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Abstract

We consider a new type of integrable coupled nonlinear Schrodinger (CNLS)
equations proposed by our self [submitted to Phys. Plasmas (2011)]. The ex-
plicit form of soliton solutions are derived using the Hirota’s bilinear method.
We show that the parameters in the CNLS equations only determine the re-
gions for the existence of bright and dark soliton solutions. Finally, through
the linear stability analysis, the modulational instability condition is given.
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1 Introduction

The nonlinear Schrodinger equation has appeared widely in study of dy-
namical behavior of dusty plasma crystals [1], in nonlinear plasma [2],[3],
in laser plasma interaction [4], in many body systems [5], in nonlinear op-
tics [6], and in optical communications [7]. The coefficients which appears
in nonlinear Schrodinger equation determines the stability/instability re-
gion of propagating wave. When two waves interact nonlinearly with each
other, the nonlinearity provides a coupling between waves. The coupling
may leads to change of stability condition. The instability growth rate
associated with a single unstable wave is increased by the presence of a
second wave. A wave that is stable in isolation can be destabilized by
the presence of a second unstable wave. The existence and uniqueness of
global solutions for rough data of the nonlinear Schrodinger equation cou-
pled with the nonlinear Klein-Gordon equation (NS-KG) with quadratic
coupling and cubic auto-interactions have been proved recently in [8]. Re-
cently modulational instability of the NS-KG system has investigated [9].
On the integrability of these coupled systems, Manakov [?],[11] showed
first that if the coupling is only through cross-phase modulation (XPM),
and the XPM coefficient is equal to the self-phase modulation (SPM) co-
efficient, then this system (now called the Manakov system) is integrable.
Multisoliton solutions in the Manakov system have also been extensively
investigated by the inverse scattering method and the Hirota method
[10]-[14], and an interesting phenomenon of polarization rotation after
collision has been found. Later studies revealed that when the XPM co-
efficient is opposite of the SPM coefficient, the system is still integrable
[15]-[17]. The two- and three-soliton solutions in this model were obtained
by the Hirota method in Ref. 18, and a phenomenon of energy redistribu-
tion between solitons after collision was reported. More general forms of
integrable coupled NLS equations were also mentioned in Refs. 15 and 17,
but multisoliton solutions in such systems have not been examined yet.
Given the importance of the general coupled NLS equations for various
physical problems, these equations deserve careful and detailed investi-
gations. Generally speaking, there exist five principally different cases of
the coupling between two modes in a Kerr medium and corresponding
vectorial solitary waves (for simplicity, we assume the case of the tempo-
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ral solitons and focusing nonlinearity):
* Bright solitons, each in the mode with the anomalous dispersion (vec-
tor bright solitons) [e.g., Manakov [11], Christodoulides and Joseph [19]
and Menyuk [20]];
* Bright soliton in the mode with the anomalous dispersion coupled to
a dark soliton in the mode with normal dispersion (normal dark-bright
pair) [e.g., Afanasjev et al. [21], Hong et al. [22] and Kivshar [23]];
* Bright soliton in the mode with normal dispersion exists due to mutual
coupling to a dark soliton in the mode with anomalous dispersion (the
so-called inverted dark-bright pair) [e.g., Trillo et al. [24] and Afanasjev
et al. [21]];
* Two dark solitons, each in the mode with the normal dispersion (vector
dark solitons) [e.g., Kivshar and Turitsyn [25] and Sheppard and Kivshar
[26]];
* Bright pulse supported by a dark soliton, both modes are with the
normal dispersion (soliton induced waveguides, in the linear limit, or
dark-bright pair, in a nonlinear regime) [e.g., Christodoulides [19] and
Sheppard and Kivshar [26]].
All these cases are described by two NLS equations, coupled due to
crossphase modulation. These coupled equations become asymmetric for
the interaction between envelopes of different carrier frequencies or some
additional coupling terms, e.g. due to four-wave mixing effect, may ap-
pear. Park and Shin proved integrability of CNLS, include one cou-
pling term due to four-wave mixing effect [18]. In this work, we consider
CNLS equations include additional coupling terms in comparison with
the known investigations, which appear as result of study of dynamical
behavior of dusty plasma crystal. Then we investigate the stability con-
dition of CNLS equations. A model to describe the interaction of two
dust lattice modes is the CNLS equations. Nonlinearity is manifested
via a slow modulation of the wave amplitudes, in time and space. The
amplitude evolution is described by these equations[Wang [27]]

i∂u11
∂t

+P1
∂2u11
∂x2

+Q11u11|u11|2+Q12u11|v11|2+Q13u
∗
11v

2
11+Q14v

∗
11u

2
11 = 0

(1.1)

73



i
∂v11
∂t

+P1
∂2v11
∂x2

+Q21v11|v11|2 +Q22v11|u11|2 +Q23v
∗
11u
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11 +Q24u

∗
11v

2
11 = 0

(1.2)
where t and x represent the time and distance, respectively. Also Pi and
Qij are the real constants, and indicates on dispersion and nonlinearity
respectively. Integrability of this system can be investigated via Hirota’s
method, or existence of Lax pair.

