
Theory of Approximation and Applications

Vol. 9, No.2, (2013), 81-100

On the singular fuzzy linear system of

equations

M. Nikuie a,∗ M. K. Mirnia b

aYoung Researchers and Elite Club, Tabriz Branch, Islamic Azad University,
Tabriz, Iran.

bDepartment of Computer engineering, Tabriz Branch, Islamic Azad
University, Tabriz, Iran.

Received 12 March 2011; accepted 19 April 2012

Abstract

The linear system of equations Ax̃ = b̃ where A = [aij ] ∈ Cn×n is a crisp
singular matrix and the right-hand side is a fuzzy vector is called a singular
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1 Introduction

The concept of fuzzy numbers and fuzzy arithmetic operations were
first introduced by Zadeh Dubois and Prade. The importance of the
introduced notion of fuzzy set was realized and has successfully been
applied in almost all the branches of science and technology. Recently
fuzzy set theory has been applied in pure mathematices by Tripathy
and Baruah [1], Tripathy and Borgohain [2], Tripathy, Sen and Nath [3],
Tripathy and Das [4], Tripathy and Sarma [5], Tripathy, Baruah, Et and
Gungor [6], Tripathy and Ray [7] and many others. We refer the reader
to [8,9,10] for more information on fuzzy numbers and fuzzy arithmetic.

Solving linear system of equations when the coefficient matrix is a crisp
matrix and the right-hand side is a fuzzy vector have been studied by
many authors [11,12,13,14]. Friedman et al. [9] introduced a general
model for solving a fuzzy n× n linear system whose coefficient matrix is
crisp and the right hand side column is an arbitrary fuzzy number vector.
Prof. S.Abbasbandy et al. proposed a method for finding minimal solu-
tion of general dual fuzzy linear systems [15]. In [16] proposed a model
to solve fuzzy linear system Ax = b , wherein A ∈ Cn×n is a nonsingular
crisp matrix using ordinary inverse. In this method the original system
with matrix A is replaced by two n × n crisp linear system. Ezzati give
a method for solving fuzzy linear system [17]. Normal equations for sin-
gular fuzzy linear systems is given [18]. In this paper, Ezzati’s method is
extended and on the singular fuzzy linear systems is performed.

The consistent singular fuzzy linear system of equations has a set solu-
tion and the inconsistent singular fuzzy linear system of equations has
a least squares set solution. For any matrix A ∈ Cn×n , even singular
matrices, index and Drazin inverse of A exists and is unique[19,20]. In
section 2, we recall some preliminaries for index of matrix, Drazin inverse
and pseudoinverse. In section 3, some new results on singular matrices is
given. A new method for solving singular fuzzy linear system is proposed
in section 4. Then we give numerical examples to illustrate previous sec-
tions in section 5. Section 6 ends the paper with the conclusions and
suggestions remarks.
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2 Preliminaries and Basic Definitions

In this section, the properties of the Drazin inverse and index of matrix
A ∈ Cn×n are needed. For this reason, we start our study by introducing
the concept of index of matrix, Drazin inverse, pseudoinverse and ap-
plication of them in solving linear system of equations. Also give some
definitions on the fuzzy numbers and fuzzy linear system of equations.
We refer the reader to [19,21,22,23,24,25].

Definition 2.1 Let A ∈ Cn×n . The index of matrix A is equivalent to
the dimension of largest Jordan block corresponding to the zero eigenvalue
of A and is denoted by ind(A).

Some properties of index of matrix are listed below. The details are ex-
plained in [26].
1. A ∈ Cn×n, o ≤ ind(A) ≤ n,
2. ind(A) = ind(AT ),
3. det(A) = 0 ⇐⇒ ind(A) 6= 0.

Definition 2.2 Let A ∈ Cn×n, with ind(A) = k. The matrix X of order
n is the Drazin inverse of A, denoted by AD, if X satisfies the following
conditions

AX = XA, XAX = X, AkXA = Ak.

When ind(A) = 1, AD is called the group inverse of A, and denoted by
Ag.

