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Abstract

In this paper, an application of homotopy perturbation method is applied
to finding the solutions of the seven-order Sawada-Kotera (sSK) and a Lax’s
seven-order KdV (LsKdV) equations. Then obtain the exact solitary-wave so-
lutions and numerical solutions of the sSK and LsKdV equations for the initial
conditions. The numerical solutions are compared with the known analytical
solutions. Their remarkable accuracy are finally demonstrated for the both
seven-order equations.

Keywords: Homotopy perturbation method, The seventh-order Sawada-Kotera equa-
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1 Introduction

In recent years, the application of the homotopy perturbation method (HPM) [10, 12]
in nonlinear problems has been developed by scientists and engineers, because this
method continuously deforms the difficult problem under study into a simple problem
which is easy to solve. The homotopy perturbation method [11], proposed first by
He in 1998 and was further developed and improved by He [12, 13, 16]. The method
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yields a very rapid convergence of the solution series in the most cases. Usually, one
iteration leads to high accuracy of the solution. Although goal of He’s homotopy
perturbation method was to find a technique to unify linear and nonlinear, ordinary
or partial differential equations for solving initial and boundary value problems. Most
perturbation methods assume a small parameter exists, but most nonlinear problems
have no small parameter at all. A review of recently developed nonlinear analysis
methods can be found in [14]. Recently, the applications of homotopy perturbation
theory among scientists were appeared [1-9], which has become a powerful mathemat-
ical tool, when it is successfully coupled with the perturbation theory [12, 15, 16].
In this work we would like to implement the HPM to the sSK and equations which
can be shown in the form:

ut + (63u4 + 63(2u2uxx + uu2
x) + 21(uuxxxx + u2

xx + uxuxxx) + uxxxxxx)x = 0, (1.1)

ut + (35u4 + 70(u2uxx + uu2
x) + 7(2uuxxxx + 3u2

xx + 4uxuxxx) + uxxxxxx)x = 0, (1.2)

respectively. Eq. (1.1) equation is known as the seventh-order Sawada-Kotera equa-
tion [20] and Eq. (1.2) is known as Laxs seventh-order [19].

2 Basic idea of homotopy perturbation method

To illustrate HPM consider the following nonlinear differential equation:

A(u)− f(r) = 0, r ∈ Ω, (2.1)

with boundary conditions:

B(u, ∂u/∂n) = 0, r ∈ Γ, (2.2)

where A is a general differential operator, B is a boundary operator, f(r) is a known
analytic function and Γ is the boundary of the domain Ω.
The operator A can be generally divided into two parts F and N , where F is linear,
whereas N is nonlinear. Therefore, Eq. (2.1) can be rewritten as follows:

F (u) + N(u)− f(r) = 0. (2.3)

He [17] constructed a homotopy v : Ω× [0, 1] −→ R which satisfies:

H(v, p) = (1− p)[F (v)− F (v0)] + p[A(v)− f(r)] = 0, (2.4)

or
H(v, p) = F (v)− F (v0) + pF (v0) + p[N(v)− f(r)] = 0, (2.5)

where r ∈ Ω, p ∈ [0, 1] that is called homotopy parameter, and v0 is an initial
approximation of (2.1). Hence, it is obvious that:

H(v, 0) = F (v)− F (v0) = 0, H(v, 1) = A(v)− f(r) = 0, (2.6)
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and the changing process of p from 0 to 1, is just that of H(v, p) from F (v)− F (v0)
to A(v)− f(r). In topology, this is called deformation, F (v)−F (v0) and A(v)− f(r)
are called homotopic. Applying the perturbation technique [18], due to the fact that
0 ≤ p ≤ 1 can be considered as a small parameter, we can assume that the solution
of (2.4) or (2.5) can be expressed as a series in p, as follows:

v = v0 + pv1 + p2v2 + p3v3 + . . . , (2.7)

when p→ 1, (2.4) or (2.5) corresponds to (2.3) and becomes the approximate solution
of (2.3), i.e.,

u = lim
p→1

v = v0 + v1 + v2 + v3 + . . . . (2.8)

The series (2.8) is convergent for most cases, and the rate of convergence depends on
A(v), [11].

