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Abstract

Fuzzy integral equations have a major role in the mathematics and appli-
cations. In this paper, general fuzzy integral equations with nonlinear fuzzy
kernels are introduced. The existence and uniqueness of their solutions are
approved and an upper bound for them are determined. Finally an algorithm
is drawn to show theorems better.
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1 Introduction

In recent years, many basic functions have used to estimate the solutions
of integral equations in applied sciences such as physics and mechanics.
The topics of fuzzy integral equations which attracted growing interest for
some time, in particular in relation to fuzzy control, have been developed.
The existence and uniqueness of solutions of fuzzy integral equations are
dilemma and it is necessary to approve.

Park and Jeong approved the existence and uniqueness theorem of a
solution to the fuzzy Volterra integral equation

x(t) = f(t) +
∫ t

t0
k(t, s, x(s))ds

where f : [t0, t0 + a] → E1 is level wise continuous and k : [t0, t0 +
a] × [t0, t0 + a] × En → En satisfies some conditions, [7]. Park and Han
studied the problems of existence and uniqueness of the solutions of fuzzy
Volterra-Fredholm integral equation of the form

x(t) = F (t, x(t),
∫ t

0
f(t, s, x(s))ds,

∫ T

0
g(t, s, x(s))ds), 0 ≤ t ≤ T

where x(t) is an unknown fuzzy set-valued mapping, [8]. Georgiou and
Kougias examined conditions under which all the solutions of the fuzzy
integral equation

x(t) =
∫ t

0
G(t, s)x(s)ds+ f(t)

and the special case x(t) =
∫ t
0 k(t − s)x(s)ds + f(t) are bounded that

fuzzy integral equations prove useful when studying of fuzzy dynamical
control systems, [5]. Balachandran and Prakash proved the existence of
solutions of fuzzy Volterra integral equations with deviating arguments
which established with the help of the Darbo fixed point theorem. They
studied the maximal solution of the fuzzy delay Volterra integral equa-
tion, [1]. In [2], Balachandran and Karagarajan proved the existence of
solutions of fuzzy integral equations of the form

x(t) = φ(t) + x(t)
∫ t

0
k(t, s)f(s, x(s))ds+

∫ t

0
g(t, s, x(s))ds
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where φ : [0, T ]→ En, k : [0, T ]×[0, T ]→ R, f : [0, T ]×En → En, and g :
[0, T ]×[0, T ]×En → En are continuous functions. In all papers mentioned
above and in many others the authors considered fuzzy integral equations
of the first order. However, integral equations are encountered in various
fields of science and applications.

The paper organized as the following: In section 2, some necessary
concepts is reviewed briefly. In section 3, general fuzzy integral equation
is introduced and conditions for the existence and uniqueness of their
solutions are presented. Finally, in section 4 a conclusion is drawn.

2 Basic concepts

The basic definitions of a fuzzy number are given as follows:

Definition 2.1 [12] A fuzzy number is a fuzzy set like u : R→ [0, 1]
which satisfies:

1. u is an upper semi-continuous function,
2. u(x) = 0 outside some interval [a,d],
3. There are real numbers b, c such as a ≤ b ≤ c ≤ d and
3.1 u(x) is a monotonic increasing function on [a, b],
3.2 u(x) is a monotonic decreasing function on [c, d],
3.3 u(x) = 1 for all x ∈ [b, c].

Let PK(Rn) denote the family of all nonempty compact convex subsets of
Rn and define the addition and scalar multiplication in PK(Rn) as usual.
Let A and B be two nonempty bounded subsets of Rn. The distance
between A and B is defined by the Hausdorff metric

d(A,B) = max{supa∈Ainfb∈B‖a− b‖, supb∈Binfa∈A‖a− b‖}

where ‖.‖ denotes the usual Euclidean norm in Rn. Then it is clear that
(PK(Rn), d) becomes a metric space.

Theorem 2.2 [10] The metric space (PK(Rn), d) is complete and sepa-
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rable. Let I = [c, d] ⊂ R be a compact interval and denote

En = {u : Rn → [0, 1] | u satisfies (i)− (iv) below}

where

(i) u is normal, i.e. there exists an x0 ∈ Rn such that u(x0) = 1,
(ii) u is fuzzy convex

(iii) u is upper semicontinuous,
(iv) [u]0 = cl{x ∈ Rn|u(x) > 0} is compact.

For 0 < α ≤ 1 denote [u]α = {x ∈ Rn|u(x) ≥ α}, then from (i)-(iv) it
follows that the α-level set [u]α ∈ Pk(Rn) for all 0 ≤ α ≤ 1.