Theorem 2.1 [19, 25] Let A ∈ Cn×n, with ind(A) = k, rank(Ak) = r.
We may assume that the Jordan normal form of A has the form as follows

A = P

D 0

0 N

P−1,

where P is a nonsingular matrix, D is a nonsingular matrix of order r,
and N is a nilpotent matrix that Nk = ō. Then we can write the Drazin
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inverse of A in the form

AD = P

D−1 0

0 0

P−1.

When ind(A) = 1, obviously, N = ō.

Theorem 2.2 [26] For any matrix A ∈ Cn×n the index and Drazin in-
verse of A exists and is unique.

Theorem 2.3 [19] ADb is a solution of

Ax = b, k = ind(A), (2.1)

if and only if b ∈ R(Ak), and ADb is an unique solution of (2.1) provided
that x ∈ R(Ak).

Definition 2.3 Let A ∈ Cm×n. The matrix X of order n × m is the
pseudoinverse of A ,denoted by A+ , if X satisfies the following conditions

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

Theorem 2.4 [27] Let A ∈ Cm×n. We may assume that the singular
value decomposition of A has the form as follows

A = P

D 0

0 N

Q∗,

where P is an m ×m unitary matrix, D is an m × n diagonal matrix,
and Q is an n× n unitary matrix, then putting

A+ = Q∗

D−1 0

0 0

P ∗.

Theorem 2.5 [20] Any consistent singular linear system of equations,
is equivalent to an full-rank underdetermined linear system.
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Definition 2.4 The set of all these fuzzy numbers in parametric form is
denoted by E. A fuzzy number ũ in parametric form is a pair (ū(r), u(r))
of functions ū(r), u(r), 0 ≤ r ≤ 1, which satisfy the following require-
ments
1. u(r) is a bounded left continuous non-decreasing function over [0, 1],
2. ū(r) is a bounded left continuous non-increasing function over [0, 1],
3. u(r) ≤ ū(r), 0 ≤ r ≤ 1.

Definition 2.5 For arbitrary fuzzy numbers x̃ = (x(r), x̄(r)) , ỹ = (y(r), ȳ(r))
and k ∈ R, we may define the addition and the scalar multiplication of
fuzzy numbers as
1. x̃+ ỹ = (x(r) + y(r), x̄(r) + ȳ(r)) ,

2. k × x̃ =

 (kx(r), kx̄(r)) k ≥ 0

(kx̄(r), kx(r)) k < 0

Definition 2.6 The fuzzy linear system
a11 · · · a1n
...

. . .
...

an1 · · · ann




x̃1
...

x̃n

 =


b̃1
...

b̃n

 , (2.2)

where A = (aij) , 1 ≤ i ≤ n and 1 ≤ j ≤ n is a crisp singular matrix,
and the element b̃ij in the right-hand side matrix are fuzzy numbers is
called a singular fuzzy linear system. The fuzzy linear system (2.2) can
be extended into a crisp linear system as follows


s1,1 · · · s1,2n

...
. . .

...

s2n,1 · · · s2n,2n





x1
...

xn

−x̄1
...

−x̄n


=



b1
...

bn

−b̄1
...

−b̄n


,
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where sij are determined as follows :

 aij ≥ 0⇒ sij = aij, si+n,j+n = aij,

aij < 0⇒ si,j+n = −aij, si+n,j = −aij,

 (2.3)

and any sij which is not determined by (2.3) is zero. Using matrix nota-
tion we get

SX = Y. (2.4)

The structure of S = (sij), 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2n implies that and
that

S =

B C

C B

 ,
where B contains the positive entries of A and C contains the absolute
value of the negative entries of A , i.e., A = B − C .

For solving the fuzzy linear system (2.2) wherein A ∈ Cn×n is a non-
singular crisp matrix. Ezzati [17] first solve the following system



a11(x1 + x̄1) + · · ·+ a1n(xn + x̄n) = (y
1

+ ȳ1),

a21(x1 + x̄1) + · · ·+ a2n(xn + x̄n) = (y
2

+ ȳ2),
...

...

an1(x1 + x̄1) + · · ·+ ann(xn + x̄n) = (y
n

+ ȳn),

and suppose the solution of this system is as

d =


d1
...

dn

 =


x1 + x̄1

...

xn + x̄n

 .

