
Advances in Mathematical Finance  
& Applications, 5(2), (2020), 247-259 
DOI: 10.22034/amfa.2020.1873599.1260 

 

Published by IA University of        
Arak, Iran 
Homepage: www.amfa.iau- 
arak.ac.ir 
 

 

 
* Corresponding author Tel.: +989102050565 
   E-mail address: m.bakhshmohamadlou@gmail.com 

 © 2020. All rights reserved.    
Hosting by IA University of Arak Press 

 

Numerical Solution of Multidimensional Exponential Levy Equa-
tion by Block Pulse Function 

 

Minoo Bakhshmohammadlou*, Rahman Farnoosh 
Department of Mathematics, Iran University of Science and Technology, Tehran, Iran 

 

ARTICLE INFO 

Article history:  
Received 20 July 2019 
Accepted 28 December 2020 
 

Keywords: 
Exponential Levy equation  
Block pulse function  
Stochastic operational matrix 
Jump-diffusion market 

 
ABSTRACT 

The multidimensional exponential Levy equations are used to describe many 
stochastic phenomena such as market fluctuations. Unfortunately in practice an 
exact solution does not exist for these equations. This motivates us to propose a 
numerical solution for n-dimensional exponential Levy equations by block pulse 
functions. We compute the jump integral of each block pulse function and present 
a Poisson operational matrix. Then we reduce our equation to a linear lower trian-
gular system by constant, Wiener and Poisson operational matrices. Finally using 
the forward substitution method, we obtain an approximate answer with the con-
vergence rate of O(h). Moreover, we illustrate the accuracy of the proposed meth-
od with a 95% confidence interval by some numerical examples.  

 

1 Introduction 
 

The multidimensional exponential Levy equation is a powerful tool for modelling of market fluctua-
tions, both for hedging and option pricing goals. There are a considerable volume of research articles 
related to this topic in different financial mathematics journals; see [1-6]. Unfortunately, these sto-
chastic differential equations have not an exact solution and we cannot solve explicitly them. So we 
have to approximate the answer by numerical methods. In this regard, during recent years various 
tools such as Block Pulse Functions (BPFs), Fourier series, Chebyshev polynomials, etc., were ap-
plied to find an approximate solution for such stochastic systems, see [7-20]. Orthogonal functions 
block pulse has been used for solving many problems. Specially, in stochastic systems Maleknejad et 
al. [10] applied BPF for an m-dimensional linear stochastic Itô–Volterra integral equation and pre-
sented the approximate solution with the convergence rate 𝑂(ℎ). Also Maleknejad et al. [11] estimat-
ed numerical solutions of linear stochastic Volterra integral equations by BPF and stochastic opera-
tional matrix. Khodabin et al. [12] employed BPF for estimating an approximate answer for linear 
stochastic Volterra–Fredholm integral equation. In all of aforementioned papers authors reduced sto-
chastic equations to the triangle system by introducing stochastic operational matrices. In current text 
we extend previous works and employ BPF for multidimensional exponential Levy equations. We 
propose a Poisson operational matrix for the jump integral of each BPF and convert our problem to a 
linear lower triangular system by operational matrices and then solve it by the forward substitution 
method. The advantage of BPF approach compared to other methods is that due to some properties 
such as orthogonality, disjointness, piecewise constant trajectories, etc., calculations are simple and 

effective. We consider the complete filtered probability space  
0

( , , )t t
P


  , where P is the proba-

bility measure and  
0t t 

  is the filtration produced by the stock price process 
0t t

S


. We suppose 
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that the dynamic of the stock price process is modeled by the multidimensional exponential Levy 
equation, as follows: 

𝑺(𝒕) = 𝒓(𝒕) + න 𝑆(𝑢ି)𝜇(𝑢, 𝑡)𝑑𝑢
௧



+  න 𝑆
௧



(𝑢ି)𝜎(𝑢, 𝑡)𝑑𝑊(𝑢)



ୀଵ

+  න න 𝑆(𝑢ି)𝜂(𝑧)𝜁(𝑢, 𝑡)𝑁෩(𝑑𝑢, 𝑑𝑧)

ℝశ

௧





ୀଵ

 
 

(1) 

where 

  ( )W t  is the Wiener process. 

