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Abstract

In this paper, based on sinh-cosh method and sinh-Gordon expansion method,
families of solutions of (2+1)-dimensional breaking soliton equation are ob-
tained. These solutions include Jacobi elliptic function solution, soliton solu-
tion, trigonometric function solution.
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1 Introduction

There exist many methods for obtaining solutions of the (2+1)-Dimensional
breaking soliton equation, such as the Generalized Jacobi elliptic func-
tion method [2], (G'/G) Expansion method [3] and so on.

In this paper, by using the sinh-cosh method [1] and sinh-Gordon expan-
sion method [4,5], we construct elliptic function solutions in the (2+1)-
dimensional breaking soliton equation.

U — by + 4b(uv), =0, (1.1)
Vg — Uy = 0,

Where b is an arbitrary constant, the system (1)-(2) was used to de-
scribes the (2+1)-dimensional interaction of Riemann was propagated
along the y-axis with long wave propagated along the x-axis and it seems
to have been investigated extensively where over lapping solutions have
been derived.

2 Methods

Consider a given (2+41)-dimensional breaking soliton equation with in-
dependent variable x = (¢, x1, Z2,...) and dependent variables u(x). The
following formal solution of the given (2+1)-dimensional breaking soliton
equation will be sought by the following ansatz

u(zr) = Ao + i cosh’ ! (w) [A; sinh(w) + B; cosh(w)] (2.1)

=1

Where n is an integer which is determined by balancing the highest order
derivative term with the highest order nonlinear term in the given(1)-(2)
5], and Ay = Ao(z),..., A, = An(z), By = Bi(x),...,B, = By(z),w =
w(p), p = ax + p+ q Are all differentiable function.
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satisfies w

(“’)2 — sinh(w(p)) + ¢, (2.2)

Or in another form

d?w

e sinh(w) cosh(w), (2.3)

Where ¢ = 1 —m? and m is the modulus of Jacobi elliptic function.
Equation (2.2) has the following solution:

sinh(w) = es(pu, m) = m, (2.4)
cosh(w) = ns(u,m) = M, (2.5)

Where sn(u, m), en(u, m) are jacobian elliptic sine function and the jaco-
bian elliptic cosine function respectively.we can also seek (241)-dimensional
breaking soliton equation s solution in the up form where w = a(§),
¢ = k(z + ay — pt) where £ a real parameter and k, «v, § are constant.

3 the application of methods

3.1 the application of sinh-cosh method

Inother to solve (1) and (2) by using our method , we first reduce (1)
and (2) to a differential equations .we make transformations

u(z,y,t) = u(p),v(z,yt) = v(p), (3.1)
p=ar+p+q, (3.2)
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Where « is a nonzero constant and p is the function of, ¢ is a function .
The substitutions of (8) and (9) into (1) and (2) yields

¢ (H)u' — ba*p' B(y)u" + dbau'v + 4baun’ = 0, (3.3)
av’ —p'(y)u' =0, (3.4)

And integrating yields, (10) and (11)

¢ (t) — ba*p' B(y)u” + dbauv = 0, (3.5)
av —p'(y)u =0, (3.6)
- _ Py . :
The substitutions of v = w into (12) yields
a
¢ ()u — ba?p' B(y)u” + 4bp'u® = 0. (3.7)

Balancing u? with u” then gives n = 2.
According to method we assume that (14) has the solution

u(z) = Ag + Ay sinh(w) + By cosh(w) 4 Ay sinh(w) cosh(w) + By cosh?(w),
(3.8)

Substituting (15) into (14) along with (4) and (5), yields a differential

equation about setting the coefficients of sinh’(w) cosh? (w)(sinh?(w) +
k
0)2,i=1,2.:j=01Fk=0,1.
k
sinh’(w) cosh’ (w)(sinh?(w) +¢)2,i = 1,2,...;5 = 0,1;k = 0, 1 tozero, we
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get the overdetermined equations:

q'(t)Ao + ' (t) Ba + 2ba’p/ (y) Bac + 4bp' (y) A3 + 4bp/ (y) B + 4bp/ (y) B3
+ 8bp'(y) Ao B = 0,