Let matrices B and C have defined as definition 2.6. Now using matrix
notation for (2.2), He get Ax̃ = ỹ or (B − C)x̃ = ỹ and in parametric
form (B − C)(x(r), x̄(r)) = (y(r), ȳ(r)). Then he write this system as
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follows: Bx(r)− Cx̄(r) = y(r),

Bx̄(r)− Cx(r) = ȳ(r),

are equivalent. By substituting of x̄(r) = d−x(r) and x(r) = d− x̄(r) in
the first and second equation of above system, respectively. He get

(B + C)x(r) = y(r) + Cd,

and

(B + C)x̄(r) = ȳ(r) + Cd.

If the ordinary inverse of matrix F = B + C exist then, He can solve
fuzzy linear system (2.2) by solving following crisp linear systemsx(r) = F−1(y(r) + Cd),

x̄(r) = F−1(ȳ(r) + Cd).

Definition 2.7 [27] Consider a system of equations written in matrix
form as Ax = b where A is m × n, x is n × 1, and b is m × 1. The
minimal solution of this problem is defined as follows:

1. If the system is consistent and has a unique solution, x, then the
minimal solution is defined to be x.

2. If the system is consistent and has a set of solutions, then the minimal
solution is the element of this set having the least Euclidean norm.

3. If the system is inconsistent and has a unique least-squares solution,
x, the minimal solution is defined to be x.

4. If the system is inconsistent and has set of least-squares solutions, then
the minimal solution is the element of this set having the least Euclidean
norm.

Theorem 2.6 [15] The minimal solution of the system (2.4)
1. is obtained by x = S+Y .
2. is a fuzzy vector for an arbitrary fuzzy vector if and only if S+ is
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non-negative, i.e.

(S+)ij, 1 ≤ i ≤ 2n, 1 ≤ j ≤ 2n.

Theorem 2.7 [22] The fuzzy linear system (2.2) is a consistent fuzzy
linear system, if and only if rank[S] = rank[S|Y ].

Definition 2.8 [15] Let X(r) = {xi(r),−x̄i(r)), 1 ≤ i ≤ n} denote a
solution of (2.4). The fuzzy number vector U = {ui(r),−ūi(r)), 1 ≤ i ≤
n} defined by ui(r) = min{xi(r), x̄i(r), xi(1), x̄i(1)},

ūi(r) = max{xi(r), x̄i(r), xi(1), x̄i(1)}


is called a fuzzy solution of (2.4) . If (xi(r), x̄i(r)), 1 ≤ i ≤ n) , are all
fuzzy numbers and xi(r) = ui(r), x̄i(r) = ūi(r), 1 ≤ i ≤ n , then U is
called a strong fuzzy solution. Otherwise, U is a weak fuzzy solution.

3 New Results

The objective of this section is to give the new properties of the index
of matrix and Drazin inverse.

Theorem 3.1 Let A ∈ Cn×n . For any n ∈ N we have ind(An) ≤
ind(A) .

Proof. From [21] if λi; 1 ≤ i ≤ n are eigenvalues of A then λni ; 1 ≤ i ≤
n are eigenvalues of A . Let λ1(A)

= 0 be an eigenvalue of A and be
σ(λ1(A)

) = m the multiplicity of the eigenvalue λ1(A)
, then the maximum

number of linearly independent eigenvectors associated with λ1(A)
is

ρ1(A)
= n− rank(A).

Also if λ1(An)
= 0 we have ρ1(An)

= n− rank(An) . From [21] rank(An) ≤
rank(A) , then

ρ1(A)
(A) ≤ ρ1(An)

(An).
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Ind(A) is the dimension of largest Jordan block corresponding to the
zero eigenvalue of A [26]. Therefore ind(An) ≤ ind(A).

Theorem 3.2 For any A ∈ Cn×n , ind(AD) ≤ ind(A) .

Proof. Let λ1(A)
= 0 be an eigenvalue of A and be σ(λ1(A)

) = m the
multiplicity of the eigenvalue λ1(A)

, then the maximum number of linearly
independent eigenvectors associated with λ1(A)

is

ρ1(A)
= n− rank(A).

