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Abstract

Let R be an associative ring with identity, C(R) be the category of com-
plexes of R-modules and Flat(C(R)) be the class of all flat complexes of R-
modules. We show that the flat cotorsion theory (Flat(C(R)), Flat(C(R))™")
have enough injectives in C(R). As an application, we prove that for each flat
complex F and each complex Y of R-modules, Ext!(F,Y) = 0, whenever R
is n-perfect and i > n.
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1 Introduction

In 1966 Spencer E. Dickson [2] introduced torsion theories for
abelian categories by exploiting the Hom-functor. By replacing for-
mally the Hom-functor with the Ext-functor one get the basic tools
of a cotorsion theory in an abelian category, which naturally ex-
tends the classical cotorsion theory. The classical cotorsion theory,
where it is developed in the 60s by Harrison and many other alge-
braists, is the pair (Torsion-free, Cotorsion). Based on this idea, in
1978 Luigi Salce [6], introduced the notion of cotorsion theories in
the category of abelian groups.

The main task of Salce is a detailed description of the cotorsion
theory (+(S+),S%) cogenerated by S, where S C Q is a rank-1
group such that 1 € S, see [6]. These cotorsion theories (for any
S C Q) are called rational cotorsion theories. Salce in [6, Problem
2, p. 31] raised the question of whether rational cotorsion theories
have enough projectives (injectives).

In 1998, Gobel and Shelah answered this question, see [5, Theorem
6.1]. They proved that any cotorsion theory of abelian groups, which
is cogenerated by a set H of rank-1 groups, has enough injectives
and projectives. Therefore rational cotorsion theories have enough
injectives and projectives.

In 1981 , Enochs raised the question of whether every module has
flat cover. Also he proved that if a module has a flat precover, then
it has a flat cover. Let F stands for the class of all flat R-modules.
It is easy to see that the problem of the existence of F-precovers is
equivalence to the problem of completeness of the cotorsion theory

(F, F5).

The existence of covers and envelopes are essential tools of rela-
tive homological algebra. Let X be a class of R-modules, which is
closed under isomorphism, the completeness of the cotorsion the-
ories (1, (tX)%) and (H(X1), X1), induces a relative homology
with respect to X. Hence complete cotorsion theories, provide us
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to have homological algebra in Grothendieck categories.

In 2000, Eklof and Trlifaj proved that any cotorsion theory of R-
modules which is cogenerated by a set, is a complete cotorsion the-
ory, see [4]. Therefore by [7] the flat cotorsion theory (F,F1) is
cogenerates by a set and hence it is complete. Thus the category of
R-modules admits F-covers and F-envelopes.

2 Complete cotorsion theories in the category of com-
plexes of R-modules

Throughout this section, let G be a Grothendieck category with
projective generator and A = C(R) be the category of all complexes
of R-modules. Let X be a class of objects of G such that it is closed
under isomorphisms, finite direct sums and direct summands. In
this section, we will give a general definition of relative homological
algebra.

Definition 2.1 The right(left) orthogonal of X in G is defined as

Xt = {Y| Ext4(X,Y) =0,VX € X}(+X = {Y| Ext}(Y,X) =0,
VX e X'}).

The pair (X,)) is said to be a cotorsion theory in G if Xt =Y
and X = +). If there exists a class S of objects in X such that
St =Y, we say that (X,)) is cogenerated by S.

Definition 2.2 A cotorsion theory (X,)) in G is said to have
enough injectives(projectives), if for any object M of A, there exists
a short exact sequence

0—M—X—Y—0(0—Y—=X—M-—0)
forsome X € X andY € Y. It also called complete if it has enough

mjectives and projectives.
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Example 2.1 The ordinary homological algebra, induced by the
complete cotorsion theories (Proj R,R-Mod) and (R-Mod,Inj R),
where Proj R (Inj R) is the class of all projective (injective) R-
modules. Those cotorsion theories have enough injectives and pro-
jectives.

Example 2.2 The cotorsion theory (R-Mod, Inj R) is cogenerated
by the set of modules R/I where I is a left ideal. Therefore it has
enough injectives.

Example 2.3 In the classical cotorsion theory (Torsion-free, Co-
torsion), every torsion-free abelian group J can be embedded in an
exact sequence already guarantees that G is cotorsion and hence,
the definition of cotorsion groups may also be given as groups G
satisfying Ext(Q,G) = 0. Therefore the classical cotorsion theory
is cogenerated by the rationals Q, i.e. (Torsion-free, Cotorsion ) =
(H(Q1),Q1). Therefore it has enough injectives.

Proposition 2.1 If a cotorsion theory (X,)) having enough in-
jectives in G, then it also have enough projectives.

Proof. Let (X,)) has enough injectives and M be an object of G.
The category G is a Grothendieck category with projective genera-
tors. Then there exists an exact sequence 0 —T—P —M—0
with P projective. By assumption, there exists an exact sequence
0—T—Y —X—0 withX € Xand Y € ). Using the pushout
diagram

0 0

ol
O—Vf—)lj—)M—)O
0—Y —-Z—M—0

]

X=X

ol

0 0

with exact rows and columns. Since X is closed under extensions,
then Z € X. Hence the middle row is the desired exact sequence.
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Proposition 2.2 Let S be a nonempty subset of objects of A. Then
the cotorsion theory (+(S*),S*) has enough injectives.