3 The method of solution

In this section, we will describe HPM for solving Eqs. (1.1) and (1.2). Consider the
standard form of the Equation (1.1) in an operator form:

Lt(u) + (63(K1u) + 63(2(K2u) + (M1u))+ (3.1)

21((M2u) + (N1u) + (N2u)) + Lxu)x = 0.
where the notations K1u = u4, K2u = u2uxx, M1u = uu2

x, M2u = uuxxxx, N1u = u2
xx

and N2u = uxuxxx symbolize the nonlinear term, respectively. The notation Lt = ∂
∂t

and Lx = ∂6

∂x6 symbolize the linear differential operators. Assuming the inverse of

the operator L−1t exists and it can conveniently be taken as the definite integral with

respect to t from 0 to t, i.e., L−1t =
∫ t

0
(.)dt. Thus, applying the inverse operator L−1t

to (3.1) yields:

L−1t Lt(u) = −L−1t ((63(K1u) + 63(2(K2u) + (M1u))+ (3.2)

21((M2u) + (N1u) + (N2u)) + Lxu)x).
Therefore, it follows that:

u(x, t)− u(x, 0) = −L−1t ((63(K1u) + 63(2(K2u) + (M1u))+ (3.3)

21((M2u) + (N1u) + (N2u)) + Lxu)x).
Since initial value is known and decompose the unknown function u(x, t) as a sum
of components defined by the decomposition series u(x, t) =

∑∞
0 vn(x, t) with v0

identified as u(x, 0).
For solving this equation by HPM, let F (u) = u(x, t)− h(x, t) = 0, where h(x, t) =
u(x, 0). Hence, we may choose a convex homotopy such that:

H(v, p) = v(x, t)− h(x, t) + p

∫ t

0

((63(K1u) + 63(2(K2u) + (M1u))+ (3.4)
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21((M2u) + (N1u) + (N2u)) + Lxu)x)dt = 0.

Substituting (2.7) into (3.4) and equating the terms with identical powers of p, we
have:

p0 : v0(x, t) = h(x, t),

p1 : v1(x, t) = −
∫ t

0

(63v40 + 63(2v20(v0)xx + v0(v20)x) +

21(v0(v0)xxxx + (v20)xx + (v0)x(v0)xxx) + Lxv0)xdt,

p2 : v2(x, t) = −
∫ t

0

(63(4v30v1) + 63(v20(v1)xx + 2v0v1(v0)xx +

v1(v20)x + 2v0(v1)x(v0)x) + 21(v0(v1)xxxx + v1(v0)xxxx + (2v0v1)xx +

(v0)x(v1)xxx + (v1)x(v0)xxx) + Lxv1)xdt,

p3 : v3(x, t) = −
∫ t

0

(63(4v30v2 + 2v20v
2
1 + 4v20v

2
1) + 63(4v0v2(v0)xx + 2v21(v0)xx +

2v20(v2)xx +

2v0(v0)x(v1)x + (v21)xv0) + v20(v2)x) + 21(v0(v1)xxxx + v1(v0)xxxx +

(2v0v1)xx + ((v0)x(v1)xxx + (v1)x(v0)xxx) + Lxv1)xdt,
....

So we can calculate the terms of u =
∑∞

n=0 vn, term by term, otherwise by computing

some terms say k, u ≈ ϕk =
∑k−1

n=0 vn, where u = limk→∞ ϕk an approximation to
the solution would be achieved.

4 Test examples

Example 1. We first consider sSk equation (1.1) with the initial condition by:

u(x, 0) =
4k2

3
(2− 3 tanh2(kx)). (4.1)

A homotopy can be readily constructed as follows:

u(x, t)−h(x, t)+p

∫ t

0

((63u4+63(2u2uxx+uu2
x)+21(uuxxxx+u2

xx+uxuxxx)+uxxxxxx)x)dt = 0.