2 Exact solution

The Hirota’s method provides an efficient and straightforward procedure
to obtain the soliton solutions of the NLEEs [27],[28]. When the bilinear
is derived, one may get the soliton solutions, especially the multi-soliton
solution directly through the truncated formal perturbation expansion at
different levels [29]-[32]. In the following part, we will employ this method
to construct the soliton solutions by means of symbolic computation. In
order to construct Hirota’s bilinear form of system (1-2), we consider the
bilinear transformations

u11 = g/f, v11 = h/f (2.1)

where g, h and f are functions of x and t, as g and h are complex functions
and f is real function. The bilinear form of System (1-2) is obtained as
follows:

(iDt + P1D
2
x)(g · f) = 0, (2.2)

(iDt + P2D
2
x)(h · f) = 0, (2.3)

(D2
x(f · f) = (Q11|g|2 +Q12|h|2 +Q13g

∗h2/g +Q14gh
∗)/P1, (2.4)

(D2
x(f · f) = (Q21|h|2 +Q22|g|2 +Q23h

∗g2/h+Q24hg
∗)/P2, (2.5)

So the left hand sides of Eqs.(3c) and (3d) become equal. Hence the
right hand sides of these equations should also be equal which is true
only when Q11/P1 = Q22/P2 = q1, Q12/P1 = Q21/P2 = q2,
Q13/P1 = Q24/P2 = q3, Q14/P1 = Q23/P2 = q4,
The above conditions can be obtained by equating the coefficients of |g|2,
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|h|2, g∗h and gh∗ respectively in Eqs.(3c) and (3d). One can easily check
that Eq.(4) admits the already known integrability conditions. We believe
that these conditions may be very useful for the experimental generation
of solitons in nonlinear couplers. In order to obtain the soliton solutions,
we are applying a perturbative technique by writing the variables g, h
and f as a series in an arbitrary parameter ε

g = εg1 + ε3g3 + · · ·, h = εh1 + ε3h3 + · · ·, f = 1 + ε2f2 + ε4f4 + · · ·, (2.6)

So we can obtain the single and multiple- soliton solutions for system
(1-2).
2.1.Single soliton solution
To obtain the single soliton solution (SSS), we assume solutions in a series
form in ε such that:

g = εg1, h = εh1, f = 1 + ε2f2, (2.7)

We shall now substitute these expressions into Eqs. (3) and collect the
contributions appearing in each power in ε. At first order we have:

(iDt + P1D
2
x)(g1 · 1) = 0(iDt + P2D

2
x)(h1 · 1) = 0 (2.8)

In the second order:

2D2
x(f2 · 1) = (q1|g1|2 + q2|h1|2 + q3g

∗
1h

2
1/g1 + q4g1h

∗
1) (2.9)

In the third order:

(iDt + P1D
2
x)(g1 · f2) = 0(iDt + P2D

2
x)(h1 · f2) = 0 (2.10)

In this case, the solutions are found to be

g1 = aeα1 , h1 = beα2+ϕ, α1 = k1/
√
−P1x− ik21t, α2 = k1/

√
−P2x− ik21t

(2.11)
If we suppose P1 = P2 = P , then we have α1 = α2 = α, so for simplicity
we apply this suppose in the following calculations. Substituting from
Eq.(10) into Eq.(8), we can obtain

f2 =
1

2(k1 + k∗1)2
(q1|a|2eα+α

∗
+q2|b|2eα+α

∗+ϕ+ϕ∗
+q3a

∗b2eα+α
∗+ϕ/a+q4ab

∗eα+α
∗+ϕ∗

)

(2.12)
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Substituting Eqs. (10) and (11) into Eq.(2), through the Eq.(6) and after
absorbing ε, the single soliton solution to be

u11 =
(k + k∗)a√

2(q1|a|2 + q2|b|2eϕ+ϕ∗ + q3a∗b2eϕ ÷ a+ q4ab∗) cosh(kx)
exp(−ik2t)