 ( , ) ( , ) ( )N dt dz N dt dz dz dt   is the compensated Poisson random measure with inten-

sity measure (.)  on ℝା. 

 Components of p -dimensional Wiener process 1( , , )pW W W   and q -dimensional Pois-

son process 1( , , )qN N N   are mutually independent as well as we set p q n  . 

  ( , )u t , ( , )i u t  and ( , ), , 1, , nj u t i j   , are measurable functions. 

The current study proceeds as follows: In section 2, we summarize some basic features of BPFs. In 
Section 3, we review the operational matrix [8] and the stochastic one [10]. Also, we calculate the 
jump integral of each BPF and present the Poisson operational matrix. In Section 4, we simplify our 
equation to a triangle system by operational matrices and then we solve it by the forward substitution 

method. In section 5, we show that the convergence rate of the proposed method is ( )O h . Finally, we 

provide some numerical examples in section 6 and verify the accuracy of our approach with a 95% 
confidence interval. 

 

2 Block Pulse Functions (BPFs)  

In this section we recall some key definitions and features of BPFs, for more details see [8, 9]. Us-
ing these relations we can simplify computations and solve our problem. 

Definition 1. A block pulse function ( ), 1,2, , ,i t i n    is defined by 

1 ( 1)
( ) (2)

0 ,i

i h t ih
t

otherwise


  
 


  

where 
T

h
n

  in the interval [0, )T . 

From above definition, we derive BFSs are disjoint, i.e., 

( )
( ) ( ) (3)

0 ,j
i

i

t i j
t t

i j


 


  

  

orthogonal with each other in [0,T], i.e., 

0
( ) ( ) (4)

0 ,

T

i j

h i j
t t dt

i j
 


  


  

and for an arbitrary function 𝑔 ∈ 𝐿2([0,𝑇]), as n  , the Parseval's identity is satisfied, i.e., 

න 𝑔ଶ
்



(𝑡)𝑑𝑡 =  𝑔
ଶ

ஶ

ୀଵ

∥ 𝜓(𝑡) ∥ଶ, 

Where  
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0

1
( ) ( ) , (5)

T

i ig g t t dt
h

 
    for , 1, 2, ,i j n  . 

Then we can write 

1

2

( ) 0 0

0 ( ) 0
( ) ( ) , (6)

0 0 ( )

T

n n n

t

t
t t

t







 
 
   
 
 
 





   



  

( ) ( ) 1,T t t     

and 

1

2

0 0

0 0
( ) ( ) ( ), (7)

0 0

T T

n n n

g

g
t t G t

g


 
     
 
 

 

   

  

where 1 2( ) ( ( ), ( ), , ( ))T
nt t t t     , 1 2( , , , )T

nG g g g   and ig s are obtained by (5). 

Also by block pulse series representation, we can approximate any arbitrary real bounded function 
2 ([0, ])g L T  as follows: 

𝑔(𝑡) ≃  𝑔



ୀଵ

𝜓(𝑡) = 𝐺்𝛹(𝑡) = 𝛹்(𝑡)𝐺 
 
(8) 

As well as for any two variables function 2
1 2( , ) [0, ) [0, )( )f u t L T T  , we have 

( , ) ( ) ( ) ( ) ( ), (9)T T Tf u t u F t t F u     
  

where ( )u  and ( )t  are 1n  and 2n  dimensional vectors of BFSs, respectively, and F  is a 

1 2n n  matrix with entries 

1 2

0 0
1 2

1
( , ) ( ) ( ) , (10)

T T

ij i jf f u t u t dtdu
h h

   
  

where 1
1

1

T
h

n
 , 2

2
2

T
h

n
 . Also we set 1 2n n n  . 