(4.2)
Substituting (2.7) into (4.2), and equating the terms with identical powers of p, gives:
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p0 : v0(x, t) = 4k2

3 (2− 3 tanh2(kx)),

p1 : v1(x, t) = 14336
3 k9(2 − 3 tanh2(kx))3 tanh(kx)(1 − tanh2(kx))t + 2688k5(2 −

3 tanh2(kx))

(16k4 tanh2(kx)(1 − tanh2(kx)) − 8k4(1 − tanh2(kx))2) tanh(kx)(1 −
tanh2(kx))t−

244k4(2− 3 tanh2(kx))2(64k5(1− tanh2(kx))2 tanh(kx)− 32k5 tanh3(kx)(1−

tanh2(kx)))t− 2150k8(2− 3 tanh2(kx)) tanh(kx)(1− tanh2(kx))2t + 1792k8

(2− 3 tanh2(kx))2(1− tanh2(kx))2t− 3584k8(2− 3 tanh2(kx))2 tanh2(kx)(1−

tanh2(kx))t+336k3 tanh(kx)(1−tanh2(kx))(64k6(1−tanh2(kx))3−352k6(1−

tanh2(kx))2 tanh2(kx)+64k6 tanh4(kx)(1−tanh2(kx)))t−28k2(2−3 tanh2(kx))

(1664k7(1− tanh2(kx))2 tanh3(kx)− 1088k7(1− tanh2(kx))3 tanh(kx)−

128k7 tanh5(kx)(1− tanh2(kx)))t− 2688k6(1− tanh2(kx))2 tanh2(kx))t +

448k6(2−3 tanh2(kx))(1−tanh2(kx))2t−896k6(2−3 tanh2(kx)) tanh2(kx)(1−

tanh2(kx))t + 168k4(1 − tanh2(kx))2(64k5(1 − tanh2(kx))2 tanh(kx) −
32k5 tanh(kx)

(1−tanh2(kx)))t−336k4 tanh2(kx)(1−tanh2(kx))(64k5(1−tanh2(kx))2 tanh(kx)−

32k5 tanh3(kx)(1− tanh2(kx)))t− 1664k7(1− tanh2(kx))2 tanh3(kx)t +

1088k7(1− tanh2(kx))3 tanh(kx)t + 128k7 tanh5(kx)(1− tanh2(kx))t,
....

Continuing this process the complete solution u(x, t) = limk→∞ ϕk found by means

of n-term approximation ϕk =
∑k−1

n=0 vn. The solution u(x, t) in a series form and

in a close form by [19] u(x, t) = 4k2

3 (2 − 3 tanh2(k(x − 256k6

3 t))). This result can be
verified through substitution.

Example 2. Consider the LsKdV equation [19] (1.2) with the initial condition is
given by:

u(x, 0) = 2k2sech2(kx). (4.3)
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The solution of this equation, we simply taken the equation in the form of Eq.(3.1) and
using the initial value u(x, 0) (4.3) to obtain the components of v0(x, t), v1(x, t), v2(x, t)
etc. A homotopy can be readily constructed as follows:

u(x, t)−h(x, t)+p

∫ t

0

((35u4+70(u2uxx+uu2
x)+7(2uuxxxx+3u2

xx+4uxuxxx)+uxxxxxx)x)dt = 0.

