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Abstract

In this paper, we prove the existence of the solution for boundary value prob-
lem(BVP) of fractional differential equations of order ¢ € (2,3]. The Kras-
noselskii’s fixed point theorem is applied to establish the results. In addition,
we give an detailed example to demonstrate the main result.
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1 Introduction

Fractional differential equations are the generalization of ordinary differ-
ential equation to arbitrary non-integer order, and have received more
and more interest due to their wide applications in various sciences, such
as physics, chemistry, biophysics, capacitor theory, blood flow phenom-
ena, electrical circuits, control theory, etc, also recent investigations have
demonstrated that the dynamics of many systems are described more
accurately by using fractional differential equations. So fractional differ-
ential equations have attracted many authors.

In [1], Nickolai was concerned with the nonlinear differential equation of
fractional order

D, u(t) = f(t,u(t),u'(t)) ae. te(0,1),

where D{, is Riemann-Liouville(R-L) fractional order derivative, subject
to the boundary conditions u(0) = u(1) = 0. The author obtained the
existence of at least one solution by using the Leray-Schauder Continu-
ation Principle.

In [2], Zhang has given the existence of positive solution to the equation

Diu(t) + f(t,u(t)) =0, 0 <t <1,

u(0) +u'(0) = u(l) + /(1) =0,
by the use of classical fixed point theorems, where®D? denotes Caputo
fractional derivative with 1 < g < 2. Very recently, Chen (see[3]) con-

sidered the existence of three positive solutions to three-point boundary
value problem of the following fractional differential equation

Di u(t) + f(t,u(t)) =0, 0 <t <1,
u(0) = 0, Doult) |i=1= aDg u(t) 1=,

where 1 < ¢ <2,0<p<1, 1+p<gq,and DE, is the R-L fractional
order derivative. The multiplicity results of positive solutions to the equa-
tions are obtained by using the well-known Leggett-Williams fixed-point
theorem on a convex cone. The other excellent studies of fractional dif-
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ferential equations can be founded in [4,5,6,7,8].
Motivated by the paper mentioned above, we study the existence of pos-
itive solution to two-point BVP of nonlinear fractional equation

Di u(t)+ Af(t,u(t)) =0, 0 <t <1,

(1.1)
u(0) = Dfyu(?t) [i=o= Di u(t) |e=1=0,

where ¢,p € R, 2 < ¢ < 3,1 <p <2 1+p<gq, Di, is the R-L
fractional order derivative, and f € C([0, 1] x [0,00),[0,00)), A > 0. By
using Krasnoselskii’s fixed point theorem, the positive solution to the
equations (1) is obtained.

2 Preliminaries

In this section, we present some definitions and preliminary results.

Definition 2.1 (see equation (2.1.1) in [4]) The R-L fractional integrals
I§. f of order p € R (p > 0) is defined by

11w = [ G @

Here I'(p) is the Gamma function.

Definition 2.2 (see equation (2.1.5) in [4]) The R-L fractional deriva-
tive Di, f of order p € R (p > 0) is defined by

DR () =(5 ) I ()
U d e fmd
Sl /O(x_t)w+1 (n=[p+1, z>0),

where [p] means the integral part of p.
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Lemma 2.3 (see Lemma 2.4 and property 2.2 in [4]) If 1 > g2 > 0,
then, for f(x) € L,(0,1),(1 <p < 00), the relations

Do Igh f () =I5} f(x),
ILIE f(2) = I8 f(z) and DI f(x) = f(a)
hold a.e. on [0,1].

Lemma 2.4 (see Lemma 2.5 in [4]) Let ¢ > 0, n = [q] + 1, f(x) €
L1(0,1), then the equality

18, D, f(2) = f(2) + 3 Gt
=1

Lemma 2.5 Let y € C[0,1], 2<¢<3,1<p<2, 1+p<gq, then the
problem
Di u(t) +y(t) =0, 0 <t <1, (2.1)

subject to the boundary conditions
u(0) = Dyyu(t) [i=o= Doyu(t) [i=1=0, (2.2)

has the unique solution u(t) = [} G(t,s)ds, where

IN
V)
IN
IN

0
0

—_ =

1 |t 1 —s)r Pl — (t—s)0
I'(q)

G(t,s) = ——
(t.s) f(1 gyt

VAN
~
INA
V)
IN

And that G(t,s) has the following properties
I) G(t,s) € C([0,1] x [0,1]), and G(t,s) >0 fort,s € (0,1) and
max G (t,s) = G(s,s) where s € (0,1).

0<t<1
II)There exists a positive function ¢ € C((0,1) x (1,4+00)) such that

min G (t,s) = p(s)G(s,s) > inf ¢ (s) max G (t,s) = 7G(s,s),

<t< T o<s<1 0<t<1

=
o

where

G(s,s) = . s,7e(0,1), 7= ,Inf o (s).