Remark 2.3 En denotes the class of fuzzy subsets of real axis. The met-
ric structure is given by Hausdorff distance satisfying the following prop-
erties:
D(u(r), v(r)) = Max{sup|u− v|, sup|u− v|}

(En, D) is a complete space and the following properties are well known:
D(u+ w, v + w) = D(u, v), ∀u, v, w ∈ En

D(ku, kv) = |k|D(u, v), ∀u, v ∈ En, ∀k ∈ R
D(u+ v, w + e) ≤ D(u,w) +D(v, e), ∀u, v, w, e ∈ En

Definition 2.4 [11] If Ã = {(x, µÃ(x))|x ∈ X} be a fuzzy set on the
X ∈ R, the α− cut of subsets of Ã is:

Ãα = {x ∈ X|µÃ(x) ≥ α}
that µÃ : X → [0, 1] is named membership functions of Ã. For α = 1,
the 1-cut of Ã is named core of Ã.

Theorem 2.5 [7] If f : [a, b] → En be integrable and c ∈ [a, b], λ ∈ R.
Then:
(i)

∫ t0+a
t0

F (t)dt =
∫ c
t0
F (t)dt+

∫ t0+a
c F (t)dt,

(ii)
∫
I(F (t) +G(t))dt =

∫
I F (t)dt+

∫
I G(t)dt,

(iii)
∫
I λF (t)dt = λ

∫
I F (t)dt,

(iv) D(F,G) is integrable,
(V) D(

∫
I F (t)dt,

∫
I G(t)dt) ≤

∫
I D(F,G)

Definition 2.6 [6] A mapping F : [a, b] → En is strongly measurable if
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for all α ∈ [0, 1] the set-valued mapping Fα : I → PK(Rn) defined by

Fα(t) = [F (t)]α

is Lebesque measurable, when PK(Rn) is endowed with the topology gen-
erated by the Hausdorff metric d.

Definition 2.7 [6] Let F : I → En. The integral of F over I, denoted
by

∫
I F (t)dt, is defined levelwise by the equation

(
∫
I
F (t)dt)α =

∫
I
Fα(t)dt = {f(t)dt | f : I → Rn is a measurable selection for Fα}

for all 0 < α ≤ 1. A strongly measurable and integrable bounded mapping
F : I → En is said to be integrable over I if

∫
I F (t)dt ∈ En.

3 The existence and uniqueness theorems of general fuzzy in-
tegral equations

A general nonlinear fuzzy integral equation with nonlinear fuzzy kernel
is defined as follows:

x(t) = f(t)+
∫ t

t0
g1(t, s, x(s))ds+...+

∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

gn(t, s, x(s))ds...ds, t ≥ 0

(3.1)
Where x(t) is a function of t, f(t) is a set-valued function and g1(t, s, x(s))
and g2(t, s, x(s)),..., gn(t, s, x(s)) are nonlinear fuzzy functions and all
continuous and n is natural number.
In the following theorem, the existence and uniqueness of the solution of
the general fuzzy integral equation are investigated:

Theorem 3.1 Let a and L are positive numbers. Assume that Eq.(1)
satisfies the following conditions:

1. f : [0, a]→ R is continuous and bonded,
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2. gi : [0, a]→ R for all i=1,2,...n are continuous and satisfy the Lipschitz
condition:
D(gi(t, s, x), gi(t, s, y)) ≤ LiD(x, y),

3. gi(t, s, 0) are bounded on [0, a] for i=1,2,...n.

then there exists a unique solution x(t) of Eq.(1) on [0, a] and the suc-
cessive iterations:



x0(t) = f(t),

xm(t) = f(t) +
∫ t
t0
g1(t, s, x(m−1)(s)) + ...+

∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

gn(t, s, xm−1(s))ds...ds,

where m = 1, 2, ...,

(3.2)

are uniformly convergent to x(t) on [0, a].

Proof: By mathematical induction, it can be seen that all xn(t) are level
wise continuous mappings on [t0, t0 + ε]. Indeed, let t ∈ [t0, t0 + ε], for
n = 1,

x1(t) = x0(t) +
∫ t
t0
g1(t, s, x0(s))ds...

+
∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

gn(t, s, x0(s))ds...ds

which proves that x1(t) is continuous on [t0, t0 + a], hence on [t0, t0 + ε].
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For any α ∈ [0, 1], it is written:

D(x0(t), x1(t)) = D(x0(t), x0(t) +
∫ t
t0
g1(t, s, x0(s))ds+ ...