Also if λ1
(AD)

= 0 we have ρ1
(AD)

= n−rank(AD) . From [26] rank(AD) ≤
rank(A) , then

ρ1(A)
(A) ≤ ρ1

(AD)
(AD).

Ind(A) is the dimension of largest Jordan block corresponding to the
zero eigenvalue of A [26]. Therefore ind(AD) ≤ ind(A).

Corollary 3.1 Let A ∈ Cn×n, ind(A) = 1. By [26] rank(A) = rank(Ag)
, then ind(A) = ind(Ag).

Corollary 3.2 Let A ∈ Cn×n, ind(A) = 0, then ind(A) = ind(A−1).

Theorem 3.3 Let A ∈ Cn×nbe a singular matrix with index k, then
Ak+1 is a singular matrix.

Proof. For any matrix A ∈ Cn×n by Theorem 3.1, ind(An) < ind(A)
for n ∈ N . In this case, ind(A) > 1 we have ind(Ak+1) = ind(A) . Thus
Ak+1 is a singular matrix.

4 Solving Singular Fuzzy Linear Systems

In this sections, Ezzati’s method is extended and on the singular fuzzy
linear systems is performed. Then a method for finding minimal solution
of singular fuzzy linear system of equations Ax̃ = b̃ when every entry of
A be positive number, is given. It is to be note that, the linear system of
equations Ax = b where A = [aij] ∈ Cm×n, m < n is a rectangular crisp
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matrix, and the right-hand side is a fuzzy vector is called an underdeter-
mined fuzzy linear system of equations.
Generalized Ezzati’s method. Consider the following consistent sin-
gular fuzzy linear system

a11x̃1 + · · ·+ a1nx̃n = ỹ1,

a21x̃1 + · · ·+ a2nx̃n = ỹ2,
...

...

an1x̃1 + · · ·+ annx̃n = ỹn.

(4.1)

For solving consistent system (4.5) we first solve the following system

a11(x1 + x̄1) + · · ·+ a1n(xn + x̄n) = (y
1

+ ȳ1),

a21(x1 + x̄1) + · · ·+ a2n(xn + x̄n) = (y
2

+ ȳ2),
...

...

an1(x1 + x̄1) + · · ·+ ann(xn + x̄n) = (y
n

+ ȳn),

and suppose the solution of this system is as

d =


d1
...

dn

 =


x1 + x̄1

...

xn + x̄n


Let matrices B and C have defined as definition2.6 . According to Ezzati’s
method we have

(B + C)x(r) = y(r) + Cd, (4.2)

and

(B + C)x̄(r) = ȳ(r) + Cd. (4.3)

Theorem 4.1 If the consistent singular fuzzy linear system (4.5) is re-
placed by two n× n crisp linear systems (4.6) and (4.7), then

x(r) = (B + C)D(y(r) + Cd), k = ind(B + C),
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and

x̄(r) = (B + C)D(ȳ(r) + Cd), k = ind(B + C),

if and only if (x(r) +Cd) ∈ R((B+C)k) and (x(r) +Cd) ∈ R((B+C)k)
respectively.

Proof. Same as the proof of theorem2.7.3 in [19].

Therefore by theorem4.1. we can solving singular fuzzy linear systems
using generalized Ezzati’s method.

Theorem 4.2 The consistent singular fuzzy linear system of equations

Ax̃ = b̃, (4.4)

where A = [aij] ∈ Rn×n, aij > 0 , ind(A) = k , rank(A) = m and b̃
is a fuzzy vector, is equivalent to full-rank underdetermined fuzzy linear
system of equations.

Proof. For solving (4.8) we get 2n× 2n linear system



a11 · · · a1n
...

. . .
... 0

an1 · · · ann
a11 · · · a1n

0
...

. . .
...

an1 · · · ann





x1
...

xn

−x̄1
...

−x̄n


=



b1
...

bn

−b̄1
...

−b̄n


.

