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Abstract

In this paper, we propose an algorithm for numerical solving an inverse non-
linear diffusion problem. In additional, the least-squares method is adopted to
find the solution. To regularize the resultant ill-conditioned linear system of
equations, we apply the Tikhonov regularization method to obtain the stable
numerical approximation to the solution. Some numerical experiments con-
firm the utility of this algorithm as the results are in good agreement with the
exact data.
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1 Introduction

Quantitative understanding of the heat transfer processes occurring in in-
dustrial applications requires accurate knowledge of internal heat sources,
the thermal properties of the material or surface conditions. In practical
situations these unknown quantities are to be determined from transient
temperature measurements or transient displacement measurements at
one or more interior locations. These measurements can be fitted and
then unknown quantities may be estimated. Such problems are called
inverse problems which have become an attractive subject recently. In
many situation it is difficult to analytically determine the heat trans-
fer that enters or leaves a heat conducting material. Thermocouples and
similar devices, however, allow accurate temperature measurements to
be taken in most situations. Such temperature measurements provide
the data necessary to determine the surface heat flux by employing an
inverse technique.

Inverse heat conduction problems (IHCPs) appear in many important
scientific and technological fields. Hence analysis, design implementation
and testing of inverse algorithms are also are great scientific and techno-
logical interest. Mathematically, the inverse problems belong to the class
of problems called the ill-posed problems. That is, their solution does
not satisfy the general requirement of existence, uniqueness, and stabil-
ity under small changes to the input data. To overcome such difficulties,
a variety of techniques for solving IHCPs have been proposed.

Numerical solution of an inverse nonlinear diffusion problem requires to
determine an unknown diffusion coefficient from an additional informa-
tion. These new data are usually given by adding small random errors
to the exact values from the solution to the direct problem. This pa-
per presents the inverse determination of the diffusion coefficient of an
unknown porous medium [1].

The outline of this paper is as follows. In the section 2, we formulate an
inverse nonlinear parabolic problem. In the section 3, we linearize non-
linear terms by Taylor’s series expansion, remove time-dependent terms
by Laplace transform technique, discretize governing equations by finite
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difference method and used least squares method for correction unknown
coefficients. Numerical experiments in section 4, confirm our theoretical
results for an unknown porous medium.

2 Mathematical model of diffusion problem

The one dimensional diffusion equation is a partial differential equa-
tion which describes density fluctuations in a material undergoing dif-
fusion.The equation is usually written as ∂u(x,t)

∂t
= ∂

∂x
(a(u(x, t))∂u(x,t)

∂x
)

where u(x, t) is the density of the diffusing material at location x and
time t and a(u(x, t)) is the collective diffusion coefficient for density u at
location x.

The mathematical model of an inverse nonlinear diffusion problem with
initial and boundary conditions is the following form

∂u

∂t
=

∂

∂x
(a(u)

∂u

∂x
), 0 < x < 1, 0 < t < T, (2.1)

u(x, 0) = p(x), 0 < x < 1, (2.2)

−a(u(0, t))
∂u(0, t)

∂x
= g(t), 0 < t < T, (2.3)

∂u(1, t)

∂x
= q(t), 0 < t < T, (2.4)

u(0, t) = f(t), 0 < t < T, (2.5)

where T is a given positive constant, and g(t), p(x) and q(t) are piecewise-
continuous known functions, while u(x, t) and diffusion coefficient a(u(x, t)) >
0, [2], are unknown which remain to be determined. For an unknown func-
tion a(u) we must therefore provide additional information (5) to provide
a unique solution (u, a(u)) to the inverse problem (2.1)-(2.5). Parabolic
problems and nonlinear parabolic problems including equation (2.1) have
been previously treated by many authors who considered certain special
case of this type of problem [6-11]. In [6], Cannon and Duchateau defined
an auxiliary inverse problem and sought a class of admissible coefficient
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a(u) which minimize an error functional. They have shown the existence
of a solution to their auxiliary problem in a specified admissible class
of functions. In this article, under certain conditions on g(t), p(x), q(t)
and f(t), we shall identify both u(x, t) and diffusion coefficient a(u) at
any time by using the overspecified condition (5), initial and boundary
conditions (2)-(4).

