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1 Introduction

A matrix has an inverse only if it is square, and even then only if it
is nonsingular, or, in other words, if its columns (or rows) are linearly
independent. In recent years needs have been felt in numerous areas of
applied mathematics for some kind of partial inverse of a matrix that is
singular or even rectangular [1]. The inverse of singular and rectangular
matrices is called generalized inverses. Linear system of equations play
major role in various areas such as fuzzy mathematics [2, 3], differential
equations [4], and integral equations [5]. There is many methods for solv-
ing fuzzy and crisp Volterra and Fredholm integral equations [6, 7, 8]. In
[5] a two-step diagonally-implicit collocation based methods for Volterra
integral equations using a systems of equations is given.

The principal application of the generalized inverses is to system of equa-
tions that is inconsistent or have a set of solutions [9]. The effect of normal
equations in solving such systems is explained in [10, 11]. In this paper,
indicial equations for singular linear system of equations is introduced
and the effect of indicial equations in solving inconsistent singular linear
system of equations is investigated. The purpose of this paper, is give
a new approach to the inconsistent singular linear system of equations.
In section 2, some preliminaries that we shall use in later are presented.
New results on the Drazin inverse and Pseudoinverse are given, in sec-
tion 3. The title of section 4, is indicial equations and normal equations.
Finally, the properties of the introduced concepts are illustrated in the
last section.

2 Preliminaries and Basic Definitions

In this section, we present some definitions and simple properties of
index of matrix, drazin inverse, pseudoinverse and minimal solutions. For
more details, we refer the reader to [12,13,14].

Definition 2.1 Let A ∈ Cn×n . The index of matrix A is equivalent to
the dimension of largest Jordan block corresponding to the zero eigenvalue
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of A and is denoted by ind(A).

Definition 2.2 Let A ∈ Cn×n, with ind(A) = k. The matrix X of order
n is the Drazin inverse of A, denoted by AD, if X satisfies the following
conditions

AX = XA, XAX = X, AkXA = Ak

When ind(A) = 1, AD is called the group inverse of A, and denoted by
Ag.

Theorem 2.1 [15] Let A ∈ Cn×n, with ind(A) = k, rank(Ak) = r. We
may assume that the Jordan normal form of A has the form as follows

A = P

D 0

0 N

P−1
where P is a nonsingular matrix, D is a nonsingular matrix of order r,
and N is a nilpotent matrix that Nk = ō. Then we can write the Drazin
inverse of A in the form

AD = P

D−1 0

0 0

P−1.

When ind(A) = 1, obviously, N = ō.

Theorem 2.2 [16] For any matrix A ∈ Cn×n the index and Drazin in-
verse of A exists and is unique.

Theorem 2.3 [9] ADb is a solution of

Ax = b, k = ind(A) (2.1)

if and only if b ∈ R(Ak), and ADb is an unique solution of (2.1) provided
that x ∈ R(Ak).

Definition 2.3 An arbitrary complex m×n matrix A can be factored as

A = PDQ∗ (2.2)
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where P is an m×m unitary matrix,

D =



σ1
. . .

σr

0
. . .

0


is an m × n diagonal matrix, and Q is an n × n unitary matrix. The
factorization in the preceding Definition is called singular value decom-
position.

The singular value decomposition is a matrix factorization whose com-
putation is a step in many algorithms. By (2.2) the relation b = Ax can
be expressed in terms of b′ = P ∗b and x′ = Q∗x

b = Ax⇔ P ∗b = P ∗Ax = P ∗PDQ∗ ⇔ b′ = Dx′

Definition 2.4 The pseudoinverse of a general matrix A is defined by
first taking a singular value decomposition (2.2) and then putting

A+ = QD+P ∗,

where

D+ =



1
σ1

. . .

1
σr

0
. . .

0


.
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Theorem 2.4 [11] Corresponding to any matrix A there exists at most
one matrix having these four (Penrose) properties

(AX)∗ = AX, (XA)∗ = XA, XAX = X, AXA = A.

