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Abstract

In this paper, based on sinh-cosh method and sinh-Gordon expansion method,
families of solutions of (2+1)-dimensional breaking soliton equation are ob-
tained. These solutions include Jacobi elliptic function solution, soliton solu-
tion, trigonometric function solution.
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1 Introduction

There exist many methods for obtaining solutions of the (2+1)-Dimensional
breaking soliton equation, such as the Generalized Jacobi elliptic func-
tion method [2], (G′/G) Expansion method [3] and so on.
In this paper, by using the sinh-cosh method [1] and sinh-Gordon expan-
sion method [4,5], we construct elliptic function solutions in the (2+1)-
dimensional breaking soliton equation.

ut − buxxy + 4b(uv)x = 0, (1.1)

vx − uy = 0, (1.2)

Where b is an arbitrary constant, the system (1)-(2) was used to de-
scribes the (2+1)-dimensional interaction of Riemann was propagated
along the y-axis with long wave propagated along the x-axis and it seems
to have been investigated extensively where over lapping solutions have
been derived.

2 Methods

Consider a given (2+1)-dimensional breaking soliton equation with in-
dependent variable x = (t, x1, x2, ...) and dependent variables u(x). The
following formal solution of the given (2+1)-dimensional breaking soliton
equation will be souqht by the following ansatz

u(x) = A0 +
n∑

i=1

coshi−1(w) [Ai sinh(w) +Bi cosh(w)] , (2.1)

Where n is an integer which is determined by balancing the highest order
derivative term with the highest order nonlinear term in the given(1)-(2)
[5], and A0 = A0(x), ..., An = An(x), B1 = B1(x), ..., Bn = Bn(x), w =
w(µ), µ = αx+ p+ q Are all differentiable function.
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satisfies ω

(
dw

dx

)2

= sinh2(w(µ)) + c, (2.2)

Or in another form

d2w

dx2
= sinh(w) cosh(w), (2.3)

Where c = 1−m2 and m is the modulus of Jacobi elliptic function.
Equation (2.2) has the following solution:

sinh(w) = cs(µ,m) =
cn(µ,m)

sn(µ,m)
, (2.4)

cosh(w) = ns(µ,m) =
1

sn(µ,m)
, (2.5)

Where sn(µ,m), cn(µ,m) are jacobian elliptic sine function and the jaco-
bian elliptic cosine function respectively.we can also seek (2+1)-dimensional
breaking soliton equation s solution in the up form where w = a(ξ),
ξ = k(x+ αy − βt) where ξ a real parameter and k, α, β are constant.

3 the application of methods

3.1 the application of sinh-cosh method

Inother to solve (1) and (2) by using our method , we first reduce (1)
and (2) to a differential equations .we make transformations

u(x, y, t) = u(µ), v(x, yt) = v(µ), (3.1)

µ = αx+ p+ q, (3.2)
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Where α is a nonzero constant and p is the function of, q is a function t.
The substitutions of (8) and (9) into (1) and (2) yields

q′(t)u′ − bα2p′β(y)u′′′ + 4bαu′v + 4bαuv′ = 0, (3.3)

αv′ − p′(y)u′ = 0, (3.4)

And integrating yields, (10) and (11)

q′(t)− bα2p′β(y)u′′ + 4bαuv = 0, (3.5)

αv − p′(y)u = 0, (3.6)

The substitutions of v =
p′(y)

α
u into (12) yields

q′(t)u− bα2p′β(y)u′′ + 4bp′u2 = 0. (3.7)

Balancing u2 with u′′ then gives n = 2.
According to method we assume that (14) has the solution

u(x) = A0 + A1 sinh(w) +B1 cosh(w) + A2 sinh(w) cosh(w) +B2 cosh2(w),
(3.8)

Substituting (15) into (14) along with (4) and (5), yields a differential
equation about setting the coefficients of sinhi(w) coshj(w)(sinh2(w) +

c)

k

2 , i = 1, 2, ...; j = 0, 1; k = 0, 1.