3 Description of the numerical scheme

Consider the one-dimensional nonlinear problem described by the prob-
lem (1)-(5), where (1) and (3) are nonlinear. The application of the
present numerical method to find the solution of problem (1)-(5),can
be divided into the following steps.

3.1 Linearizing the nonlinear terms

Since the application of the Laplace transform technique is only restricted
to the linear system, so that the nonlinear terms in equations (1) and
(3) must be linearized. Therefore, we used Taylor’s series expansion for
linearized nonlinear terms and we obtain [9]

∂

∂x
(a(u)

∂u

∂x
) = (

∂

∂u
K(u))u=ū

∂2u

∂x2
= a(ū)

∂2u

∂x2
, (3.1)

where

K(u) =
∫ u

0
a(ρ)dρ,

is a nonlinear function. Similarly

− a(u(0, t))
∂u(0, t)

∂x
= −a(ū(0, t))

∂u(0, t)

∂x
, (3.2)

where ū =
(
ū0, ū1, . . ., ūN

)
denotes the previously iterated solution.
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3.2 Remove time dependent terms

For remove time dependent terms from equations (2),(4),(6), and (7) the
method of the Laplace transform is employed. The Laplace transform of
a real function ζ(t) and its inversion formula are defined as

ζ̃(s) = £(ζ(t)) =
∫ ∞

0
exp(−st)ζ(t)dt,

and

ζ(t) = £−1(ζ̃(s)) =
1

2πi

∫ ν+i∞

ν−i∞
exp(st)ζ̃(s)ds,

where s = ν+iω, ν, ω ∈ R. The Laplace transform of equations (2),(4),(6),
and (7) give

a(ū)
∂2ũ

∂x2
= sũ− p(x), 0 < x < 1 (3.3)

−a(ū)
∂ũ

∂x
=G(s), x = 0, (3.4)

∂ũ

∂x
=Q(s), x = 1, (3.5)

where ũ, ∂ũ
∂x

, ∂2ũ
∂x2

, Q(s) and G(s) are Laplace transform of u, ∂u
∂x

, ∂2u
∂x2

, q(t)
and g(t) respectively.

3.3 Finite difference method for discrediting

In this step, we use central finite difference approximation for discrediting
problem (8)-(10). Therefore

a(ūµ)
ũµ+1 − 2ũµ + ũµ−1

h2
− sũµ = −p(µh), (3.6)

−a(ū0)
ũ1 − ũ−1

2h
= G(s), x = 0, (3.7)

ũN+1 − ũN−1

2h
= Q(s), x = 1, (3.8)
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where µ = 0, 1, ..., N . Problem (11)-(13) may be written in the following
matrix form

AŨ =B, (3.9)

where

A =



−2a(ū0)− sh2 2a(ū0) 0 0

a(ū1) −2a(ū1)− sh2 a(ū1) 0

. . . .

. . . .

. . . .

0 a(ūN−1) −2a(ūN−1)− sh2 a(ūN−1)

0 0 2a(ūN) −2a(ūN)− sh2



,

and

Ũ t =
(
ũ0 ũ1 . . . ũN−1 ũN

)
,

Bt =
(
b0 b1 ... bN−1 bN

)
,

where b0 = −h2p(0) − 2hG(s), bi = −h2p(ih), i = 1, ..., N − 1 and
bN = −h2p(Nh) − 2ha(ūN)Q(s). Note that equation (14) is a linear
equation. The Cholesky Decomposition algorithm is used to solve Ũ
and the numerical inversion of the Laplace transform technique ([12]-
[13]) is applied to invert the transformed result to the physical quantity
U t = (u0 u1 ... uN). These updated values of U are used to calculate A
and B for iteration. This computational procedure is performed repeat-
edly until desired convergence is achieved. The unknown function a(u) is
difficult to be approximated by a polynomial function for the whole time
domain considered. Therefore the time domain t0 ≤ t ≤ T will be di-
vided into some intervals where t0 is the initial measurement time. Each
of the intervals is assumed to be tm−1 ≤ t ≤ tm where tm = t0 + m4 t,
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m = 1, ..., N and 4t = T−t0
N