Definition 2.5 [11] Consider a system of equations written in matrix
form as Ax = b where A is m × n, x is n × 1, and b is m × 1. The
minimal solution of this problem is defined as follows:

(1). If the system is consistent and has a unique solution, x, then the
minimal solution is defined to be x.

(2). If the system is consistent and has a set of solutions, then the min-
imal solution is the element of this set having the least Euclidean
norm.

(3). If the system is inconsistent and has a unique least-squares solution,
x, the minimal solution is defined to be x.

(4). If the system is inconsistent and has set of least-squares solutions,
then the minimal solution is the element of this set having the least
Euclidean norm.

Theorem 2.5 [11] The minimal solution of the system

Ax = b,

is given by the pseudoinverse x = A+b.

Definition 2.6 A number λ ∈ C, is called an eigenvalue of the matrix
A if there is a vector x 6= 0 such that Ax = λx. Any such vector is called
an eigenvector of A associated to the eigenvalue λ.

The set L(λ) = {x | (A − λI)x = 0} forms a linear subspace of Cn, of
dimension

ρ(λ) = n− rank(A− λI).

The integer ρ(λ) = dimL(λ) specifies the maximum number of linearly
independent eigenvectors associated with the eigenvalue λ. It is easily
seen that ϕ(µ) = det(A− µI) is a nth-degree polynomial of the form

ϕ(µ) = (−1)n(µn + αn−1µ
n−1 + · · ·+ α0).
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It is called the characteristic polynomial of the matrix A. Its zeros are
the eigenvalues of A. If λ1, · · · , λk are the distinct zeros of ϕ(µ), then ϕ
can be represented in the form

ϕ(µ) = (−1)n(µ− λ1)σ1(µ− λ2)σ2 · · · (µ− λk)σk .

The integer σi, which we also denote by σ(λi) = σi, is called the multi-
plicity of the eigenvalue λi.

3 New results on the Drazin inverse and pseudoinverse

In this section, new results on the Drazin inverse and pseudoinverse
are given.

Theorem 3.1 Let A ∈ Cn×n be a symmetric matrix with index one.
Then Ag = A+.

Proof. Ag is group inverse of A, then we have

AAg = AgA, AgAAg = Ag, AAgA = A.

A = AT from [10], (Ag)
T = Ag, thus we can write

 (AAg)
T = (Ag)

TAT = AgA = AAg

(AgA)T = AT (Ag)
T = AAg = AgA.



Therefore by theorem 2.4, we have Ag = A+.

Theorem 3.2 Let A ∈ Cn×n be a symmetric matrix with index one.
Then (A+)T = A+.
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Proof. The pseudoinverse of A is A+, then we have

(A+A)T = AT (A+)T = (A+)TAT

(AA+)T = (A+)TAT = AT (A+)T

(A+)TA(A+)T = (A+)T

A(A+)TA = A.



Since pseudoinverse of A is unique, therefore (A+)T = A+.

Theorem 3.3 If A ∈ Cn×n is a symmetric matrix with index one, and
λ 6= 0 is an eigenvalue of it, then 1

λ
is an eigenvalue of A+.

Proof. From Ax = λx, (x 6= 0) we have

AA+x = λA+x.

Then
A+AA+x = λA+A+x.

We can get A+x = λA+A+x . Now if we set A+x = y we have 1
λ
y = A+y.

Therefore 1
λ

is an eigenvalue of A+.

Theorem 3.4 Let A ∈ Cn×n be a singular matrix. Then ATA is a sin-
gular matrix.

Proof. We know that rank(A) = rank(AT ) [10], since

rank(ATA) ≤ min{rank(A), rank(AT )},

then ATA is a singular matrix. In addition, let λ(1A) = 0, then

ρ(λ(1A)) = n− rank(A),

and for matrix ATA we have

ρ(λ(ATA)) = n− rank(ATA).
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Therefore by definition 2.1, we have ind(A) ≤ ind(ATA).

Theorem 3.5 Let AD be the Drazin inverse of A. Then (AD)n for n ∈
N , is the Drazin inverse of An .

Proof. By Definition 2.2, we have

Let ind(AD) = l, then

(Al)n(AD)n(An) = (P

Dl 0

0 N l


n

P−1) = (Al)n.