<s<1
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Proof.. Applying the operator I§, to both sides of the equation (2), and
using Lemma 2, we have

u(t) = —Ig,y(t) + Crt?™ + Cot 172 + Cst973. (2.3)

In view of the boundary condition u(0) = 0, we find that C3 = 0, hence
u(t) = I, y(t) + Ot 4 Cot T2

then, noting the relation D@ I{} f(x) = I§ * f(z) in Lemma 1, we obtain

['(q)

T'(g—1
Df,u(t) = =15 Py(t) + 01 g — tiP1 4 —(q ) 142

p) I(g—p—1) ’
in accordance with the equations (3) ,we can calculate out that
1 /1
C) = F(q)/o (1—35)7P y(s)ds, Cy = 0.
Substituting the values of C,Cy and Cj in (4), we have

a1

u(t) = — 1_‘7 /t(t —3)” 1 y(s)ds + Tq) /01(1 — S)Q—p—ly(s)ds
ot / 11 (1= )T (= )T y(s)ds

Next we prove the properties of G(t, s).
For a given s € (0,1), G(t,s) is decreasing with respect to t for s <t
while increasing for t < s. Thus, we have

sqfl(l — S)qufl s17P(1 — S)qufl ~

— < —
0H<1?<X1G(f; s) = G(s,s) ) < ) G(s,s),
for s € (0,1). Then we set
$a-1(1 — 5)0P~1 — (¢ — )91 ta-1(1 — s)a-p-1
gl ) = T T O g - )

['(q)
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from the two equation above we have

1| o751 — )l — (075 — s)1 L, 0 < s <,
<t<§ [(g) | 0.250-1(1 — s)ap-1, r<s<l,

where i <r< % is the unique solution of the equation
0.757 (1 — 8) P71 — (0.75 — 8) 1 = 0.2577 (1 — s)? P71,

Finally, we consider a function ¢(s) defined by

IIllIl G (t S) 0'75(1—1 1— q—p—1_ 0.75— g—1
gp(s) — & — (Sq,sg(l_s)q7£71 <) 5 0<s S r,
G(s,s) 02591 r<s<d.

sqa—p

When ¢ > p—1 we find from the continuity of ¢(s) and lim ¢ (s) =400
5—0

that there exists 7 small enough such that ¢'(s) < 0 for s € (0, 7], hence,

we set

0<7= Oirslilgp (S) = mZTL{(,O(T’),m, F} < 17
here, m = min ¢ (s).
r<s<r
When ¢ = p — 1, we have slir(r)lJr v(s) = %(q — 1), then we set
. P 4
0<7= inf ¢(s)=min{inf o(s),3(a-1), =<1l

Thus,

in G(t,s) > p(s)G(s,s) > inf ¢ (s) max G (t,s) = 7G(s, s).

<t< T 0<s<1 0<t<1

PN
N1

This completes the proof. Therefore, the solution u € Cjo 1) of the problem
(1) can be written by

u(t) = /\/01 G(t, s)f(s,u(s))ds.
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Lemma 2.6 (see/9]) Let E be a Banach space and P C E is a cone
in E. Assume that 1 and o are open subsets of E with 0 € Q, and
Q) C Q. Let A: PN (Q2\Q1) — P be a completely continuous operator.
In addition suppose either

(1) || Au|| < ||u||, Yu € PN 0OQy and |Au|| > ||u||, Yu € PN OQy or

(2) || Au|| < ||u||, Yu € PN 0OQy and || Au|| > ||u||, Yu € P N OO

holds. Then A has a fized point in PN (Q2\Q).

Define P to be a cone in Cloq) (with norm |ju|| = max lu(t)]) by

P={ueCpy|u(t)>0,tel0,1] and mln u(t) > 7lull},

4— —4

and the operator A : P — Cloq) by

ult) = /\/01 G(t, 8)f(5,u(s))ds. (2.4)

Lemma 2.7 If A is defined by (5), then A : P — P is completely con-
tinuous.

Proof.. First, assume that f € C([0,1] x [0,00),[0,00)), u € P, and
from Lemma 3, we have

1

0<t<1 0
= 7 Au(t)],
thus A: P — P.
Second, VN >0, Let Q ={Q C P: ||u|| < N,u € Q} and
M = max  f(t,u(t)), and noting the property (II) of G(t,s), we

(t,u)€[0,1]x[0,N]
can easily obtain A(QY) is bounded.
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Third, for each u € Q, let ty,ty € [0, 1] such that t; < to, then we have

[Auts) — Au(ta)| =] [ Gtz )f(s,u(s))ds - /0 Gt ) f(5,u(s)ds
g [ = = =
it swl <1—s>q—11}f<s,u<s>>ds
[ = (- s
(1= sy 1}f(s u(s))ds

1

+ ) (L =) T (L= )T (s u(s))ds|

<I‘€\q) /Ol(tgl — 171 (1 — )P f (s, u(s))ds
<Dt - [ - sy
:L(tq—l _ tq—l)
F(q)((q — p)) ? L
_AM(g—1 B -
_F(q)((q _p)) [t +0(t — )] (2 — 1), (0<0<1)
MM (g —1 w2
<m2 (ta — t).