(4.4)
Substituting (2.7) into (4.4), and equating the terms with identical powers of p, gives:

p0 : v0(x, t) = 2k2sech2(kx),

p1 : v1(x, t) = 4480k9sech8(kx) tanh(kx)t+1120k5sech4(kx)(8k4sech2(kx) tanh2(kx)−

4k4 tanh(kx))t−280k4sech4(kx)(32k5 tanh(kx)−16k5sech2(kx) tanh3(kx))t−

35840k10sech8(kx) tanh2(kx)t+4480k10sech6(kx)t+168k3sech2(kx)(32k6sech2(kx)

tanh4(kx)−176k6 tanh2(kx)+32k6(1−tanh2(kx))) tanh(kx)t−28k2sech2(kx)

(832k7 tanh3(kx)−64k7sech2(kx) tanh5(kx)−544k7 tanh(kx)(1−tanh2(kx)))t−

1344k6sech4(kx) tanh2(kx)t + 336k6sech2(kx)t− 224k4(32k5 tanh(kx)−

16k5sech2(kx) tanh3(kx))t + 64k7sech2(kx) tanh5(kx)t− 832k7 tanh3(kx)t +

544 tanh(kx)(1− tanh2(kx))t,
....

Continuing this process the complete solution u(x, t) = limk→∞ ϕk found by means

of n-term approximation ϕk =
∑k−1

n=0 vn. The solution u(x, t) in a series form and
in a close form by [19] u(x, t) = 2k2sech2(k(x − 64k6t)). This result can be verified
through substitution.

5 Numerical experiments

In this section, we consider the sSK and LsKdV equations for numerical comparisons.
Based on the HPM, we constructed the solution u(x, t) as u ≈ ϕk =

∑k−1
n=0 vn, where

u = limk→∞ ϕk. In this Letter, we demonstrate how the approximate solutions of
the sSK and LsKdV equations are close to exact solutions. In order to verify numer-
ically whether the proposed methodology lead to higher accuracy, we can evaluate
the numerical solutions using the n-term approximation. Tables 1 and 2 show the
difference of the analytical solution and numerical solution of the absolute errors. It
is to be note that 3 terms only were used in evaluating the approximate solutions.
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We achieved a very good approximation with the actual solution of the equations by
using 3 terms only of the decomposition derived above. It is evident that the overall
errors can be made smaller by adding new terms of the decomposition series.

Table 1: Numerical results for |u(x, t)− ϕ3(x, t)| where

u(x, t) = 4k2

3 (2− 3 tanh2(k(x− 256k6

3 t))) when k = 0.1, for Eq. (4.1)

ti\xi 0.1 0.2 0.3 0.4 0.5
0.1 9.680871E-5 9.666091E-5 9.634256E-5 9.585464E-5 9.519873E-5
0.2 1.9359368E-4 1.9323749E-4 1.9254064E-4 1.9150556E-4 1.9013561E-4
0.3 2.9035835E-4 2.8973310E-4 2.8859761E-4 2.86955927E-4 2.8481371E-4
0.4 3.8710601E-4 3.8615103E-4 3.8451663E-4 3.8220892E-4 3.7923611E-4
0.5 4.8384002E-4 4.8249459E-4 4.8030098E-4 4.7726770E-4 4.7340589E-4

Table 2: Numerical results for |u(x, t)− ϕ3(x, t)| where
u(x, t) = 2k2sech2(k(x− 64k6t)) when k = 0.1 for Eq. (4.3)

ti\xi 0.1 0.2 0.3 0.4 0.5
0.1 1.5235676E-4 1.5217536E-4 1.5177028E-4 1.5114268E-4 1.5029413E-4
0.2 3.0467663E-4 3.0428498E-4 3.0344638E-4 3.0216288E-4 3.0043790E-4
0.3 4.5696529E-4 4.5633465E-4 4.5503389E-4 4.5306621E-4 4.5043679E-4
0.4 6.0922849E-4 6.0833001E-4 6.0653841E-4 6.0385810E-4 6.0029605E-4
0.5 7.6147198E-4 7.6027667E-4 7.5796562E-4 7.5454412E-4 7.5002106E-4

6 Conclusion

In this work, we successfully apply the homotopy perturbation method to approxi-
mate the solution of sSK and LsKdV equations. It gives a simple and a powerful
mathematical tool for nonlinear problems. In our work, we use the Maple Package to
calculate the series obtained from the iteration method.
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