Since S is singular matrix by theorem 2.4 we have

XD = SDY =

 ADY

−ADȲ


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By theorem 2.5, the singular linear system (4.8) is equivalent to the
following row-reduced echelon matrix



r11 · · · r1n
...

. . .
... 0

rm1 · · · rmn

r11 · · · r1n
0

...
. . .

...

rm1 · · · rmn





x1
...

xn

−x̄1
...

−x̄n


=



c1
...

cn

−c̄1
...

−c̄n


(4.5)

The system (4.9) is the full-rank under determined linear system of equa-
tions. The systems (4.8) and (4.9) is equivalent. The minimal solution of
(4.8) is

XP =



r11 · · · r1n
...

. . .
... 0

rm1 · · · rmn

r11 · · · r1n
0

...
. . .

...

rm1 · · · rmn



+ 

c1
...

cn

−c̄1
...

−c̄n


=

 R+C

r −R+C̄.



Corollary 4.1 Equivalent systems of linear equations have exactly the
same solutions [28]. Therefore Xp is the minimal solution of the singular
fuzzy linear system of equations (4.8).

Corollary 4.2 It is clear that the consistent singular linear system of
equations has a set solution, and the inconsistent singular linear system
of equation has a least squares set solution. Typically, an underdetermined
system has an infinite number of solutions [21]. Thus XD may not be the
minimal solution of the underdetermined fuzzy linear system of equations
(4.9). However is a solution of it.
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5 Numerical Examples

In this section, we give numerical examples to illustrate previous sections.

Example 5.1 Consider the following consistent singular fuzzy linear sys-
tem of equations 

x̃1 + 3x̃2 + x̃3 = (r, 3− r),

x̃1 + 3x̃2 + 3x̃3 = (2r,−3r + 5),

x̃1 + 3x̃2 + x̃3 = (r, 3− r).

(5.1)

By Theorem 2.3 for computing Drazin inverse of the matrix A we have

A = P−1


6 0 0

0 −1 0

0 0 0

P, P =


1
7

3
7

2
7

1
7

3
7
−5

7

1 0 −1,


thus

AD = P−1


1
6

0 0

0 −1 0

0 0 0

P =


1
6

1
2
−2

3

−1
9
−1

3
7
9

1
6

1
2
−2

3
.


From Theorem 4.2 we have

x1

x2

x3

−x̄1
−x̄2
−x̄3


=



1
6

1
2
−2

3
0 0 0

−1
9
−1

3
7
9

0 0 0

1
6

1
2
−2

3
0 0 0

0 0 0 1
6

1
2
−2

3

0 0 0 −1
9
−1

3
7
9

0 0 0 1
6

1
2
−2

3





r

2r

r

−3 + r

3r − 5

−3 + r


=



1
2
r

0

1
2
r

−1 + r

−1
3
− 1

3
r

−1 + r


.
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Thus 
x̃1 = (1

2
r, 1− r),

x̃2 = (0, 1
3
r + 1

3
),

x̃3 = (1
2
r, 1− r),


is the solution of (5.10). Obviously x̃1, x̃2 and x̃3 are not fuzzy numbers.
Therefore the corresponding fuzzy solution is a weak fuzzy solution given
by 

ũ1 = (0, 1− r),

ũ2 = (0, 2
3
),

ũ2 = (0, 1− r).


The system SX = Y and the full-rank underdetermined fuzzy linear sys-
tem



1 3 0 0 0 0

0 0 1 0 0 0

0 0 0 1 3 0

0 0 0 0 0 1





x1

x2

x3

− x̄1
− x̄2
− x̄3


=



1
2
r

1
2
r

− 2

r − 1


, (5.2)

is equivalent by theorem 4.2. Therefore

x1

x2

x3

− x̄1
− x̄2
− x̄3


=



1 3 0 0 0 0

0 1 0 0 0 0

0 0 0 1 3 0

0 0 0 0 0 1



+ 

1
2
r

1
2
r

− 2

r − 1


,

is the minimal solution of (5.11). Thus minimal solution of the singular
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fuzzy linear system (5.11) is


x̃1 = ( 1

20
r, 1

5
),

x̃2 = ( 3
20
r, 3

5
),

x̃2 = (1
2
r, 1− r).



