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Abstract

In this work, we present a numerical method for solving nonlinear Fredholm
and Volterra integral equations of the second kind which is based on the use
of Block Pulse functions(BPfs) and collocation method. Numerical examples
show efficiency of the method.
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1 Introduction

Integral equations of the Hammerstein type have been one of the most
important domains of applications of the ideas and methods of nonlinear
functional analysis and in particular of the theory of nonlinear operators
of monotone type. Various applied problems arrising in mathematical
physics, mechanics and control theory leads to multivalued analogs of
the Hammerstein integral equations[11]. In recent years, many different
basis functions have been used to solve and reduce integral equations to a
system of algebraic equations [1-3] and [6-10] . The aim of this work is to
present a numerical method for solving nonlinear Fredholm and Volterra
integeral equations of Hammerstein type using BPfs. For this purpose we
define a k-set of Block-Pulse functions (BPfs) as:

Bi(t) =

1, i−1
k
≤ t < i

k
, for all i = 1, 2, . . . , k

0, elsewhere
(1.1)

The functions Br(t) are disjoint and orthogonal. That is,

Bi(t)Bj(t) =

0, i 6= j

Bi(t), i = j
(1.2)

< Bi(t), Bj(t) > =

0, i 6= j
1
k
, i = j

(1.3)

2 Function Approximation

A function u(t) defined over the interval [0, 1) may be expanded as:

u(t) =
∞∑
n=0

unBn(t), (2.1)

with un = k < u(t), Bn(t) >.

In practice, only the first k-term of (4) are considered, where k is a power
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of 2, that is,

u(t) ' uk(t) =
k∑

n=1

unBn(t), (2.2)

with matrix form:

u(t) ' uk(t) = utB(t) (2.3)

where, u = [u1, u1, . . . , uk]
t and B(t) = [B1(t), B2(t), . . . , Bk(t)]

t. Simi-
larly, K(x, t) ∈ L2[0, 1)2 may be approximated as:

K(x, t) '
k∑
i=1

k∑
j=1

KijBi(x)Bj(t)

or in matrix form

K(x, t) ' Bt(x)KB(t) (2.4)

where K = [Kij]1≤i,j≤k and Kij = k2 < Bi(x), < K(x, t), Bj(t) >>.
From (1) we have
0 ≤ t < 1

k
implies that B1(t) = 1 and Bi(t) = 0 for i = 2, . . . , k.

1
k
≤ t < 2

k
implies that B2(t) = 1 and Bi(t) = 0 for i = 1, . . . , k and

i 6= 2.
...
k−1
k
≤ t < 1 implies that Bk(t) = 1 and Bi(t) = 0 for i = 1, . . . , k − 1.

Using (2) leads to

B(x)Bt(x) =


B1(x) ∅

...

∅ Bk(x)



= B1(x)



1 ∅

0
...

∅ 0


+B2(x)



0 ∅

1

0
...

∅ 0


+ · · ·+Bk(x)



0 ∅

0
...

0

∅ 1


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so

∫ 1
0 B(x)Bt(x)dx =

∫ 1
0 B1(x)dx



1 ∅

0
...

∅ 0


+

∫ 1
0 B2(x)dx



0 ∅

1

0
...

∅ 0


+ . . .

+
∫ 1
0 Bk(x)dx



0 ∅

0
...

0

∅ 1


= 1

k
I,

where, Ik×k is the identity matrix of order k.

2.1 Nonlinear Fredholm integral equations of Hammerstein type

Now consider the following nonlinear Fredholm integral equation of the
second kind of Hammerstein type:

u(x) =
∫ 1

0
K(x, t)φ[t, u(t)]dt+ g(x), (2.5)

where, K ∈ L2[0, 1)2 and g, φ ∈ L2[0, 1) are known functions and u(t) is
the unknown function to be determined. if we define

W (t) = φ[t, u(t)] (2.6)

from (8) we obtain

W (t) = φ[t,
∫ 1

0
K(t, x)W (x)dx+ g(t)]. (2.7)
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We approximate W (t) as:

W (t) ' Wk(t) =
k∑

n=1

wnBn(t)

= wtB(t) (2.8)

where w = [w1, w2, . . . , wk]
t.