q(t) Ay = ba’p(y) Ay — ba’p' (y) Ase + 8bp' (y) Ao Ay + 8bp'(y) A1 By
+ 8bp'(y) B1 Az = 0,

q'(t)A; — ba*p (y) Bic + 8bp/ (y) Ao By

+ 8bp'(y) B1 B2 = 0,

q'(t) Az — 4a?bp (y) Asc — ba’p' (y) Az + 8bp/ (y) A1 By + 8bp' (y) Ao Bo
+ 8bp’ (y) A Az = 0,

q (t) By — 4a”bp' () Asc — 402bp' (y) Bac + 4bp' (y) AT + 4bp' (y) A3

+ 8bp/ (y) B3

+ 8bp/ (y) Ag By + 4bp (y) B? = 0,

8bp' (y) B1As — 2b0°p' (y) Ay + 8bp/(y) A1 By = 0,

8bp' (y) A1 Ay + 8bp' (y) B1 By — 2ba”p/ (y) By = 0,

— 6bap/ () Ay + 8bp' (y) Ay By = 0,

— 6ba’p' (y) B + 4bp' (y) A3 + 4bp/ (y) B3 = 0.

Solving equations with Maple, we derive the solutions of the partial dif-
ferential equations.

1 1 ) 1
AOZ §a2 716 —C+CQ—§(X2+§QQC;A1 :OvBl :07
3, 3, 1 1
AQ:_ZQ ,BQZZOK D= Ozzy’q: [_46 E_C—i_CQ
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1
We have obtained solutions of (12) and (13) if v = —p/(y), these solutions
«

are
1 1 5 1
unzga?wﬁ—c%—&—goﬂ—i—?ﬁc
3 1 1
—EQQCS (ax + 2V + [—4()’ / 6 ¢ + (22] t, m)
4b L +c2|t
gt tm

1
—4 _ 2
b 16 c+c

1
+ns (ozx + —Y +
o

+-a’ns? (a:c + L +
2 Y
o

t,m)

3.10
Lo, 5 (3.10)
oV T T T 8a ! 2a°

3 1 1
1o (a:p—koﬁy—l— [—4b\/16—c+02 t,m)
4b 1 +c2|t
g ocTe|tm
4b = +c2|t
g cte|tm

When m — 1,es(pu,m) — csch(p) and ns(pu, m) — coth(u), ¢ — 0 so
obtain the following soliton solutions of (1) and(2). (figure 1)

1
+ns (a:c + =y +
«

3, 1
+—ns" |ar + <y +
4o a?

1 3 1 1
Uy = ——a? — —a’esch (am + =y — bt) coth (owc +—=y— bt)
2 4 o? o?
+1a2 coth? (ax + Y- bt)
1 3 1
Vg = 500 @csch (ozx + gy — bt> coth <ozx + gy — bt>
3 1
+1a2 coth? <ax + peiAN bt)

(3.11)

When m — 0, ¢s(u, m) — coth(u) and ns(p, m) — csc(pu), ¢ — 1 so ob-
tain the following trigonometric function solutions of (1) and (2). (figure
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3 1
Uz = _1&2 coth <ozx + Yy - bt> csc (Oé:L‘ + =y — bt>
3 9 o
+-afcsc” (ar + —y — 0t ),
4 a 3.12
3 1 1 (3.12)
vi3 = ——coth (az + —y — bt ) csc(ax + —y — bt
4ov o? o?
3 1
+—csc’ (ax + —y — bt
4o o?

3.2 the application of sinh-Gordon expansion method

In other to solve (1) and (2) by using our method, we first reduce (1)
and (2) to differential equations. we make transformations

u(z,y,t) = u(f),v(z,y,t) = v(E) (3.13)

¢ =k(x+ ay — pt) (3.14)

Where £ is real parameters and k, «, 8 are constant. The substitutions of
(20) and (21) into (1) and (2) yields

—kpu' — bkPau + 4bku'v + 4bkuv’ = 0, (3.15)

kv' — kau' =0, (3.16)
And integrating yields, (22) and (23)

