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Abstract

In this article, we apply the Multiquadric radial basis function (RBF) interpo-
lation method for finding the numerical approximation of traveling wave solu-
tions of the Kawahara equation. The scheme is based on the Crank-Nicolson
formulation for space derivative. The performance of the method is shown in
numerical examples.
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1 Introduction

The Kawahara equation occurs in the theory of magneto-acoustic
waves in a plasmas [1] and in the theory of shallow water waves
with surface tension [2]. This equation is one of the simplest one-
dimensional PDE’s which exhibits complex dynamical behavior. As
an evolution equation it arises in a number of applications including
concentration waves and plasma physics [3-4], flame propagation
and reaction diffusion combustion dynamics [5-6], free surface film-
flows [7-8] and two-phase flows in cylindrical or plane geometries
[9].
The origin of our study is the equation

ut + uux + u3x − u5x = 0, (1.1)

which is a Kawahara-type equation with the initial condition

u(x, 0) = f(x). (1.2)

Nonlinear evolution equation (1.1) has been studied by a number
of authors from various viewpoints[10-16]. This equation has drown
much attention not only because it is interesting as a simple one-
dimensional nonlinear evolution equation including effects of insta-
bility and dissipation but also it is important for description of
engineering and scientific problems.
In this article, we consider the interpolation with Multiquadric(MQ)
radial basis function(RBF) for solving the Kawahara equation. In
this method we use the finite difference formula for time derivative
and Crank-Nicolson scheme for simplifying the space derivative.
Also we have linearized the nonlinear term in the equation by us-
ing the form introduced by the Rubin and Graves [10].
Although applications of radial basis functions(RBFs) have bloomed
in recent years, using RBFs to solve evolutionary partial differen-
tial equations(PDEs) is a young research field. The strength of the
method is in its ability to achieve spectral or high-order accuracy
for scattered node layouts while being able to node refine in areas
where increased resolution is needed. The multiquadric radial ba-
sis functions(MQ) method is a recent mesh-free collocation method
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with global basis functions. The MQ method for the solution of
partial differential equations was first introduced by Kansa in the
early 1990s and showed exponential convergence for interpolation
problems.
It was originally proposed by Hardy in 1970 [14-15] for interpola-
tion of scattered data. Madych and co-worker [11-12] and Wu and
Schaback [13] showed that the MQ method has exponential conver-
gence for approximation of functions.

The construction of this paper is as follows. In the next section, we
straight go to explanation of the method. Section 3, studies some
numerical examples to show the applicability of the scheme. Finally
in Section 4, a brief conclusion is given.

2 Construction of the method

In this section, for the purpose of completeness, we present the ra-
dial basis function method for the numerical solution of the Equa-
tion (1.1). Consider the Kawahara Eq. (1.1)

∂u(x, t)

∂t
+u

∂u(x, t)

∂x
+
∂3u(x, t)

∂x3
−∂

5u(x, t)

∂x5
= 0, a ≤ x ≤ b, t > 0,

(2.1)
subject to the initial condition

u(x, 0) = f(x). (2.2)

We discrete the time derivative of the equation using a finite dif-
ference formula and applying Crank-Nicolson scheme to the space
derivative at two successive time level n and n+ 1. So we get

[
un+1 − un

δt
]+[

(uux)
n+1 + (uux)

n

2
]+[

(u3x)
n+1 + (u3x)

n

2
]−[

(u5x)
n+1 + (u5x)

n

2
] = 0,

(2.3)
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where un+1 = u(x, tn+1), tn+1 = tn + δt. To linearized the nonlin-
ear term (uux)

n+1 we use the following linearization form given by
Rubin and Graves [10]:

(uux)
n+1 = un+1unx + unun+1

x − (uux)
n. (2.4)

Substituting values from Eq.(2.4) in Eq.(2.3) we get

[
un+1 − un

δt
]+[

un+1unx + unun+1
x

2
]+[

(u3x)
n+1 + (u3x)

n

2
]−[

(u5x)
n+1 + (u5x)

n

2
] = 0.