Now from equations (8) and (9) we have:

u(x) =
∫ 1

0
K(x, t)W (t)dt+ g(x). (2.9)

If we approximate equation (12) by

uk(x) =
∫ 1

0
K(x, t)Wk(t)dt+ g(x) (2.10)

we have to approximateWk(t) as (11). By approximating functionsK(x, t)
and W (t), as before, in the matrix form we have:

K(x, t) ' Bt(x)KB(t) (2.11)

W (t) ' wtB(t) (2.12)

by substituting the approximations (14) and (15) into (10) we obtain:

wtB(t) = φ[t,
∫ 1

0
Bt(t)KB(x)Bt(x)wdx+ g(t)]

= φ[t,
1

k
Bt(t)Kw + g(t)] (2.13)

Evaluating (16) at the collocation points tj = j−0.5
k

, j = 1, 2, . . . , k, leads
to

wtB(tj) = φ[tj,
1

k
Bt(tj)Kw + g(tj)] (2.14)

which is a nonlinear system of algebraic equations. Solving (17) gives
column vector w. Therefore from (11) we can approximate W (t) by Wk(t)
and from (13) we get desired approximation uk(t) for u(t).
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2.2 Nonlinear Volterra integral equations of Hammerstein type

Now consider the nonlinear Volterra integral equation of the second kind
of Hammerstein type:

u(x) =
∫ x

0
K(x, t)φ[t, u(t)]dt+ g(x) (2.15)

as before, we let

W (t) = φ[t, u(t)] (2.16)

by substituting (19) into (18) we obtain:

u(x) =
∫ x

0
K(x, t)W (t)dt+ g(x) (2.17)

substituting (20) into (19) leads to

W (t) = φ[t,
∫ t

0
K(t, x)W (x)dx+ g(t)]. (2.18)

We approximate equation (20) by

uk(x) =
∫ x

0
K(x, t)Wk(t)dt+ g(x) (2.19)

by substituting the approximations (14) and (15) into (21) we obtain:

wtB(t) = φ[t,
∫ t

0
Bt(t)KB(x)Bt(x)wdx+ g(t)]

= φ[t,Bt(t)KF(t)w + g(t)] (2.20)

where, F(t) =
∫ t
0 B(x)Bt(x)dx. In section 3, we consider evaluation of

F(t) at the collocation points tj using properties of Block-Pulse functions
(BPfs).
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3 Evaluation of F(t) at the collocation points tj

For this purpose we use the materials mentioned in section 2. So we have

F(tj) =
∫ j−0.5

k
0 B(x)Bt(x)dx

=
∫ 1

k
0 B(x)Bt(x)dx+

∫ 2
k
1
k

B(x)Bt(x)dx+ · · ·+
∫ j−1

k
j−2
k

B(x)Bt(x)dx

+
∫ j−.5

k
j−1
k

B(x)Bt(x)dx

=



1
k

∅

0
...

∅ 0


+



0 ∅
1
k

0
...

∅ 0


+ · · ·+



0 ∅

0
...

1
k

...

∅ 0


+



0 ∅
...

0
...

1
2k

...

∅ 0


= 1

k
Diag[1, 1, ..., 1, 1

2
, 0, ..., 0]

= 1
k
Dj,

where, diagonal matrix Dj is a k × k matrix with the elements

Dj
mn =


1, m = n = 1, 2, ..., j − 1
1
2
, m = n = j

0 m = n = j + 1, ..., k.