 

3 Operational Matrices 
 

Operational matrices have the special role in solving deterministic and stochastic integrals of BPF. 
Here, first in two subsections we review calculations of two operational matrices [8] and [10], for 
convenience name them constant and Wiener operational matrices, respectively. Then in the third 
subsection we solve the jump integral of BPF and present the Poisson operational matrix. 
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3.1 The Constant Operational Matrix 
From [7], we can write 

0

0 0 ( 1) ,

( ) ( 1) ( 1) ,

.

t

i

t i h

u du t i h i h t ih

h ih t T


  

     
  

   

With assumption ( 1)
2

h
t i h    at the mid-point of [( 1) , )i h ih , we can write 

න 𝜓

௧



(𝑢)𝑑𝑢 ≃ (0, … ,0,
ℎ

2
, ℎ, … , ℎ)𝛹(𝑡), 

where 
2

h
 inserts in i th place of vector. Therefore, 

න 𝛹(𝑢)𝑑𝑢
௧



≃ 𝑀൫Ψ(𝑡)൯, 
(11) 

where cM  is a constant operational matrix, as follows: 

1 2 2 2

0 1 2 2

.0 0 1 2
2

0 0 0 1

c

n n

h
M



 
 
 
 
 
 
 
 







    



  

So, for every function ( )g t   

න 𝑔(𝑢)𝑑𝑢
௧



≃ න 𝐺்
௧



𝛹(𝑢)𝑑𝑢 ≃ 𝐺்𝑃𝛹(𝑡) 
(12) 

 
 

3.2 The Wiener Operational Matrix 

For computing the Ito integral of BPFs we proceed as follows, [10]: 

0

0 0 ( 1)

( ) ( ) ( ) (( 1) ) ( 1)

( ) (( 1) ).

t

i

t i h

u dW u W t W i h i h t ih

W ih W i h ih t T


  

     
    

   

At the mid-point of [( 1) , )i h ih , we set ( ) ( 1) ( 0.5) ( 1)( ) ( ) ( )W t W i h W i h W i h      . 

Then 

0
( ) ( ) 0, ,0, ( 0.5) ( 1) ,

( 1) , , ( 1) ( ),

( ( ) ( )

( ) ( ) ( ) ( ))

t

i u dW u W i h W i h

W ih W i h W ih W i h t

    

     

 
  

where ( 0.5) ( 1)( ) ( )W i h W i h    is i th component. Therefore, 

න 𝛹(𝑢)𝑑𝑊(𝑢)
௧



≃ 𝑀௪𝛹(𝑡) 
 

(13) 
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where wM  is the Wiener operational matrix, as follows: 

( / 2) ( ) ( ) ( )

0 (3 / 2) ( ) (2 ) ( ) (2 ) ( )

0 0 (5 / 2) (2 ) (3 ) (2 ) .

0 0 0 ((2 1) ) / 2 ( 1)( ) ( )

w

n n

W h W h W h W h

W h W h W h W h W h W h

W h W h W h W hM

W n h W n h


 
     
     
 
      

    

  

 Thus, 
 

∫ 𝑔(𝑢)𝑑𝑊(𝑢)
௧


≃ ∫ 𝐺்௧


𝛹(𝑢)𝑑𝑊(𝑢) ≃ 𝐺்𝑀௪𝛹(𝑡),                                                                            

(14) 
 

for every function ( )g t . 

 

3.3 The Poisson Operational Matrix 

We compute the jump integral of BFSs, as follows: 

 න 𝜓
ℝశ

௧

(𝑢)𝜂(𝑧)𝑁෩(𝑑𝑢, 𝑑𝑧) =

⎩
⎪
⎨

⎪
⎧

0                                                                    0 ≤ 𝑡 < (𝑖 − 1)ℎ

න 𝜂(𝑧)(𝑁෩(𝑡, 𝑑𝑧) − 𝑁෩((𝑖 − 1)ℎ, 𝑑𝑧))
ℝశ

    (𝑖 − 1)ℎ ≤ 𝑡 < 𝑖ℎ

න 𝜂(𝑧)(𝑁෩(𝑖ℎ, 𝑑𝑧) − 𝑁෩((𝑖 − 1)ℎ, 𝑑𝑧))
ℝశ

            𝑖ℎ ≤ 𝑡 < 𝑇

 