(2.5)
Rearranging the terms and simplifying we have

un+1+
δt

2
[un+1unx+ununx+(u3x)

n+1−(u5x)
n+1] = un−δt

2
[(u3x)

n−(u5x)
n].

(2.6)
Let xi, i = 1, 2, ..., N be the collocation points in the interval [a, b]
such that x1 = a and xN = b. We use the

un(x) =
N∑
j=1

λnjϕ(rj), (2.7)

to approximate the Eq.(2.1). Where ϕ is a radial basis function and
rj(x) = ||x− xj|| represents the Euclidean norm between x and xj,
where xj’s are known as centers. The unknown parameters λj in
Eq.(2.7) should be determined. Substituting the points x = xi for
i = 1, 2, ..., N we have

un(xi) =
N∑
j=1

λnjϕ(rij), i = 1, 2, ..., N. (2.8)

Eq.(2.8) can be expressed in a matrix form as

un = Aλn, (2.9)
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where

A =



ϕ(r11) ϕ(r12) · · · ϕ(r1N)

ϕ(r21) ϕ(r22) · · · ϕ(r2N)
...

...
. . .

...

ϕ(rN1) ϕ(rN2) · · · ϕ(rNN)


,

and λn = [λn1 , λ
n
2 , · · · , λnN ]T . Now by using Eq.(2.6) and Eq.(2.8),

we get the following equation for the points in set [a, b]:

N∑
j=1

λn+1
j ϕ(rij) +

δt

2
[(

N∑
j=1

λnjϕ(rij)
N∑
j=1

λn+1
j ϕ′(rij)

+
N∑
j=1

λn+1
j ϕ(rij)

N∑
j=1

λnjϕ
′(rij)) +

N∑
j=1

λn+1
j ϕ′′′(rij)−

N∑
j=1

λn+1
j ϕ(5)(rij)] =

N∑
j=1

λnjϕ(rij)−
δt

2
[
N∑
j=1

λnjϕ
′′′(rij)−

N∑
j=1

λnjϕ
(5)(rij)], (2.10)

where ϕ′(rij) = d
dx
ϕ(||x− xj||)|x=xi , ϕ′′′(rij) = d3

dx3
ϕ(||x− xj||)|x=xi

and ϕ(5)(rij) = d5

dx5
ϕ(||x− xj||)|x=xi , i = 1, 2, ..., N.

We introduce the N ×N matrices D1, D2 and D3 such that

D1 = [ϕ′(rij) : 1 ≤ i ≤ N, 1 ≤ j ≤ N ], (2.11)

D2 = [ϕ′′′(rij) : 1 ≤ i ≤ N, 1 ≤ j ≤ N ], (2.12)

D3 = [ϕ(5)(rij) : 1 ≤ i ≤ N, 1 ≤ j ≤ N ], (2.13)

also we have

unx = D1λ
n, F = unx ∗ A, and E = un ∗D1,

which the symbol ” ∗ ” is used for component by component multi-
plication. At this time for the sake of simplification Eq.(2.12), with
the help of above relationships and by using the Eqs.(2.11), (2.12)
and (2.13), we get the Eq.(2.10) in the matrix form
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[A+
δt

2
(E + F +D3 −D5)]λ

n+1 = [A− δt

2
(D3 −D5)]λ

n.(2.14)

Equation (2.14) can be rewritten as

λn+1 = R−1Lλn, (2.15)

where R = [A+ δt
2

(E + F +D3 −D5)] and L = [A− δt
2

(D3 −D5)].
Equation (2.14) represents a system of N linear equations with N
unknown parameters λj. This system can be solved by the Gaussian
elimination method. Then from Eqs. (2.9) and (2.15) we can write

un+1 = AR−1LA−1un.

In this literature we use the following radial basis function:

Multiquadric (MQ) ϕ(rj) =
√
j2 + c2.