Evaluating (23) at the collocation points tj leads to

wtB(tj) = φ[tj,B
t(tj)KF(tj)w + g(tj)]

= φ[tj,
1

k
Bt(tj)KDjw + g(tj)], (3.1)
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Solving nonlinear system of algebraic equations (25) gives column vector
w. Therefore from (11) we can approximate W (t) by Wk(t) and from
(22) we get desired approximation uk(t) for u(t).

4 Numerical Examples

Now for implementation the presented method in this paper, consider
the numerical examples in the cases nonlinear Fredholm and Volterra
integral equations.

4.0.0.1 Example 1:

u(x) +
∫ 1

0
ex−2t[u(t)]3dt = ex+1, 0 ≤ x < 1,

with exact solution u(x) = ex.

4.0.0.2 Example 2:

u(x)−
∫ 1

0
[4tx+πx sin(πt)]

1

u2(t) + t2 + 1
dt = sin(

π

2
x)−2x ln 3, 0 ≤ x < 1,

with exact solution u(x) = sin(π
2
x).

4.0.0.3 Example 3:

u(x) = 1 + sin2 x−
∫ x

0
3 sin(x− t)[u(t)]2dt, 0 ≤ x < 1,

with exact solution u(x) = cos x.
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4.0.0.4 Example 4:

u(x) = x+ cosx− 1 +
∫ x

0
sin[u(t)]dt, 0 ≤ x < 1,

with exact solution u(x) = x.

Table 1 shows the computed error ‖e‖ = ‖u(x) − uk(x)‖ for the ex-
amples 1-4 with k = 32.

Table 1
t Example 1 Example 2 Example 3 Example 4

0.1 2× 10−4 8× 10−5 4× 10−5 1× 10−4

0.2 9× 10−3 9× 10−4 3× 10−4 5× 10−4

0.3 1× 10−3 1× 10−4 1× 10−4 4× 10−4

0.4 1× 10−3 1× 10−4 3× 10−4 4× 10−4

0.5 1× 10−3 2× 10−4 8× 10−4 6× 10−4

0.6 1× 10−3 2× 10−4 1× 10−3 3× 10−4

0.7 1× 10−3 3× 10−4 2× 10−3 7× 10−4

0.8 1× 10−3 3× 10−4 2× 10−3 7× 10−4

0.9 1× 10−3 4× 10−4 1× 10−3 9× 10−3

5 Conclusion

In present paper, Block Pulse functions together with the collocation
points are applied to solve the nonlinear Fredholm and Volterra integral
equations of Hammerstein type. For nonlinear integral equation,Galerkin
and collocation methods can be quite expensive to implement. Specially,
in the case of collocation method, by substituting (5) into (8) and eval-
uating new equation at the collocation points tj ∈ [0, 1) we obtain

k∑
n=1

unBn(tj) =
∫ 1

0
K(tj, x)φ[x,

k∑
n=1

unBn(x)]dx+ g(tj),

for j = 1, 2, . . . , k. In the iterative solution of this system, many integrals
will need to be computed, which usually becomes quite expensive. In
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particular, the integral on the right side will need to re-evaluated with
each new iterate. But by definition (9) and substituting (11) into (10),
the collocation method for (10) is

k∑
n=1

wnBn(tj) = φ[tj,
k∑

n=1

wn

∫ 1

0
K(tj, x)Bn(x)dx+ g(tj)],

the integral of the right side of latter equation need be evaluated only
once, since they are dependent only on the basis, not on the unknowns
{un}. Many fewer integrals need be calculated to solve this system.
Also example 1 and example 2 are solved in [8] using Petrov-Galerkin
method(PGm). Comparing the results shows PGm is more accurate then
BPfs method. But, it seems the number of calculations of BPfs method
is lower. Also, the benefits of this method are low cost of setting up the
equations due to properties of BPfs mentioned in section 1. In addition,
the nonlinear system of algebraic equations is sparse. Finally, this method
can be easily extended and applied to nonlinear Volterra-Fredholm inte-
gral equations. Numerical examples show the accuracy of the presented
method. Approximations may be more accurate by using larger k.
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