Assuming 

න 𝜂(𝑧)(𝑁෩(𝑡, 𝑑𝑧)
ℝశ

− 𝑁෩((𝑖 − 1)ℎ, 𝑑𝑧)) ≃ න 𝜂(𝑧)(𝑁෩((𝑖 − 0.5)ℎ, 𝑑𝑧)
ℝశ

− 𝑁෩((𝑖 − 1)ℎ, 𝑑𝑧))  

at the mid-point of [( 1) , )i h ih  we have 

න න 𝜓
ℝశ

௧



(𝑢)𝜂(𝑧)𝑁෩(𝑑𝑢, 𝑑𝑧) ≃ (0, … ,0, න 𝜂(𝑧)(𝑁෩((𝑖 − 0.5)ℎ, 𝑑𝑧) − 𝑁෩((𝑖 − 1)ℎ, 𝑑𝑧))
ℝశ

,

                                 න 𝜂(𝑧)(𝑁෩(𝑖ℎ, 𝑑𝑧) − 𝑁෩((𝑖 − 1)ℎ, 𝑑𝑧))
ℝశ

, … ,

                                      න 𝜂(𝑧)(𝑁෩(𝑖ℎ, 𝑑𝑧) − 𝑁෩((𝑖 − 1)ℎ, 𝑑𝑧)))𝛹(𝑡)
ℝశ

,

 

where ∫ 𝜂(𝑧)(𝑁෩((𝑖 − 0.5)ℎ, 𝑑𝑧) − 𝑁෩((𝑖 − 1)ℎ, 𝑑𝑧))
ℝశ  is i th member of the vector. Then 

න න Ψ
ℝశ

௧



(𝑢)𝜂(𝑧)𝑁෩(𝑑𝑢, 𝑑𝑧) ≃ 𝑀𝛹(𝑡),                                                                                                        (15) 

where pM  is the Poisson operational matrix, as follows: 

 

𝑀 =  

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

න 𝜂(𝑧)𝑁෩(ℎ/2, 𝑑𝑧)
ℝశ

න 𝜂(𝑧)𝑁෩(ℎ, 𝑑𝑧)
ℝశ

න 𝜂(𝑧)𝑁෩(ℎ, 𝑑𝑧)
ℝశ

… න 𝜂(𝑧)𝑁෩(ℎ, 𝑑𝑧)
ℝశ

0 න 𝜂(𝑧)(𝑁෩(3ℎ/2, 𝑑𝑧) − 𝑁෩(ℎ, 𝑑𝑧))
ℝశ

න 𝜂(𝑧)(𝑁෩(2ℎ, 𝑑𝑧) − 𝑁෩(ℎ, 𝑑𝑧))
ℝశ

… න 𝜂(𝑧)(𝑁෩(2ℎ, 𝑑𝑧) − 𝑁෩(ℎ, 𝑑𝑧))
ℝశ

0 0 න 𝜂(𝑧)(𝑁෩(5ℎ/2, 𝑑𝑧) − 𝑁෩(2ℎ, 𝑑𝑧))
ℝశ

… න 𝜂(𝑧)(𝑁෩(3ℎ, 𝑑𝑧) − 𝑁෩(2ℎ, 𝑑𝑧))
ℝశ

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … න 𝜂(𝑧)(𝑁෩(((2𝑛 − 1)ℎ)/2, 𝑑𝑧) − 𝑁෩((𝑛 − 1)ℎ, 𝑑𝑧))
ℝశ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

×

 

So, for every function ( )g t  
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 න 𝑔
ℝశ

௧



(𝑢)𝜂(𝑧)𝑁෩(𝑑𝑢, 𝑑𝑧) ≃  න 𝐺்

ℝశ

௧



𝛹(𝑢)𝜂(𝑧)𝑁෩(𝑑𝑢, 𝑑𝑧) ≃ 𝐺்𝑀𝛹(𝑡). 

 

4 An Approximate Answer for Exponential Levy Equation 
 

We apply results of previous sections to find an approximate answer for equation (1). 
Using (8) and (9), we can write 
𝑆(𝑡) ≃ 𝑆்𝛹(𝑡) = 𝛹்(𝑡)𝑆, 
𝑟(𝑡) ≃ 𝑅்𝛹(𝑡) = 𝛹்(𝑡)𝑅, 
𝜇(𝑢, 𝑡) ≃ 𝛷்(𝑢)𝛤𝛹(𝑡) = 𝛹்(𝑡)𝛤்𝛷(𝑢), 