sinhi(w) coshj(w)(sinh2(w) + c)

k

2 , i = 1, 2, ...; j = 0, 1; k = 0, 1 tozero, we
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get the overdetermined equations:

q′(t)A0 + q′(t)B2 + 2bα2p′(y)B2c+ 4bp′(y)A2
0 + 4bp′(y)B2

1 + 4bp′(y)B2
2

+ 8bp′(y)A0B2 = 0,

q′(t)A1 − bα2p′(y)A1 − bα2p′(y)A1c+ 8bp′(y)A0A1 + 8bp′(y)A1B2

+ 8bp′(y)B1A2 = 0,

q′(t)A1 − bα2p′(y)B1c+ 8bp′(y)A0B1

+ 8bp′(y)B1B2 = 0,

q′(t)A2 − 4α2bp′(y)A2c− bα2p′(y)A2 + 8bp′(y)A1B1 + 8bp′(y)A2B2

+ 8bp′(y)A0A2 = 0,

q′(t)B2 − 4α2bp′(y)A2c− 4α2bp′(y)B2c+ 4bp′(y)A2
1 + 4bp′(y)A2

2

+ 8bp′(y)B2
2

+ 8bp′(y)A0B2 + 4bp′(y)B2
1 = 0,

8bp′(y)B1A2 − 2bα2p′(y)A1 + 8bp′(y)A1B2 = 0,

8bp′(y)A1A2 + 8bp′(y)B1B2 − 2bα2p′(y)B1 = 0,

− 6bα2p′(y)A2 + 8bp′(y)A2B2 = 0,

− 6bα2p′(y)B2 + 4bp′(y)A2
2 + 4bp′(y)B2

2 = 0.

Solving equations with Maple, we derive the solutions of the partial dif-
ferential equations.

A0 =
1

2
α2

√
1

16
− c+ c2 − 5

8
α2 +

1

2
α2c, A1 = 0, B1 = 0,

A2 = −3

4
α2, B2 =

3

4
α2, p =

1

α2
y, q =

−4b

√
1

16
− c+ c2

 t (3.9)
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We have obtained solutions of (12) and (13) if v =
1

α
p′(y), these solutions

are



u11 =
1

2
α2

√
1

16
− c+ c2 − 5

8
α2 +

1

2
α2c

−3

4
α2cs

αx+
1

α2
y +

−4b

√
1

16
− c+ c2

 t,m


+ns

αx+
1

α2
y +

−4b

√
1

16
− c+ c2

 t,m


+
3

4
α2ns2

αx+
1

α2
y +

−4b

√
1

16
− c+ c2

 t,m


v11 =
1

2α

√
1

16
− c+ c2 − 5

8α
+

1

2α
c

− 3

4α
cs

αx+
1

α2
y +

−4b

√
1

16
− c+ c2

 t,m


+ns

αx+
1

α2
y +

−4b

√
1

16
− c+ c2

 t,m


+
3

4α
ns2

αx+
1

α2
y +

−4b

√
1

16
− c+ c2

 t,m


(3.10)

When m → 1, cs(µ,m) → csch(µ) and ns(µ,m) → coth(µ), c → 0 so
obtain the following soliton solutions of (1) and(2). (figure 1)



u12 = −1

2
α2 − 3

4
α2csch

(
αx+

1

α2
y − bt

)
coth

(
αx+

1

α2
y − bt

)
+

3

4
α2 coth2

(
αx+

1

α2
y − bt

)
v12 = − 1

2α
− 3

4α
csch

(
αx+

1

α2
y − bt

)
coth

(
αx+

1

α2
y − bt

)
+

3

4
α2 coth2

(
αx+

1

α2
y − bt

)
(3.11)

When m → 0, cs(µ,m) → coth(µ) and ns(µ,m) → csc(µ), c → 1 so ob-
tain the following trigonometric function solutions of (1) and (2). (figure
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2) 

u13 = −3

4
α2 coth

(
αx+

1

α2
y − bt

)
csc

(
αx+

1

α2
y − bt

)
+

3

4
α2 csc2

(
αx+

1

α2
y − bt

)
,

v13 = − 3

4α
coth

(
αx+

1

α2
y − bt

)
csc

(
αx+

1

α2
y − bt

)
+

3

4α
csc2

(
αx+

1

α2
y − bt

)
(3.12)

3.2 the application of sinh-Gordon expansion method

In other to solve (1) and (2) by using our method, we first reduce (1)
and (2) to differential equations. we make transformations

u(x, y, t) = u(ξ), v(x, y, t) = v(ξ) (3.13)

ξ = k(x+ αy − βt) (3.14)

Where ξ is real parameters and k, α, β are constant. The substitutions of
(20) and (21) into (1) and (2) yields

−kβu′ − bk3αu′′′ + 4bku′v + 4bkuv′ = 0, (3.15)

kv′ − kαu′ = 0, (3.16)

And integrating yields, (22) and (23)

−kβu− bk3αu′′′ + 4bkuv = 0, (3.17)

kv − kαu = 0, (3.18)

The substitutions of v = αu into (24) yields

−kβu− bk3αu′′ + 4bkαu2 = 0. (3.19)
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Balancing u2 with u′′ the gives n = 2.
According to method we assume that (26) has the solution

u(ξ) = A0 + A1 sinh(w) +B1 cosh(w) + A2 sinh(w) cosh(w) +B2 cosh2(w),
(3.20)

