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Abstract

It is proved that by using bounds of eigenvalues of an interval matrix, some
conditions for checking positive definiteness and stability of interval matrices
can be presented. These conditions have been proved previously with various
methods and now we provide some new proofs for them with a unity method.
Furthermore we introduce a new necessary and sufficient condition for checking
stability of interval matrices.
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1 Introduction

It is well-known that positive definiteness and stability of a given
point matrix can be inferred if one knows signs of its eigenvalues. In
other word, if all eigenvalues are positive, then the given matrix is
positive definite; and if their real parts are negative, it is stable- in
the sense of finding solution for differential equations, so knowing
the signs of all eigenvalues has a practical importance. On the other
hand, finding all eigenvalues of a given matrix is not an easy job in
general. consequently, finding their signs without computing them,
clear the problem of positive definiteness as well as stability. This
problem have been well studied in scalar case and for its interval
case, there are some valuable research too which we mention in the
following.

First of all, checking positive definiteness and stability of interval
matrices are known to be NP-hard problems [1,2]. Up to know sev-
eral conditions have been introduced to verify positive definiteness
and stability of interval matrices [2,3,4,5,6]. The problem of com-
puting eigenvalues of interval matrices is known to be NP-hard too,
even checking whether zero is an eigenvalue of an interval matrix is
an NP-hard problem, since it is equivalent to checking regularity of
the interval matrix, which is NP-hard [2,7]. The first results about
eigenvalues was probably due to Deif [8]. Indeed the problem of
computing lower and upper bounds for the eigenvalue set, which
we focused on, is well studied [9,10,11,12].

The main object of the current work is to use the discovered bounds
on eigenvalues of interval matrices to proof some conditions for
checking positive definiteness and stability of interval matrices.

The structure of this paper is as follows: After presenting some
facts and theorems about real eigenvalues and extremal bounds
of them, we continue our paper in two folds, positive definiteness
and stability of symmetric interval matrices. In positive definiteness
part, section 3, we use lower bound of real eigenvalues to prove
conditions for checking positive definiteness of interval matrices. In
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stability part, section 4, we use the upper bound of real eigenvalues
and some other facts to prove two conditions for checking stability,
which one of them, Theorem 4.2, is new and obtained from using
our method.

2 Basic results and notations

Let us introduce some notation: An interval matrix is defined as

A = {A ∈ Rm×n|A ≤ A ≤ A},

where A,A ∈ Rm×n, A ≤ A, are given matrices. By

Ac =
1

2
(A+ A), ∆ =

1

2
(A− A),

we denote the midpoint and the radius of A, respectively.
Notice that in this paper we focus on symmetric interval matrices,
so first we give its definition:

Definition 2.1 A square interval matrix is called symmetric if
AT = A, where

AT = {AT : A ∈ A}.
It is clear that A = [Ac − ∆, Ac + ∆] is symmetric if and only if
both Ac and ∆ are symmetric, but generally a symmetric interval
matrix may contain nonsymmetric point matrices.

First we restate the main and basic property of symmetric scalar
(point) matrices, which plays an essential role in all over discussions
in this paper.

Remark 2.1 A symmetric matrix A ∈ Rn×n has all eigenvalues
real. They are usually ordered in a nonincreasing sequence as

λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A),
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where λi(A), i = 1, . . . , n, are eigenvalues of A and we denote min-
imal and maximal eigenvalue of a symmetric matrix by λmin (or λn)
and λmax (or λ1) respectively.

Definition of eigenvalues of an interval matrix is given as follows.

Definition 2.2 Let A be a square interval matrix. Its real eigen-
value set is defined as

Λ(A) := {λ ∈ R;Ax = λx, x 6= 0, A ∈ A}.

In other words, a real number λ is called a real eigenvalue of A if
it is a real eigenvalue of some A ∈ A.

If A is symmetric, then for each i ∈ {1, . . . , n} the set

[λi(A), λi(A)] = {λi(A)|A ∈ A, A symmetric},

is a compact interval. The set of all possible eigenvalues forms a
union of the mentioned compact real interval. Our focus in this
paper is on extremal, minimum and maximum, eigenvalues. The
following theorem introduces the upper and lower bounds for eigen-
values of an interval matrix and is a very useful means in proving
theorems about positive definiteness and stability [10].