—kpBu — bk* o’ + 4bkuv = 0, (3.17)

kv — kau = 0, (3.18)
The substitutions of v = au into (24) yields

—kBu — bk*an + 4bkau® = 0. (3.19)
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Balancing «? with «” the gives n = 2.
According to method we assume that (26) has the solution

u(€) = Ag + Ay sinh(w) + By cosh(w) + Ay sinh(w) cosh(w) + By cosh?(w),
(3.20)

Subtituting (27) and (26) along with (4) and (5), yields a hyperbolic
polynomial about

w' sinh’(w) cosh? (w) (i =0,1;5=0,1;5=0,1,2,...). (3.21)
Setting the coefficients of (28) to zero, we get the following of equations:

— kBAy — 2bk*a By + 2bk*aByc + 4bka Ay — 4bka AT = 0,
bk3aA; — bkPaAic + 8bkaAgAy — kBA; = 0,

— kB + 2bk*aB; — bk*aBc + 8bkaAyB; — 8bkaA; Ay = 0,
— kBA, + 5bk*aAy — 4bkPaAgc + S8bka Ay By — 8bkaAgAy =0,
— KBBy + 8bk*aBy — 4bk*aByc + 4bkaA? — 4bka Al

+ 8bka Ay By + 4bkaB? = 0,

— 2bk*a Ay + 8bka Ay By + 8bkaBy As = 0,

— 2bk3aB, + 8bkaAy Ay + 8bkaB By = 0,

— 6bk3aAy + 8bkaAy By = 0,

— 6bk*a By + 4bka A3 + 4bkaBs = 0.

Solving equations with Maple, we derive the following solutions :

_ B S A o =
A0_8b704 gk’ +§]€ C,AI—O,Bl—O,

5 3 i (3.22)
AQ:—Zak,BQ:Zk,ﬁ:—élbak T6+C2_C
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We have obtained solutions of (24) and (25) if v = au, these solutions
are

U = (8504 B ng + ;k2> N ikQCS (k(z + ay — Bt),m)
s (k(x + oy — B1).m) + Skns? (k(x + oy — B1). m).
s o5, 1, ] 42 (3.23)
gy = <8ba _ gk + 5k; > — Zk: acs (k(x 4+ ay — Bt), m)
ns (k(z + ay — Bt),m) + ik2an52 (k(z +ay — pt),m)

When m — 1,¢s(&,m) — csc h(€) and ns(§,m) — coth(€),c — 0. so we
obtain the following soliton solutions of (1) and (2). (figure 3)

3 3
Upp = ——k? — zk%sch (k(x + ay + bak?t)) coth (k(x + ay + bak?t))

+=k? coth? (k(z + ay + bak?t)),

Voy = ——k*a — ik%csch (k(z + ay + bak?t)) coth (k(x + ay + bak?t))

—I—Zkzoz coth? (k(z + ay + bak?t))

(3.24)
when m — 0,c¢s(&,m) — coth(§) and ns(,m) — csc(€),c — 1 so we
obtain the following trigonometric function solutions of (1) and (2)

1
Ugz = ——k? — ikz coth (k(x + ay + bak?t)) csc (k(x + ay + bak?t))

+—k*csc? (k(z + ay + bak?t)) ,

Vo3 = ——k?a — ik% coth (k(z + ay + bak?t)) csc (k(z + ay + bak?t))

+Zk2a csc? (k(z 4+ ay + bak?t))
(3.25)

Some of the properties of these solutions of (1) and (2) are shown by
means of figures as follows: figurel and figure 2 and figure 3 show the
properties of 112, v12 and u;3, v13 and uqs, V9, respectively, where we select
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parameters as follows:

Fig. 1. the soliton solutions w12, v12 of the (2+41)-dimensional breaking soliton
equation are shown at z = 0.

Fig. 2. trigonometric function solutions wui3,v13 of the (2+1)-dimensional
breaking soliton equation are shown at x = 0.
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Fig. 3. the soliton solutions ugg, vaa of the (241)-dimensional breaking soliton
equation are shown at = = 0.

In summary, we have the sinh-Gordon expansion method and sinh-cosh
method to the (2+1)-dimensional breaking soliton equation. As a result,
Jacobi elliptic function solutions are obtained. When m — 1, we get the
soliton solutions; while when m — 0, we get the trigonometric function
solutions.
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