Proof. Let B be the direct sum of the objects in S, X be
an object of A and k be an infinite cardinal number such that
k> |B| + |X]| + |R|. Let § = 2". By [4, Theorem 2] there exists an
exact sequence 0—X—Y —K-—0 of objects in A such that
Ext'(B,Y) = 0. To prove that K € +(S4), it suffices to show that
Ext' (K, T) = 0 whenever Ext'(B, T) = 0. However, K = U,3K,
where K, = K, /X, so Ky = 0 and for each o < 8, K, + 1/K, &
Y..1/Y. = B. Hence, by [4, Lemma 1], Ext'(K, X) = 0 when
Ext'(B,X) = 0. Then (+(S*),8*) = (*(B*), B*) has enough in-
jectives.

3 The projective dimension of complexes of R-modules

Recall that, an acyclic complex (F, (6"),ez) of flat R-modules is
called flat if, for any n € Z, ker 0" is also flat R-module. We denote
by Flat(C(R)) the class of all flat complexes in A = C(R). We will
show that the cotorsion theory (Flat(C(R)), Flat(C(R))") is a com-
plete in A. Let x be a cardinal number such that k > max{|R|, N, }.
Let X = (X, 0%) and Y = (Y, 0%), the complex Hom*(X,Y) is
defined as follows:

Hom*(X,Y)" = [[ Hompg (X", Y"")

i€Z
and its chain map is given by
OHom*(X,Y) = 0y © [ — (=1)"f o dx(f € Hom*(X,Y)").

Theorem 3.1 The cotorsion theory (Flat(C(R)), Flat(C(R))") has

enough injectives.

Proof.

99



Let F = (F% &%) be a flat complex and n € Z. Let T be a subset
of F™ with |T| < k. We find a flat subcomplex Fy = (Fi,d) of F'
such that, T C FJ, |Fy| < k and FLO is a flat complex.

Without loss of generality, let n = 0. There exists the following
commutative diagram

0 0 0
) ) )

0 K)—F Kl 0
! ! !

0—Ker(6°) — F°—Ker(§') —0,

of flat modules which is pure exact in rows and columns such that,

T C F{ and max{|FY|, |K}], | K}|} < k.

We use an inductive procedure to obtain, for every ¢ < 0, a pure ex-

act sequences 0— K1 — Fi ' — K —0, such that maz{|Fy |, | K5, | K|} <
k. Set Fy = Kg, Fj := 0, for all i > 1, and § := §°
The complex Fo = (F{, 8}) provides the required complex.

Fis for all 7.

Hence, for a flat complex F, we can construct a continuous chain
{Fo | @ < ~} of flat subcomplexes of F with F = U,<,F, such
that |Fo| < &, for all a < 7, |Fa+1| < k and F‘*“ is a flat complex.
Let Y be representative set of flat complexes F with |F| < k. Then
(Flat(C(R)), Flat(C(R))") cogenerated by Y and so by Proposition
2.2, it has enough injectives.

Corollary 3.1 The cotorsion theory (Flat(C(R)), Flat(C(R))™") is
complete.

Proof. The result follows from Theorem 3.1 and Proposition 2.1.

Recall that aring R is called n-perfect if n = sup{cdF|F is a flat R-module} =
sup{pdF|F is a flat R-module}. In the remainder of this section we

100



let R be an n-perfect ring.

Proposition 3.1 Let C be a complex of R-modules. Then C &
Flat(C(R))" if and only if it is a complezx of cotorsion R-modules.

Proof. Let C € Flat(C(R))". By [3], it is a complex of cotorsion
R-modules and Hom*(F, C) is an acyclic complex of R-modules
for each flat complex F.

Conversely, let C be a complex of cotorsion R-modules. Then the
cotorsion envelope 0— C— C’'—F—0 is degree-wise split. So,
F be a pure acyclic complex of cotorsion flat R-modules and hence
it is contractible by n-perfectness of R. Therefore Hom*(F, C) is
an acyclic complex for each F € Flat(C(R)). Then by [3], C €
Flat(C(R))".

Theorem 3.2 Let F be a flat complex and Y be a complex of R-
modules. Then Ext'(F,Y) =0, for each i > n.

Proof. Let Y be a complex of R-modules and
0—Y—C'—Cl—....sC P 5Cn—s. ..

be it’s minimal cotorsion resolution by Proposition 3.1. Since Ext'(F, C7) =
0 for every flat complex F and ¢ > 0, j > 0, Then Ext"(F,Y) =
Ext!(F,Imé"!). Since R is n-perfect then Imé" ' is a complex

of cotorsion R-modules and hence it belongs to Flat(C(R))" by
Proposition 3.1. Then Ext'(F,Y) = 0, for each i > n.

Proposition 3.2 The ring R is n-perfect if and only if every com-
plex of R-modules has finite cotorsion dimension.

Proof.
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Let R be n-perfect, Y be an R-module and 0—C—F —Y —0
be the flat cover of Y. Then for any flat complex F we have the
following exact sequence

0 = Ext"™(F, C) — Ext"™(F, F') —Ext""}(F,Y) — Ext""™(F,C) = 0.

Then Ext"™(F,Y) = 0 and hence cd Y < n.

The converse is trivial.
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