3 Numerical tests and results

In this section we present the results of the numerical tests of
our scheme for the solution of the Kawahara equations (2.1) and
(2.2). The value of the parameters K and c used in the examples is
taken as

C =
36

169
, K =

1

2
√

13
. (3.1)

All programs are run in Mathematica(7).

Example 3.1 Consider the Kawahara equation which has the trav-
eling wave solution of which is the exact solution

u(x, t) =
−72

169
+

105

169
sech4[K(x+ Ct)], (3.2)
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where the parameters c and K are given as (3.1). The initial con-
dition of Eq. (2.1) is given as

u(x, 0) =
−72

169
+

105

169
sech4(Kx). (3.3)

The boundary conditions are extracted from the exact solution (3.2).
For this example, we consider δt = 0.001 and N = 120. The val-
ues of uexact and uapp are computed where uexact and uapp represent
the exact and approximate solutions respectively. Also the differ-
ence between these values are calculated. The numerical results are
given in Table 1 for MQ radial basis function in the space interval
0 ≤ x ≤ 60 when the time interval is 0 ≤ t ≤ 0.5. Value of the
shape parameter MQ radial basis function is c = 0.5. The L∞ error
distribution at t = 0.5 is shown in Figure 2.

Table 1: The values of uex, uapp and |uex − uapp| for Example 3.1.

x uex uapp |uex − uapp|

0 −4.26036× 10−1 1.83567× 10−1 2.42469× 10−1

10 1.67004× 10−1 1.45296× 10−1 2.17079× 10−2

20 −4.07712× 10−1 −3.18642× 10−1 8.90698× 10−2

30 −4.25947× 10−1 −4.20649× 10−1 5.29755× 10−3

40 −4.26035× 10−1 −4.2568× 10−1 3.54789× 10−4

50 −4.26036× 10−1 −4.26066× 10−1 3.07329× 10−5

60 −4.26036× 10−1 −4.26085× 10−1 4.98569× 10−5

Example 3.2 Consider the Kawahara Equation (2.1) which has
the exact solution

u(x, t) =
−72

169
+

420 sech2[K(x+ Ct)]

169(1 + sech2[K(x+ Ct)])
. (3.4)
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Fig. 1. Figure 1. Error graph at time t=0.5.

The solution (3.4) is to be obtained subject to the initial condition

u(x, 0) =
−72

169
+

420 sech2(Kx)

169(1 + sech2(Kx))
, (3.5)

where the parameters are as the Example 3.1. The numerical results
for this example are given in Table 2. In this Table the exact and
approximation solutions are calculated in per 20 place step in the
place interval 0 ≤ x ≤ 50 when the time interval is 0 ≤ t ≤ 1. The
time step size is δt = 0.001 and the number of collocation points is
N = 100. The L∞ error of MQ radial basis function at time t = 1
is shown in Figure 2. Also solutions at the last time is shown in
Figure 3. In this figure distribution of uapp is shown for N = 300,
in space interval −30 ≤ x ≤ 60.

Table 2: The values of uex, uapp and |uex − uapp| for Example 3.2.
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Fig. 2. Figure 2. Error graph at time t=1.

x uex uapp |uex − uapp|

0 −4.26036× 10−1 8.04777× 10−1 3.78741× 10−1

10 7.99214× 10−1 7.90817× 10−1 8.39716× 10−3

20 −6.87339× 10−2 −5.17561× 10−2 1.69778× 10−2

30 −3.97238× 10−1 −3.96695× 10−1 5.42719× 10−4

40 −4.24156× 10−1 −4.24125× 10−1 3.08035× 10−5

50 −4.25915× 10−1 −4.25718× 10−1 1.96359× 10−4

4 Conclusion

This paper studied the MQ interpolation method for the Kawa-
hara equation with initial conditions. The efficiency of the method
is tested for two problems. The results show that this scheme is
accurate and efficient approach for solving the nonlinear partial
differential equations.
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Fig. 3. Figure 3. Solution of Kawahara equation at time t = 1.
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