Obviously x̃3 is not fuzzy number, and hence we can obtain the weak
minimal fuzzy solution as follows


x̃1 = ( 1

20
r, 1

5
),

x̃2 = ( 3
20
r, 3

5
),

x̃2 = (0, 1− r).



Example 5.2 Consider the following consistent singular fuzzy linear sys-
tem of equations

 5x̃1 + 10x̃2 = (12 + 6r, 27− 9r),

10x̃1 + 20x̃2 = (24 + 12r, 54− 18r).
(5.3)

By theorem2.3 we have

A = P−1

 5 0

0 0

P, P =

−1
5
−2

5

4
5
−2

5

 ,

thus

AD = P−1

−1
5

0

0 0

P =

 1
125

2
125

2
152

4
125

 .
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Therefore

XD =



x1

x2

− x̄1
− x̄2


=



1
125

2
125

0 0

2
152

4
125

0 0

0 0 1
125

2
125

0 0 2
152

4
125





12 + 6r

24 + 12r

− 27 + 9r

− 54 + 18r


=



12
25

+ 6
25
r

24
25

+ 12
25
r

− 27
25

+ 9
25
r

− 54
25

+ 18
25
r


.

Thus  x̃1 = (12
25

+ 6
25
r, 27

25
− 9

25
r),

x̃2 = (24
25

+ 12
25
r, 54

25
− 18

25
r),


is the solution of (5.12). XD is a strong fuzzy solutions. The system
(5.12) and the full-rank underdetermined fuzzy linear system

 5 10 0 0

0 0 5 10




x1

x2

− x̄1
− x̄2


=

 12 + 6r

9r − 27

 , (5.4)

are equivalent. In this case, we show that XD = XP . By Theorem 4.2

XP =



x1

x2

− x̄1
− x̄2


=

 5 10 0 0

0 0 5 10


+  12 + 6r

9r − 27

 =



12
25

+ 6
25
r

24
25

+ 12
25
r

− 27
25

+ 9
25
r

− 54
25

+ 9
18
r


,

is the minimal solution of (5.12). Thus x̃1 = (12
25

+ 6
25
r, 27

25
− 9

25
r),

x̃2 = (24
25

+ 12
25
r, 54

25
− 9

18
r),


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is the minimal solution of the singular fuzzy linear system (5.12).

Example 5.3 Consider the following consistent singular fuzzy linear sys-
tem of equations  x̃1 − x̃2 = (2 + r, 3),

3x̃1 − 3x̃2 = (6 + 3r, 9).
(5.5)

By generalized Ezzati’s method we can get the following system 1 −1

3 −3


 x1 + x̄1

x2 + x̄2

 =

 5 + r

15 + 3r

 .
By theorem2.3 we have 1 −1

3 −3

 = P−1

−2 0

0 0

P, P =

 1
2
−1

2

3
2
−1

2

 .
Therefore we can get thus x1 + x̄1

x2 + x̄2

 =

 1 −1

3 −3


D  5 + r

15 + 3r

 =

 −5
2
− 1

2
r

− 15
2
− 3

2
r

 .
By theorem2.3 we have 1 1

3 3

 = P−1

 4 0

0 0

P, P =

−1
4
−1

4

3
4
−1

4

 .
We get ind(B + C) = 1 then

x(r) =

 1
16

1
16

3
16

3
16

 [ y + Cd

]
=

 −11
8
− 1

8
r

− 33
8
− 3

8
r

 ,
and

x̄(r) =

 1
16

1
16

3
16

3
16

 [ ȳ + Cd

]
=

 −9
8
− 3

8
r

− 27
8
− 9

8
r

 .
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is a solution of (5.14).

6 Conclusions and Suggestions

In this paper, solving singular fuzzy linear system of equations Ax̃ = b̃
is investigated. Generalized Ezzati’s method for solving such system is
given. A method for finding minimal solution of singular fuzzy linear
system of equations Ax̃ = b̃ while A be a crisp matrix with positive
elements is given. Solving singular fuzzy linear system of equations by
iterative methods is suggested.
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