62600e - 03
40 2.84706e - 03 2.97147¢-03 2.66288e—03 3.03123e-03
55 3.50646e —-03 5.07232e—-03 3.19207e¢-03 3.82084e—-03
70 4.08130e-03 9.79987¢ - 03 3.47389¢-03 4.68870e—03
85 7.84944¢ -03 2.63014e-02 6.21926e-03 9.47962¢—-03
0.0105 —#— Approximation solution by proposed method
—+— Approximation solution by Simpson method ‘\
0.0104 -
0.0103 -
£ oo102-
0.0101
0.00990 uiz 014 016 oia 1
Fig. 2: Numerical Results of Example 2 with # =80 and m =500
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Example 3. Let
k=3, r(t)=0.01, p(u,t)=0.1u>, O'l(u,t)=0.2u2, az(u,t)=0.15u3,

o,u,t)=025u, n(z)=z>, n,(z)=z, n(z)=z", & @u,t)=0.02,
$o(u,t)=0.04, &i(u,t)=0.07.

Table 3 and Fig. 3 reveal the numerical results of the current example in three dimensions.

Table 3: Numerical Solutions of Example 3 with m =1000 Iteration

n M, S 0.95CI ,
Lower Upper
10 3.53089¢-03 1.77218e—-03 3.42105e-03 3.64073e-03
25 5.73899¢ - 03 1.68289¢ - 03 5.63468e—-03 5.84329¢-03
40 7.20607e—03 1.98405¢—-03 7.08309¢ - 03 7.32904e - 03
55 8.57532e-03 2.38263e—-03 8.42765e—-03 8.72300e - 03
70 9.85402e - 03 2.61912e-03 9.69169¢ - 03 1.00163e-02
85 1.09557e—-02 3.10986e - 03 1.07630e — 02 1.11485e-02
0.0106

—4— Appl by prop method
0.0105 —+— Approximation solution by Simpson method

0.0104 -

0.0103 -

0.0102

0]

0.0101
0.01 [t oI
0.0099 -

0.0098 -

0.0097

0 0.2 0.4 0.6 08 1
t

Fig. 3: Numerical Results of Example 3 with # =80 and m =500

7 Conclusions

Multidimensional exponential Levy equations arise in many hedging and pricing problems. Unfortu-
nately, there is not an exact solution for such stochastic equations and also their computational rate is
relatively high. Thus, we need numerical methods to approximate the answer. For this purpose, we
apply block pulse functions (BPFs) as basic functions and obtain the Poisson operational matrix for
the jump integral of each BPF. We show that these functions can convert our equation to a linear low-
er triangular system by operational matrices. Then via the forward substitution method, we get an
approximate answer with the convergence rate of O (k) . Finally, we check the accuracy of our results

on some examples.
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