(2.13)

v11 =
(k + k∗)b√

2(q1|a|2 + q2|b|2eϕ+ϕ∗ + q3a∗b2eϕ ÷ a+ q4ab∗) cosh(kx)
exp(−ik2t)

(2.14)
In order to ensure a real dispersion relation and a continuation of the
dark soliton regime, we must require that the dispersion parameter P be
a negative constant.
2.2.Multiple soliton solution
To obtain the two soliton solution (TSS), we assume solutions in a series
form in ε such that:

g = εg1 + ε3g3, h = εh1 + ε3h3, f = 1 + ε2f2 + ε4f4, (2.15)

Then following the procedure of previous section, two soliton solution of
System (1) is presented as

u11 = εg1 + ε3g3 ÷ 1 + ε2f2 + ε4f4, v11 = εh1 + ε3h3 ÷ 1 + ε2f2 + ε4f4
(2.16)

where
g1 = eα1 + eα2 ,h1 = g1,αj = kj/

√
−Px− ik2j t

f2 = q1 + q2 + q3 + q4 ÷ 8[1÷ k21e2α1 + 1÷ k22e2α2 + 4÷ (k1 + k2)
2eα1+α2 ]

g3 = −g1f2, h3 = −h1f2 Through the asymptotic analysis of Solutions
(14), the collisions between two solitons, including two dark solitons, and
two bright solitons have been found to be elastic (as seen in Figures. 1-2).

3 Stability analysis

For analyze of stability condition, we apply a small perturbation on the
system. Then we consider perturbation as an additional term to the solu-
tion of equilibrium state. Substituting perturbation solution in the system
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of equations, one can find that the perturbation term satisfy a set of equa-
tions from which can leads to the nonlinear dispersion relation (NDR).
The stability condition can extract from behavior of NDR. First, we shall
seek an equilibrium state in the form

u11 = U0 exp[iΩ1τ ]andv11 = V0 exp[iΩ2τ ] (3.1)

into equations (1), where U0 ,V0 are (constant real) amplitude and Ω1

,Ω2 are (real) phase. We can find a solution of the form

Ω1 = [Q11U0|U0|2 +Q12U0|V0|2 +Q13U0V
2
0 +Q14V0U

2
0 ]/U0 (3.2)

Ω2 = [Q21V0|V0|2 +Q22V0|U0|2 +Q23V0U
2
0 +Q24U0V

2
0 ]/V0 (3.3)

Then we consider a small perturbation around equilibrium situation, and
substitute

u11 = [U0+ε(U1R+iU1I)] exp(iΩ1τ) and v11 = [V0+ε(V1R+iV1I)] exp(iΩ2τ)
(3.4)

into (1). Separating real and imaginary parts of equations, the first order
terms in ε, leads to

∂M1I

∂τ
= F1M1R + F2M2R (3.5)

∂M2I

∂τ
= F3M1R + F4M2R (3.6)

∂M1R

∂τ
+ F5M1I + F6M2I = 0 (3.7)

∂M2R

∂τ
+ F7M1I + F8M2I = 0 (3.8)

where coefficients has defined in appendix-A.
Eliminating M1I and M2I , these equations yield

∂2M1R

∂τ 2
+ (F5F1 + F6F3)M1R + (F5F2 + F6F4)M2R = 0 (3.9)
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∂2M2R

∂τ 2
+ (F7F1 + F8F3)M1R + (F7F2 + F8F4)M2R = 0 (3.10)

We consider a harmonic perturbation in the form

M1R = M1R0 exp[i(Kξξ+Kηη−Ωτ)] , M2R = M2R0 exp[i(Kξξ+Kηη−Ωτ)]
(3.11)

Eqs. (22) and (23) can be reduced to

AST − Ω2 BST

CST DST − Ω2


M1R

M2R

 = 0

where the matrix elements are complicated expressions of the coefficients
in (1), which has defined in appendix-A. The determinant in the system
of equations (25) must vanish, for consistency, leading to a dispersion
relation (for the perturbation) in the form

Ω4 − Ω2T +D = 0 (3.12)

where

T = AST +DST and D = ASTDST −BSTCST (3.13)

Equation (26) is a quadratic polynomial equation in Ω, possessing four
(complex, in general) roots. Thanks to its (bi-quadratic) structure, it can
be viewed as a quadratic polynomial equation in Ω2. Therefore, stability
is ensured if both solutions (for Ω2), say Ω2