Thus, Ve > 0, 30 = 5%, we have |Au(ty) — Au(ty)| < € for
to—t1 < d. Therefore, A(S2) is equivalent-continuous, so the Arzela-Ascoli
theorem implies that the operator A : P — P is completely continuous.

This completes the proof.

3 Main Results

In this section, we study the existence of the positive solution to BVP of

. fltu) _ e S
equations (1). Suppose (H;) EI(I)EF OS<1t11<)1 = 0, (Hy) ugrfoo ogtl; =
+00,
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(H3) lim inf ftu) _ +00, (Hy) lim sup St w) =0.

Theorem 3.1 If (Hy) and (Hsy) hold, then for all A > 0, the equations
(1) have a positive solution.

Theorem 3.2 [f (H3) and (Hy) hold, then for all X > 0, the equations
(1) have a positive solution.

The Proof of Theorem 1. From (Hy), there exists L; € (0,1) such that
f(t,u) < mu for (t,u) € [0,1] x (0, L], where n; > 0 satisfying

M fy G(s,8)ds < 1. Thenlet Q; = {u € P: |ju|| < L1}, 0 = {u e P:
|lu|| = L1}, for u € 9, we have

which implies that
|Aul| < JJul|, for u € 9. (3.1)

On the other hand, from (H;), there exists Ly > Ly such that f(¢,u) >
3

nou for (t,u) € [0,1]x[La, 00), where 1, > 0 satisfying Anp7? [ G(s, s)ds >
4

1. Then let 2y = {u € P : ||lu|]| < Lo}, 02 = {u € P : ||u|]| = Lo}, for
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u € 0§29, we have

min_ Au (t) = min )\/01 G(t,s)f(s,u(s))ds

3
<t<y

1
2)\7'772/0 G(s, s)u(s)ds

]

2)\7'772/l G(s, s)u(s)ds

4

=27 [, Gls, s)dslful] = [jull

4

w

which implies that
|Aul| > ||u||, for u € 0. (3.2)

Then from (6), (7) and Lemma 4, the operator A has a fixed point in
PN (2\Q).
The Proof of Theorem 2. By the similar method of the proof of Theorem
1, we can easily obtain Q3 = {u € P : ||u|]| < L3}, 0Q3 ={u € P : ||ju|| =
Ls}, and Q4 = {u € P : |Ju|| < L4}, 004 = {u € P : |ju|| = L4}, and
satisfying

|Aul| > ||ul|, for u € 093, (3.3)
and

[Aull < [lul], for u € Oy, (3.4)

respectively. Then from (8), (9) and Lemma 4, we obtain a fixed point
of operator A in P N (Q4\ Q).

4 Example

We consider the following problem

5
DEu(t)+(t+1u?=0,0<t<1,
3 3
u(0) = D§,ult) o= D, u(t) [1=1=0.
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(t+ 1)u?

Then f(t,u) = (t +1)u?>, A\=1, and lim sup —>— =0,
) = 4+ 1) e
. . (t+Du? »
lim inf ~——— = o0, so the condition (H;) and (Hz) hold. On the

u—+o00 0<t<1 U
other hand, substituting the equations ¢ = g and p = % in G(t,s) and
©(s), we have

1 Jt2—(t—s)2, 0<s<t<1,
G(t7 S) = 1—\ § 3
(3) | 43, 0<t<s<l,
and
3 3
" (0.75)2720.7573)2, 0<s<r
P s) = 3
0252 r<s<l,

s ?

where r is the unique solution of the equation

o

(0.75)2 — (0.75 — 5)2 = (0.25)2.

By calculating the minimum of ¢(s), we obtain 7 = ¢. Thus, we set L; =
Ju?

I m=2<-+—1— =35I"(3) then f(t,u) = (t + 1)u® < 2u® < nu, for
20 1 [T G(s.9)d 21\ n
0 s,8)ds

(t,u) € [0,1] x [0, Ly]. Therefore, we derive

1
_51200(3) 1 _5120I(2) _
Next we set Ly = e e T eads . gEr then f(t,u) =

0.25

(t+ u? > u? > nau, for (t,u) € [0,1] x [Lg, +00). Therefore, we derive

51200 (2
Q= {ueP: |ul < 35(12>}. (4.3)
3 —

According to (11) and (12), from Theorem 1, we obtain a positive solution

5
u of (10) such that & < [Jul| < %”1)
2
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