Theorem 2.1 For each symmetric A = [Ac − ∆, Ac + ∆], there
holds

λ1(A) = max
‖x‖2=1

(xTAcx+ |x|T∆|x|), (2.1)

λn(A) = min
‖x‖2=1

(xTAcx− |x|T∆|x|). (2.2)

On the other hand we could reformulate the problem and compute
enclosure of the intervals [λi(A), λi(A)], i = 1, . . . , n, as follows
[9,10].

Theorem 2.2 For a symmetric A = [Ac −∆, Ac + ∆] we have

[λi(A), λi(A)] ⊆ [λi(Ac)− %(∆), λi(Ac) + %(∆)].
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Corollary 2.1 In particular for each λi(A), eigenvalue of each
symmetric A ∈ A there holds

λn(Ac)− %(∆) ≤ λi(A) ≤ λ1(Ac) + %(∆).

3 Positive definiteness of interval matrices

Definition 3.1 A symmetric interval matrix is called to be positive
definite if each symmetric A ∈ A is positive definite.

In our discussion, the next well-known Lemma has a significant role
[13].

Lemma 3.1 A symmetric point matrix is positive definite if and
only if all its eigenvalues are positive.

By Corollary 2.1, we can prove the following practical criterion for
checking positive definiteness which was proved by Rohn [6].

Theorem 3.1 A symmetric interval matrix A = [Ac−∆, Ac + ∆]
is positive definite if

λminAc = λn(Ac) > %(∆).

Proof. Let λn(Ac)−%(∆) > 0, using Corollary 2.1, then λi(A) > 0
for each symmetric A ∈ A. Therefore each symmetric A ∈ A is
positive definite due to Lemma 3.1 and this implies positive defi-
niteness of A. 2

The following theorem was introduced by Rohn [5]; then it was
restated and proved again by Farhadsefat et al [3] using reductio
ad absurdum. Here it is reproved directly with a novel method.

Theorem 3.2 A symmetric interval matrix A = [Ac−∆, Ac + ∆]
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is positive definite if and only if

xTAcx− |x|T∆|x| > 0

holds for each x 6= 0.

Proof. If A is positive definite, according to Definition 3.1, each
symmetric point matrices belongs to A is positive definite, thus all
their eigenvalues are positive. Because of (2.2) we have,

λn(A) = min
‖x‖2=1

(xTAcx− |x|T∆|x|) > 0.

Therefore
(xTAcx− |x|T∆|x|) > 0.

Conversely if (xTAcx − |x|T∆|x|) > 0, then min‖x‖2=1(x
TAcx −

|x|T∆|x|) > 0, hence λn(A) > 0. In other words, each eigenvalue
of symmetric point matrix in A is positive. This completes the
proof. 2

4 Stability of interval matrices

Definition 4.1 A square point matrix A is called Hurwitz stable if
Reλ < 0 for each eigenvalue of A.

If A is symmetric, then λ is real, also we denote real part of λ by
Re(λ).

Definition 4.2 A square interval matrix A is called stable(sometimes,
Hurwitz stable) if each A ∈ A is stable.

A practical condition for checking stability is presented below whose
proof is analogous with what Rohn has mentioned in [2], but now,
in order to observe harmony, we rewrite it with our unity method:

Theorem 4.1 A symmetric interval matrix A = [Ac−∆, Ac + ∆]
is stable if

λmax(Ac) + %(∆) < 0.
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Proof. Suppose λmax(Ac) + %(∆) < 0, from Bendixson theorem
[14], for each λ of each A ∈ A, we have

Reλ ≤ λmax(
1

2
(A+ AT )), (4.1)

since 1
2
(A+ AT ) ∈ A is symmetric, so by Corollary 2.1

λmax(
1

2
(A+ AT )) ≤ λmax(Ac) + %(∆). (4.2)

Combining relations (4.1) and (4.2), result

Reλ ≤ λmax(Ac) + %(∆) < 0 (4.3)

hence, A is stable. 2

The last condition is new and obtained by using our method.

Theorem 4.2 A symmetric interval matrix is stable if and only if

xTAcx+ |x|T∆|x| < 0

holds for each x 6= 0.

Proof. Let xTAcx+ |x|T∆|x| < 0, similar to the proof of Theorem
4.1 and due to (2.1) we have

Reλ ≤ max
‖x‖2=1

(xTAcx+ |x|T∆|x|) < 0,

and this implies stability of A.
Conversely let A be stable then Reλ < 0 for each A ∈ A, therefore
the maximum of eigenvalues is negative too and due to (2.1),

max
‖x‖2=1

(xTAcx+ |x|T∆|x|) < 0,

so (xTAcx+ |x|T∆|x|) < 0. 2
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