+
∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

gn(t, s, x1(s))ds...ds)

≤ D(
∫ t
t0
g1(t, s, x0(s))ds, 0) + ...

+D(
∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

gn(t, s, x0(s))ds...ds], 0)

≤
∫ t
t0
D(g1(t, s, x0(s)), 0) + ...

+
∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

D(gn(t, s, x0(s))ds...ds], 0)

≤ M(t− t0) + ...+M (t−t0)n
n!

≤ M(ε+ ...+ εn

n!
)

Then

D(x1(t), x0(t)) ≤M
n∑
i=1

εi

i!
(3.3)

According to (3), we have

D(x2(t), x1(t)) ≤ D(x0(t) +
∫ t
t0
g1(t, s, x1(s))ds+ ...

+
∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

gn(t, s, x1(s))ds...ds, x0(t)

+
∫ t
t0
g1(t, s, x0(s))ds+ ...

+
∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

gn(t, s, x0(s))ds...ds)

≤ M(L1
(t−t0)2

2!
+ ...

+Ln
(t−t0)n+2

n!2!
)
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Now assume that xm−1(t) is continuous, then:

D(xm(t), xm−1(t)) ≤ D(x0(t) +
∫ t
t0
g1(t, s, xm−1(s))ds+ ...

+
∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

gn(t, s, xm−1(s))ds...ds

, x0(t) +
∫ t
t0
g1(t, s, xm−2(s))ds+ ...

+
∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

gn(t, s, xm−2(s))ds...ds)

≤ D(
∫ t
t0
g1(t, s, xm−1(s))ds,

∫ t
t0
g1(t, s, xm−2(s))ds+ ...

+D(
∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

gn(t, s, xm−1(s))ds...ds,

∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

gn(t, s, xm−2(s))ds...ds)

≤
∫ t
t0
D(g1(t, s, xm−1(s))ds, g1(t, s, xm−2(s))ds) + ...

+
∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

D(gn(t, s, xm−1(s)), [gn(t, s, xm−2(s)))ds...ds

≤ D(xm−1, xm−2)(L1(t− t0) + ...

+Ln
(t−t0)n
n!

)

≤ M(Lm−11
(t−t0)m
m!

+ ...

+Lm−1n
(t−t0)n+m

n!m!
)

Therefore it can be written as:

D(xm(t), xm−1(t)) ≤M
n∑
i=1

Lm−1i

ε(i+m)!

i!m!
(3.4)

It follows by mathematical induction that Eq. (4) holds for any n ≥ 1.
Consequently, Eq. (3) is uniformly convergent on [t0, t0 +ε], and so is the
sequence {xn(t)}. Denote by x(t) = limn→∞xn(t). The function x(t) is
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level wise continuous on [t0, t0 + ε] and it can be seen that it satisfies Eq.
(1). Indeed, by condition (3) in theorem and from definition of D we get:

D(gi(t, s, xm−1(s)), gi(t, s, x(s))) ≤ LiD(xm−1(s), x(s)) → 0 as n →
∞, t0 ≤ s ≤ t ≤ t0 + ε i = 1, 2, ...
Thus, the existence of a solution is proven.

To prove the uniqueness, let y(t) is a level wise continuous solution of
Eq. (1) on [t0, t0 + ε]. Then

y(t) = f(t) +
∫ t

t0
g1(t, s, x(s))ds+ ...+

∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

gn(t, s, x(s))ds...ds (3.5)

From (2), (5) and the condition (3) of theorem 3.1, for m ≥ 1 and any
α ∈ (0, 1] we obtain:

D(y(t), xm(t)) ≤ D(f(t) +
∫ t
t0
g1(t, s, y(s))ds+ ...

+
∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

gn(t, s, y(s))ds...ds, f(t)

+
∫ t
t0
g1(t, s, xm−1(s))ds+ ...

+
∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

gn(t, s, xm−1(s))ds...ds)

≤
∫ t
t0
D(g1(t, s, y(s)), g1(t, s, xm−1(s)))ds+ ...

+
∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

D(gn(t, s, y(s)), gn(t, s, xm−1(s)))ds...ds

≤ L1

∫ t
t0
D(y(s), [xm−1(s))ds+ ...

+Ln

∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

D(y(s), xm−1(s))ds...ds
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Then we get:

D(y(t), xm(t)) ≤ L1

∫ t
t0
D(y(s), xm−1(s))ds+ ...

+Ln

∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

D(y(s), [xm−1(s))ds...ds (3.6)

But for t ∈ [t0, t0 + ε] we know

D(y(t), f(t)) ≤M(t− t0) + ...+M
(t− t0)n

n!