Therefore, by definition 2.2, (AD)n, for n ∈ N is Drazin inverse of An.

Theorem 3.6 Let AD be the Drazin inverse of A. Then (AD)T is the
Drazin inverse of AT .

Proof. Let ind(A) = k and AD be Drazin inverse of A . Therefore (AAD)T = (AD)TAT = (ADA)T = AT (AD)T ,

(ADAAD)T = (AAD)T (AD)T = (AD)T (AT )(AD)T = (AD)T

 .

By [10], we have ind(A) = ind(AT ). Thus

(AkADA)T = (ADA)T (Ak)T = (AT )(AD)T (Ak)T = (Ak)T (AD)T (AT ) = (Ak)T .

Therefore, by definition 2.2, (AD)T is drazin inverse of AT .

4 Indicial equations and Normal equations

In this section, the effect of indicial equations and Normal equations in
solving inconsistent singular linear system of equations, are investigated.
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Consider the inconsistent singular linear system of equations

Ax = b, k = ind(A), (4.1)

(4.1) has a set of least squares solutions, then the minimal solution is a
member of this set that has the least Euclidean norm. In such cases, it
is often required to find an x that minimizes the norm of the residual
vector b−Ax. In the other word, the least square solution of (4.1) is the
vector x that makes ‖b− Ax‖ minimum.

Some properties of indicial equations and Normal equations are listed
below:

(1). According to [17] and properties of the Drazin inverse , in order
to obtain the Drazin inverse the projection method solves consis-
tent or inconsistent singular linear system (4.1) through solving the
consistent singular linear system

AkAx = Akb, k = ind(A). (4.2)

The system (4.2) is called indicial equations and is a singular
consistent system, therefore has a set of solutions [11].

(2). If x is a point such that Ak(Ax − b) = 0, then x is a least squares
solution of (4.1). Since from Ak(Ax − b) = 0, we can not conclude
that b−Ax is orthogonal to the column space of A. Therefore x may
not be the minimal solution of (4.1).

(3). If x is a point such that AT (Ax− b) = 0, then is a least squares so-
lution of (4.1). The system ATAx = AT b is called normal equations.
For inconsistent singular system, normal equations is consistent lin-
ear system but have many solutions.

(4). By [11] xM = A+b = (ATA)+(AT b) is the minimal solution of (4.1).
(5). xK = (AkA)D(Akb) is a least squares solution of system (4.1).
(6). Since ATAx = AT b is a consistent singular linear system of equations

and has a set of solutions

xD = (ATA)D(AT b),

is a least squares solution of system (4.1).

57



(7). Let A2 be a symmetric matrix with index one and A2 = MGN∗

be the singular value decomposition of A2. Therefore for solving
xM = xK we haveAAx = Ab⇐⇒M∗Ab = M∗AAx = M∗MGN∗x⇐⇒ c′ = Gx′

c′ = M∗Ab, x′ = N∗x.



5 Numerical Examples

In this section, the following examples illustrate our new results.

Example 5.1 Consider the following symmetric and singular matrix

A =


2 0 2

0 5 0

2 0 2

 .

The Jordan normal form of A has the form as follows

A = P


5 0 0

0 4 0

0 0 0

P−1, P−1 =


0 −1 0

−1
2

0 −1
2

1
2

0 −1
2

 .

By Theorem 2.1, we have

AD = P


1
5

0 0

0 1
4

0

0 0 0

P−1 =


1
8

0 1
8

0 1
5

0

1
8

0 1
8
.


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The singular value decomposition of A has the form as follows

A =


0 −

√
2
2
−
√
2
2

1 0 0

0 −
√
2
2

√
2
2




5 0 0

0 4 0

0 0 0




0 −

√
2
2

√
2
2

1 0 0

0 −
√
2
2
−
√
2
2


T

.

The pseudoinverse of A is

A+ =


0 −

√
2
2

√
2
2

1 0 0

0 −
√
2
2
−
√
2
2




1
5

0 0

0 1
4

0

0 0 0




0 −

√
2
2
−
√
2
2

1 0 0

0 −
√
2
2

√
2
2


T

=


1
8

0 1
8

0 1
5

0

1
8

0 1
8

 .