Subtituting (27) and (26) along with (4) and (5), yields a hyperbolic
polynomial about

w′s sinhi(w) coshj(w) (i = 0, 1; s = 0, 1; j = 0, 1, 2, ...). (3.21)

Setting the coefficients of (28) to zero, we get the following of equations:

− kβA0 − 2bk3αB2 + 2bk3αB2c+ 4bkαA2
0 − 4bkαA2

1 = 0,

bk3αA1 − bk3αA1c+ 8bkαA0A1 − kβA1 = 0,

− kβB1 + 2bk3αB1 − bk3αB1c+ 8bkαA0B1 − 8bkαA1A2 = 0,

− kβA1 + 5bk3αA2 − 4bk3αA2c+ 8bkαA1B1 − 8bkαA0A2 = 0,

−KβB2 + 8bk3αB2 − 4bk3αB2c+ 4bkαA2
1 − 4bkαA2

2

+ 8bkαA0B2 + 4bkαB2
1 = 0,

− 2bk3αA1 + 8bkαA1B2 + 8bkαB1A2 = 0,

− 2bk3αB1 + 8bkαA1A2 + 8bkαB1B2 = 0,

− 6bk3αA2 + 8bkαA2B2 = 0,

− 6bk3αB2 + 4bkαA2
2 + 4bkαB2

2 = 0.

Solving equations with Maple, we derive the following solutions :

A0 =
β

8bα
− 5

8
k2 +

1

2
k2c, A1 = 0, B1 = 0,

A2 = −3

4
αk2, B2 =

3

4
k2, β = −4bαk2

√
1

16
+ c2 − c

(3.22)
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We have obtained solutions of (24) and (25) if v = αu, these solutions
are



u21 =

(
β

8bα
− 5

8
k2 +

1

2
k2
)
− 3

4
k2cs (k(x+ αy − βt),m)

ns (k(x+ αy − βt),m) +
3

4
k2ns2 (k(x+ αy − βt),m) ,

v21 =

(
β

8bα
− 5

8
k2 +

1

2
k2
)
− 3

4
k2αcs (k(x+ αy − βt),m)

ns (k(x+ αy − βt),m) +
3

4
k2αns2 (k(x+ αy − βt),m)

(3.23)

When m→ 1, cs(ξ,m)→ csch(ξ) and ns(ξ,m)→ coth(ξ), c→ 0. so we
obtain the following soliton solutions of (1) and (2). (figure 3)



u22 = −3

4
k2 − 3

4
k2csch (k(x+ αy + bαk2t)) coth (k(x+ αy + bαk2t))

+
3

4
k2 coth2 (k(x+ αy + bαk2t)) ,

v22 = −3

4
k2α− 3

4
k2αcsch (k(x+ αy + bαk2t)) coth (k(x+ αy + bαk2t))

+
3

4
k2α coth2 (k(x+ αy + bαk2t))

(3.24)
when m → 0, cs(ξ,m) → coth(ξ) and ns(ξ,m) → csc(ξ), c → 1 so we
obtain the following trigonometric function solutions of (1) and (2)



u23 = −1

4
k2 − 3

4
k2 coth (k(x+ αy + bαk2t)) csc (k(x+ αy + bαk2t))

+
3

4
k2 csc2 (k(x+ αy + bαk2t)) ,

v23 = −1

4
k2α− 3

4
k2α coth (k(x+ αy + bαk2t)) csc (k(x+ αy + bαk2t))

+
3

4
k2α csc2 (k(x+ αy + bαk2t))

(3.25)
Some of the properties of these solutions of (1) and (2) are shown by
means of figures as follows: figure1 and figure 2 and figure 3 show the
properties of u12, v12 and u13, v13 and u22, v22, respectively, where we select
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parameters as follows:

k =
1

2
, α =

1

2
, b = 4

Fig. 1. the soliton solutions u12, v12 of the (2+1)-dimensional breaking soliton
equation are shown at x = 0.

Fig. 2. trigonometric function solutions u13, v13 of the (2+1)-dimensional
breaking soliton equation are shown at x = 0.
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Fig. 3. the soliton solutions u22, v22 of the (2+1)-dimensional breaking soliton
equation are shown at x = 0.

In summary, we have the sinh-Gordon expansion method and sinh-cosh
method to the (2+1)-dimensional breaking soliton equation. As a result,
Jacobi elliptic function solutions are obtained. When m→ 1, we get the
soliton solutions; while when m → 0, we get the trigonometric function
solutions.
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