From (6), we have

D(y(t), x1(t)) ≤ML1
(t− t0)

1!
+ ...+MLn

(t− t0)n+1

n!

Now assume that:

D(y(t), xm−1(t)) ≤MLm−11

(t− t0)m

(m− 1)!
+...+MLm−1n

(t− t0)m+n

(m− 1)!n!
, t ∈ [t0, t0+ε]

(3.7)
From (6) and (7) we obtain:

D(y(t), xm(t)) ≤MLm1
(t− t0)m+1

m!
+...+MLmn

(t− t0)m+n+1

m!n!
, t ∈ [t0, t0+ε]

(3.8)
Consequently, (8) holds for any n, which leads to the conclusion
D(y(t), xn(t)) = D(x(t), xn(t))→ 0 on [t0, t0 + ε] as n→∞.

This proves the uniqueness of the solution for (1). 2

In the following theorem, continuity of solution of the general fuzzy in-
tegral equation is searched:

Theorem 3.2 Assume that f(t) is level wise continuous on [t0, t0 + a],
a > 0, and gi(t, s, x) for ,i = 1, 2, ..., n, are level wise continuous on
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t0 ≤ s ≤ t ≤ t0 + a. Then there exists at least one level wise continuous
solution of Eq. (1), defined in [t0, t0 + a].

Proof:

D(xm(t1), xm(t2)) ≤ D(f(t1), f(t2)) +D(
∫ t1
t0
g1(t1, s, xm−1(s))ds

+...+
∫ t1

t0
...

∫ t1

t0︸ ︷︷ ︸
n

gn(t1, s, xm−1(s))ds...ds,

∫ t2
t0
g1(t2, s, xm−1(s))ds+ ...

+
∫ t2

t0
...

∫ t2

t0︸ ︷︷ ︸
n

gn(t2, s, xm−2(s))ds...ds

≤ D(f(t1), f(t2)) +D(
∫ t1
t0
g1(t1, s, xm−1(s))ds,∫ t2

t0
g1(t2, s, xm−2(s))ds) + ...

+D(
∫ t1

t0
...

∫ t1

t0︸ ︷︷ ︸
n

gn(t1, s, xm−1(s))ds...ds

,
∫ t2

t0
...

∫ t2

t0︸ ︷︷ ︸
n

gn(t2, s, xm−2(s))ds...ds)

≤ D(f(t1), f(t2)) +
∫ t1
t0
D(g1(t1, s, xm−1(s))ds, g1(t2, s, xm−1(s))ds)

+
∫ t2
t1
D(g1(t2, s, xm−1(s))ds, 0) + ...

+
∫ t1

t0
...

∫ t1

t0︸ ︷︷ ︸
n

D(gn(t1,

s, xm−1(s)), gn(t2, s, xm−1(s)))ds...ds

+
∫ t2

t1
...

∫ t2

t1︸ ︷︷ ︸
n

D(gn(t2, s, xm−1(s)), 0)

≤ D(f(t1), f(t2)) + (t1 − t0)D(g1(t1, s, xm−1(s))ds, g1(t2, s, xm−1(s))ds)

+M(t2 − t1) + ...+ (t1−t0)n
n!

D(g1(t1, s, xm−1(s))ds, g1(t2, s

, xm−1(s))ds) +M (t2−t1)n
n!

Then it is gotten:
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D(xm(t1), xm(t2))→ 0̃ as t2 → t1

Thus the sequence xm(t) is continuous on [t0, t0 + a]. 2

Algorithm:
step 1: For i = 1 set xi(t) = f(t);
step 2: Obtain that D(xi, 0) is bounded;
step 3: Prove that xi is continuous;
step 4: Obtain that D(xi+1(t), xi(t)) is bounded;
step 5: Obtain that D(y(t), xi(t)) is bounded for all continuous y(t);

step 6: Let i + 1 = i and set x
(n)
i (t) = f(t, s, xi−1)xi(t) = f(t) +∫ t

t0
g1(t, s, xi−1)ds+ ...+

∫ t

t0
...

∫ t

t0︸ ︷︷ ︸
n

gn(t, s, xi−1)ds...ds then go to step 2.

4 Conclusion

In this work, the general fuzzy integral equations with nonlinear fuzzy
kernels were studied. The existence and uniqueness of solutions of these
fuzzy integral equations were proved by theorems. An algorithm was pre-
sented to show the conditions of existence and uniqueness of solutions
better. These results will be useful in future research for obtaining the
solutions of general nonlinear fuzzy integral equations.
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