𝜎(𝑢, 𝑡) ≃ 𝛷்(𝑢)𝛴𝛹(𝑡) = 𝛹்(𝑡)𝛴
்𝛷(𝑢), 𝑖 = 1, … , 𝑛,

𝜁(𝑢, 𝑡) ≃ 𝛷்(𝑢)𝛯𝛹(𝑡) = 𝛹்(𝑡)𝛯
்𝛷(𝑢), 𝑖 = 1, … , 𝑛,

                                                                              (16) 

where S  and R  are block pulse coefficient vectors. Also  , i  and i , 1, ,ni   , are block 

pulse coefficient matrices. Substituting (16) in equation (1), we have 

𝑆்𝛹(𝑡) ≃ 𝑅்𝛹(𝑡) + 𝑆்(∫ 𝛷
௧


(𝑢)𝛷்(𝑢)𝑑𝑢)𝛤𝛹(𝑡) + 𝑆்( (∫ 𝛷

௧


(𝑢)𝛷்(𝑢)𝑑𝑊(𝑢))



ୀଵ
𝛴)𝛹(𝑡)

+𝑆்( (ධ ∫ 𝛷
ℝశ

௧


(𝑢)𝛷்(𝑢)𝜂(𝑧)𝑁෩(𝑑𝑢, 𝑑𝑧))



ୀଵ
𝛯)𝛹(𝑡).

  

From (6) and (11), we get 

(න 𝛷(𝑢)𝛷்(𝑢)𝑑𝑢)𝛤𝛹(𝑡)
௧



= (න 𝛹(𝑢)𝛹்(𝑢)𝑑𝑢)𝛤𝛹(𝑡
௧



) =

⎝

⎛

𝑀
ଵ𝛹(𝑡)𝛤ଵ𝛹(𝑡)

𝑀
ଶ𝛹(𝑡)𝛤ଶ𝛹(𝑡)

⋮
𝑀

𝛹(𝑡)𝛤𝛹(𝑡)⎠

⎞

       =

⎝

⎛

𝑀
ଵ𝐷௰భ

𝑀
ଶ𝐷௰మ

⋮
𝑀

𝐷௰⎠

⎞ 𝛹(𝑡) = 𝒞𝛹(𝑡),

 

 
 
 
(17) 

 

where j  and j
cM ,  1,2, , ,j n   are the j th row of matrices   and cM , respectively. jD


 is a 

diagonal matrix which j s are its diagonal entries and 

11 12 13 1

22 23 2

33 3

2 2 2

0 2 2

,0 0 2
2

0 0 0

n

n

n

nn n n

h

   
  

 




 
  
  
 
 
  

    

   

as well as ij s are entries of the matrix  . 

For the Ito integrals, we obtain 
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1

2

0 0

1
1 1

22 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( ), (1 8)

( ) ( )

i

i

n
i

t tT T
i i

w
w i

ww i
i

n n n
w i w

u u d W u t u u d W u t

M DM t t
M DM t t

t t

M t t M D







        

                               

 

 


  

where j
wM  and , 1, 2, , ,j

i j n    are the j th row of matrices wM  and i , respectively. j
i

D


 is a 

diagonal matrix which j
i s are its diagonal entries and 

 

11 12 13 1

22 23 2

33 3

( / 2) ( ) ( ) ( )

0 (3 / 2) ( ) (2 ) ( ) (2 ) ( )

0 0 (5 / 2) (2 ) (3 ) (2 ) ,

0 0 0 ((2 1) ) / 2) (( 1)

( ) ( ) ( )
( ) ( )

( )

n

i i i i

n

i i i

n

i ii

nn

i

W h W h W h W h

W h W h W h W h W h W h

W h W h W h W h

W n h W n h

   

  

 



 
 
    
 

   
 
 
     
 

    


  

as well as ij s are entries of the matrix  . 