±, are positive real (hence all
four solutions ±

√
Ω±2 are real). Since the roots satisfy T = Ω2

+ +Ω2
− and

D = Ω2
+Ω2

−, stability will be ensured if the following three conditions are
satisfied simultaneously: T ≥ 0,D ≥ 0 and ∆ = T 2 − 4D ≥ 0. Figures 3
and 4 depicts the quantities T , D and ∆ defined above, for two modes of
a wave propagating in the x-direction in a dusty plasma crystal. We see
that stability is always ensured for one mode but no for another in this
case.
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4 Conclusion

In this work we consider CNLS equations, which describe the interaction
between dust lattice modes in dusty plasma crystal, and investigated it
via system (1), mathematically. The bilinear form, Eqs.(3), has been de-
rived via the Hirota method, and then proved condition of the integrabil-
ity of this system. The soliton solutions in have been obtained through
bilinear form. Through the asymptotic analysis of Solutions (14), the
collisions between two solitons, including two Bright solitons, have been
found to be elastic (as seen in Figures. 1-2). Finally, we have made the
linear stability analysis and obtained condition for the stability. Through
suitable choices of the parameters, we will graphically analyze stability
conditions (Figures 3-4).
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Appendix A.
F1 = P1

∂2

∂x2
− 3Q11ψ

2
10 − (Q12ψ20ψ10 + 2Q14)ψ10ψ20 −Q13ψ

2
20 + Ω1

F2 = −Q14ψ
2
10 − (2Q12 + 2Q13)ψ10ψ20

F3 = −2Q23ψ10ψ20 −Q24ψ
2
20

F4 = P2
∂2

∂x2
− 3Q21ψ

2
20 − (Q22 + 2Q24)ψ10ψ20 −Q23ψ

2
10 + Ω2

F5 = P1
∂2

∂x2
−Q11ψ

2
10 − (Q12ψ20ψ10 + 2Q14)ψ10ψ20 −Q13ψ

2
20 + Ω1

F6 = −2Q13ψ10ψ20 +Q14ψ
2
10

F7 = −2Q23ψ10ψ20 + 2Q24ψ
2
20

F8 = P2
∂2

∂x2
−Q21ψ

2
20 +Q23ψ

2
20 − (Q22 + 2Q24)ψ10ψ20 + Ω2

AST = [−P1K
2 − 2Q13ψ

2
20 +Q14ψ10ψ20][−P1K

2 + 2Q11ψ
2
10 +Q14ψ10ψ20]

+ [Q24ψ
2
20 + 2(Q22 +Q23)ψ10ψ20][−Q14ψ

2
10 + 2Q13ψ10ψ20]

BST = [−P1K
2 − 2Q13ψ

2
20 +Q14ψ10ψ20][Q14ψ

2
10 + 2(Q12 +Q13)ψ10ψ20]

+ [−Q14ψ
2
10 + 2Q13ψ10ψ20][−P2K

2 + 2Q21ψ
2
20 +Q24ψ10ψ20]

CST = [Q24ψ
2
20 + 2Q23ψ10ψ20][−P1K

2 + 2Q11ψ
2
10 +Q14ψ10ψ20]

+ [Q24ψ
2
20 + 2(Q22 +Q23)ψ10ψ20][−P2K

2 −Q23ψ
2
10 +Q24ψ10ψ20]

DST = [−Q24ψ
2
20 + 2Q23ψ10ψ20][Q14ψ

2
10 + 2(Q12 +Q13)ψ10ψ20]

+ [−P2K
2 + 2Q21ψ

2
20 +Q24ψ10ψ20][−P2K

2 −Q23ψ
2
10 +Q24ψ10ψ20]
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List of Figures

Figure 1. Elastic collision between two dark solitons via solutions (14).
Parameters are k1 = 2k2 = 0.5, P = −1, q1 = 0.5q2 = −q3 = −q4 = 2.

Figure 2. Elastic collision between two bright solitons via solutions (14).
Parameters are k1 = 2k2 = 0.5, P = 1, q1 = 0.5q2 = −q3 = −q4 = 2.
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Figure 3. The behavior of (a)T , (b)D and (c)T 2 − 4D versus K for
ka = 0.1 and θ = 0 (first mode).

Figure 4. The behavior of (a)T , (b)D and (c)T 2 − 4D versus K for
ka = 0.1 and θ = 0 (second mode).

84


	Introduction
	Exact solution
	 Stability analysis 
	Conclusion
	References