Example 5.2 Consider the following inconsistent singular linear system
2 0 2

0 5 0

2 0 2




x1

x2

x3

 =


1

2

3

 . (5.1)

The minimal solution of (5.1) is

xM =


x1

x2

x3

 =


2 0 2

0 5 0

2 0 2


+ 

1

2

3

 =


1
8

0 1
8

0 1
5

0

1
8

0 1
8




1

2

3

 =


1
2

5
2

1
2

 .

Consider the following consistent singular linear system of equations
2 0 2

0 5 0

2 0 2




2 0 2

0 5 0

2 0 2




x1

x2

x3

 =


2 0 2

0 5 0

2 0 2




1

2

3

 .
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By singular value decomposition of AA, we have
0 −

√
2
2
−
√
2
2

1 0 0

0 −
√
2
2

√
2
2


T 

8 0 8

0 25 0

8 0 8




x1

x2

x3

 =


0 −

√
2
2
−
√
2
2

1 0 0

0 −
√
2
2

√
2
2


T 

2 0 2

0 5 0

2 0 2




1

2

3

 ,

and
25 0 0

0 16 0

0 0 0




0 −

√
2
2
−
√
2
2

1 0 0

0 −
√
2
2

√
2
2


T 

x1

x2

x3

 =


0 −

√
2
2
−
√
2
2

1 0 0

0 −
√
2
2

√
2
2


T 

2 0 2

0 5 0

2 0 2




1

2

3

 ,

because 
0 −

√
2
2
−
√
2
2

1 0 0

0 −
√
2
2

√
2
2


T 

2 0 2

0 5 0

2 0 2




1

2

3

 =


10

−8
√

2

0




25 0 0

0 16 0

0 0 0

x′ =


10

−8
√

2

0

 .

We can get

x′ =


2
5

−
√
2
2

0

 .

Therefore

xD =


1
2

5
2

1
2

 .
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Example 5.3 Consider the following inconsistent singular linear system
1 3 1

2 0 −2

1 3 1




x1

x2

x3

 =


1

2

3

 . (5.2)

The minimal solution of (5.2) is

xM =


1 3 1

2 0 −2

1 3 1


+ 

1

2

3

 =


1
22

1
4

1
22

3
22

0 3
22

1
22
−1

4
− 1

22

 =


15
22

6
11

− 7
22

 ,

because
1 3 1

2 0 −2

1 3 1


+

=


−
√
11√
22

0 −
√
11√
22

0 −1 0

−
√
11√
22

0
√
11√
22




√

22 0 0

0
√

8 0

0 0 0




−
√
11
11
−
√
2
2
−3
√
22
22

−3
√
11
11

0 −
√
22
11

−
√
11
11

√
2
2
−3
√
22
22


T

.

The normal equation of (5.2) is


1 3 1

2 0 −2

1 3 1


T 

1 3 1

2 0 −2

1 3 1

 =


6 6 −2

6 18 6

−2 6 6

 = P


22 0 0

0 8 0

0 0 0

P−1,

where

P−1 =


1
11

3
11

1
11

−1
2

0 1
2

9
22
− 3

11
9
22

 .
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Thus, we have

xD =


6 6 −2

6 18 6

−2 6 6


D 

8

12

0

 =


129
1936

3
242
− 113

1936

3
242

9
242

3
242

− 113
1936

3
242

129
1936




8

12

0

 =


15
22

6
11

− 7
22

 .

Indicial equations of (5.2) is


1 3 1

2 0 −2

1 3 1


3

=


16 12 −8

0 0 0

16 12 −8

 = P


8 0 0

0 0 0

0 0 0

P−1,

where

P−1 =


2 3

2
−1

−1 3
2

1

−1 0 1

 .

Therefore

xK =


16 12 −8

0 0 0

16 12 −8


D 

8

0

8

 =


1
4

3
16
−1

8

0 0 0

1
4

3
16
−1

8

 =


1

0

1

 .

6 Conclusions

In this paper, the effect of indicial equations in finding minimal solution
for inconsistent singular linear system of equations is investigated.
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