Also for the jump integrals, we can write 

   

1

2

0 0

1
1 1

22 2

( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( ) ( , ) ( )

( ) ( )

( ) ( )
( )

( ) ( )

( ), (19)

i

i

n
i

t tT T
i i

p
p i

pp i

n n n
p i p

i

u u z N du dz t u u z N du dz t

M DM t t

M DM t t
t

M t t M D

t

 
 







        

                             
 

    

 

 



  

 

 where j
pM  and , 1, 2, , ,j

i j n    are the j th row of matrices pM  and i , respectively. j
i

D


 is 

the diagonal matrix that j
i s are its diagonal components and 

𝒫 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝜉
ଵଵ න 𝜂

ℝశ

(𝑧)𝑁෩(ℎ/2, 𝑑𝑧) 𝜉
ଵଶ න 𝜂

ℝశ

(𝑧)𝑁෩(ℎ, 𝑑𝑧) 𝜉
ଵଷ න 𝜂

ℝశ

(𝑧)𝑁෩(ℎ, 𝑑𝑧) … 𝜉
ଵ න 𝜂

ℝశ

(𝑧)𝑁෩(ℎ, 𝑑𝑧)

0 𝜉
ଶଶ න 𝜂

ℝశ

(𝑧)(𝑁෩(3ℎ/2, 𝑑𝑧) − 𝑁෩(ℎ, 𝑑𝑧)) 𝜉
ଶଷ න 𝜂

ℝశ

(𝑧)(𝑁෩(2ℎ, 𝑑𝑧) − 𝑁෩(ℎ, 𝑑𝑧)) … 𝜉
ଶ න 𝜂

ℝశ

(𝑧)(𝑁෩(2ℎ, 𝑑𝑧) − 𝑁෩(ℎ, 𝑑𝑧))

0 0 𝜉
ଷଷ න 𝜂

ℝశ

(𝑧)(𝑁෩(5ℎ/2, 𝑑𝑧) − 𝑁෩(2ℎ, 𝑑𝑧)) … 𝜉
ଷ න 𝜂

ℝశ

(𝑧)(𝑁෩(3ℎ, 𝑑𝑧) − 𝑁෩(2ℎ, 𝑑𝑧))

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … 𝜉
 න 𝜂

ℝశ

(𝑧)(𝑁෩(((2𝑛 − 1)ℎ)/2, 𝑑𝑧) − 𝑁෩((𝑛 − 1)ℎ, 𝑑𝑧))
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

, 

as well as ij s are components of the matrix  . Thus 

𝑆்𝛹(𝑡) ≃ 𝑅்𝛹(𝑡) + 𝑆்𝒞𝛹(𝑡) + 𝑆்( 𝒲



ୀଵ

)𝛹(𝑡) + 𝑆்( 𝒫



ୀଵ

)𝛹(𝑡), 

and 

𝑆்(𝐼 − 𝒞 −  𝒲



ୀଵ

−  𝒫



ୀଵ

) ≃ 𝑅் . 

Assuming 𝐴 = (𝐼 − 𝒞 −  𝒲𝑖

𝑛

𝑖=1
−  𝒫𝑖

𝑛

𝑖=1
)

𝑇

, we obtain the following linear lower triangular system 
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𝐴𝑆 ≃ 𝑅. 
Finally, by the forward substitution method, we can easily solve the latter equation. 
 
 

5 The Order of Convergence 
 

The current section confirms that the convergence rate of the proposed method is ( )O h . 

Theorem 1. [10]: Suppose that 
1

ˆ ( ) ( )
n

i i
i

g t g t


  is the block pulse representation for 

2( ) [0,1)g t L . Then ∥ 𝐸(𝑡) ∥=∥ 𝑔(𝑡) − 𝑔ො(𝑡) ∥≤


ଶ√ଷ
 ( Sup

௧∈[,ଵ]
||𝑔ᇱ(𝑡) ||). 

Theorem 2. [10]: Suppose that 
1 1

ˆ( , ) ( ) ( )
n n

ij i j
i j

f u t f u t 
 

  is the block pulse representation for 

2( , ) [0,1) [0,1)( )f u t L  . Then 

∥ 𝐸(𝑢, 𝑡) ∥=∥ 𝑓(𝑢, 𝑡) − 𝑓መ(𝑢, 𝑡) ∥≤
ℎ

2√3
( sup

(௫,௬)∈்
||𝑓௨

ᇱ(𝑥, 𝑦)||ଶ + sup
(௫,௬)∈்

||𝑓௧
ᇱ(𝑥, 𝑦)||ଶ)ଵ ଶ⁄ , 

where [0,1) [0,1)T   . 

 

Theorem 3: Suppose that ( )S t  and ˆ( )S t  are exact and approximate solution of (1), respectively, as 

well as 
∥ 𝑆(𝑡) ∥≤ 𝜈,

∥ 𝜇(𝑢, 𝑡) ∥≤ 𝜌,

∥ 𝜎(𝑢, 𝑡) ∥≤ 𝜒, 𝑖 = 1, … , 𝑛,
∥ 𝜁(𝑢, 𝑡) ∥≤ 𝛿 , 𝑖 = 1, … , 𝑛,

𝛬 < 1,

 

for [0,1)t   and ( , ) [0,1) [0,1)u t T   , where  

𝛬=ρ+V(h) + ൫𝜒 + 𝐾(ℎ)൯



ୀଵ

sup
௧∈[,ଵ)

||𝑊(𝑡)|| + ൫𝛿 + 𝑄(ℎ)൯



ୀଵ

sup
௧∈[,ଵ)

|| න 𝑁෩
ℝశ

(𝑡, 𝑑𝑧)|| 
Then 

∥ 𝑆(𝑡) − 𝑆መ(௧) ∥≤
𝛩(ℎ)

1 − 𝛬
, 𝑡 ∈ [0,1) 

where 
∥ 𝑆(𝑡) ∥= (𝐸[𝑆ଶ(𝑡)])ଵ ଶ⁄ ,

𝑁(ℎ) =
ℎ

2√3
( sup

௧∈[,ଵ)
||𝑟ᇱ(𝑡)||),

𝑉(ℎ) =
ℎ

2√3
( sup

(௫,௬)∈்
||𝜇௨

ᇱ (𝑥, 𝑦)||ଶ + sup
(௫,௬)∈்

||𝜇௧
ᇱ (𝑥, 𝑦)||ଶ)ଵ ଶ⁄ ,

𝐾(ℎ) =
ℎ

2√3
( sup

(௫,௬)∈்
||𝜎௨

ᇱ (𝑥, 𝑦)||ଶ + sup
(௫,௬)∈்

||𝜎௧
ᇱ (𝑥, 𝑦)||ଶ)ଵ ଶ⁄ , 𝑖 = 1, … , 𝑛,

𝑄(ℎ) =
ℎ

2√3
( sup

(௫,௬)∈்
||𝜁௨

ᇱ (𝑥, 𝑦)||ଶ + sup
(௫,௬)∈்

||𝜁௧
ᇱ (𝑥, 𝑦)||ଶ)ଵ ଶ⁄ , 𝑖 = 1, … , 𝑛,

 

𝛩(ℎ) = 𝑁(ℎ) + 𝑉(ℎ)𝜈 + 𝜈  𝐾



ୀଵ

(ℎ) sup
௧∈[,ଵ)

||𝑊(𝑡)|| + 𝜈  𝑄



ୀଵ

(ℎ) sup
௧∈[,ଵ)

|| න 𝑁෩
ℝశ

(𝑡, 𝑑𝑧)||. 
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Proof. 
Regarding to theorem 3 of [10], we can obtain ∥ 𝑆(𝑡) − 𝑆(𝑡) ∥= 𝑂(ℎ). 
 

6 Numerical Examples 
 

In this section, we check the accuracy of the presented approach by some numerical examples.  
The solution of SDE (1) is: 

2

0 0
1 1

0
1

0
1

1
( ) ( )exp [ ( , ) ( , )] ( , ) ( )

2

ln(1 ( ) ( , )) ( ) ( , ) ( )

ln 1 ( ) ( , ) ( , ) . , [0,1)

(

( )

( ) )

k kt t

i i i
i i

k t

i i i
i

k t

i i
i

S t r t u t u t du u t dW u

z u t z u t dz du

z u t N du dz u t

  

    

 





 





  

  

  

  

 

 







 

Since there is not an exact solution for Ito and jump integrals, we approximate them by the Simp-
son method. Then, we compare the final answer of the Simpson method with the solution of the pre-
sented method. Furthermore, we suppose that the jump component has the Gamma distribution and 
simulate it by the Poisson weighted algorithm of [21] in Matlab software. 
 

Example 1. Let 1, ( ) 0.005, ( , ) 0.04, ( , ) 0.02, ( ) , ( , ) 0.02.k r t u t u t z z u t           

Table 1 shows the results of this example. eM  and eS  show the mean and the standard deviation of 

the error, respectively. Also, Fig. 1 depicts paths of approximate solutions of the stock price process 
by Simpson and the proposed methods.  

 

Table 1: Numerical Solutions of Example 1 with 1000m   Iteration 

n 
eM  eS  0.95 ECI   

Lower Upper 

10 3.09040e 04  7.48017e 05  3.04404e 04  3.13676e 04  

25 5.09588e 04  8.19198e 05  5.04511e 04  5.14666e 04  

40 6.45761e 04  8.65358e 05  6.40398e 04  6.51125e 04  

55 7.54360e 04  8.44626e 05  7.49125e 04  7.59595e 04  

70 8.54824e 04  8.51983e 05  8.49544e 04  8.60105e 04  

85 9.44408e 04  9.33951e 05  9.38619e 04  9.50196e 04  
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Fig. 1: Numerical Results of Example 1 with 80n   and 500m   

Example 2. Let 
2 2 3

1 2

2 4
1 2 1 2

2, ( ) 0.01, ( , ) , ( , ) 0.1 , ( , ) 0.12 ,

( ) , ( ) , ( , ) 0.02, ( , ) 0.04.

k r t u t u u t u u t u

z z z z u t u t

  

   

    

   
  

In two dimensions, the results are shown in Table 2 and Fig. 2. 
 

Table 2: Numerical solutions of  Example 2 with 1000m   iteration 

n 
eM  eS  0.95 ECI   

Lower Upper 

10 1.69490e 03  2.26317e 03  1.55463e 03  1.83517e 03  

25 2.35791e 03  4.32536e 03  2.08982e 03  2.62600e 03  

40 2.84706e 03  2.97147e 03  2.66288e 03  3.03123e 03  

55 3.50646e 03  5.07232e 03  3.19207e 03  3.82084e 03  

70 4.08130e 03  9.79987e 03  3.47389e 03  4.68870e 03  

85 7.84944e 03  2.63014e 02  6.21926e 03  9.47962e 03  

 

 
Fig. 2: Numerical Results of Example 2 with 80n   and 500m   
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Example 3. Let 
2 2 3

1 2

2 4
3 1 2 3 1

2 3

3, ( ) 0.01, ( , ) 0.1 , ( , ) 0.2 , ( , ) 0.15 ,

( , ) 0.25 , ( ) , ( ) , ( ) , ( , ) 0.02,

( , ) 0.04, ( , ) 0.07.

k r t u t u u t u u t u

u t u z z z z z z u t

u t u t

  

    
 

    

    

 

  

 

Table 3 and Fig. 3 reveal the numerical results of the current example in three dimensions. 
 

Table 3: Numerical Solutions of  Example 3 with 1000m   Iteration 

n 
eM  eS  0.95 ECI   

Lower Upper 
10 3.53089e 03  1.77218e 03  3.42105e 03  3.64073e 03  

25 5.73899e 03  1.68289e 03  5.63468e 03  5.84329e 03  

40 7.20607e 03  1.98405e 03  7.08309e 03  7.32904e 03  

55 8.57532e 03  2.38263e 03  8.42765e 03  8.72300e 03  

70 9.85402e 03  2.61912e 03  9.69169e 03  1.00163e 02  

85 1.09557e 02  3.10986e 03  1.07630e 02  1.11485e 02  
 

 
Fig. 3: Numerical Results of Example 3 with 80n   and 500m   

 
7 Conclusions 
 

Multidimensional exponential Levy equations arise in many hedging and pricing problems. Unfortu-
nately, there is not an exact solution for such stochastic equations and also their computational rate is 
relatively high. Thus, we need numerical methods to approximate the answer. For this purpose, we 
apply block pulse functions (BPFs) as basic functions and obtain the Poisson operational matrix for 
the jump integral of each BPF. We show that these functions can convert our equation to a linear low-
er triangular system by operational matrices. Then via the forward substitution method, we get an 

approximate answer with the convergence rate of ( )O h . Finally, we check the accuracy of our results 

on some examples. 
 

.  
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