. . In this work the polynomial form pro-
posed for the unknown a(u) before performing the inverse calculation.
Therefore a(u) approximated as

a(u) = a0 + a1u+ a2u
2 + ...+ aqu

q, (3.10)

where {a0, a1, ..., aq} are constants which remain to be determined simul-
taneously.

3.4 Least-squares minimization technique

To minimize the sum of the squares of the deviations between u0(t) (cal-
culated) and f(t), at the specific times t = tr, we use least squares
method. The error in the estimate is

E(a0, a1, ..., aq) =
N∑
j=1

(u0(tj)− f(tj))
2, (3.11)

which remain to be minimized. The estimated values of ai are deter-
mined until the value of E(a0, a1, ..., aq) is minimum. The computational
procedure for estimating unknown coefficients ai is well addressed in [9],
therefore the correction linear system corresponding to the values of ai
can be expressed as

ΛΘ = C, (3.12)

where

Λ =



∑N
j=1(Υ0

j)
2 ∑N

j=1 Υ0
jΥ

1
j ...

∑N
j=1 Υ0

jΥ
q
j

∑N
j=1 Υ0

jΥ
1
j

∑N
j=1(Υ1

j)
2 ...

∑N
j=1 Υ1

jΥ
q
j

...

∑N
j=1 Υ0

jΥ
q
j

∑N
j=1 Υ1

jΥ
q
j ...

∑N
j=1(Υq

j)
2



,
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C =
(
−∑N

j=1 Υ0
jej ... −∑N

j=1 Υq
jej

)T
,

Θ =
(
h0 h1 ... hq

)T
, ej = u0(tj)− f(tj),

Υi
j =

∂u0(tj)

∂ai
, i = 0, ..., q, j = 1, ..., N,

and hi denotes the correction for initial values of ai.

The Tikhonov regularized solution ([3]-[4]-[5]) to the system of linear
algebraic equation

ΛΘ = C,

is given by
Θα : φα(Θα) = min

Θ
φα(Θ),

where φα represents the zeroth order Tikhonov functional given by

φα(Θ) =‖ ΛΘ− C ‖2 +α2 ‖ Θ ‖2 .

Solving∇φα(Θ) = 0 with respect to Θ, then we obtain, the Tikhonov
regularized solution of the regularized equation

Θα = (ΛTΛ + α2I)−1ΛTC.

In our computation we use the L-curve scheme to determine a suitable
value of α ([3]-[5]).

4 Numerical experiment

In this section, we are going to demonstrate some numerical results for
unknown coefficient in the inverse problem (1)-(5).

It is noticeable that the accuracy of the scheme presented is evaluated
by comparison with the SVD method [14].

Example 1. In this example, let us consider the following inverse non-
linear parabolic problem
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∂u

∂t
=

∂

∂x
(a(u)

∂u

∂x
), 0 < x < 1, 0 < t < T, (4.1)

u(x, 0) =x, 0 < x < 1, (4.2)

−a(u(0, t))
∂u(0, t)

∂x
=−1− t, 0 < t < T, (4.3)

∂u(1, t)

∂x
= 1, 0 < t < T, (4.4)

u(0, t) = t, 0 < t < T , (4.5)

with unique exact solution

a(u) = 1 + u, u(x, t) = x+ t.

Tables 1 and 2 show the comparison between the exact solution and
approximate solution result from our method by Tikhonov regulariza-
tion and SVD regularization. To solve the problem 4.1-4.5 the unknown
coefficient a(u) defined as the following form

a(u) = a0 + a1u.

For determine a0 and a1 we use

E(a0, a1) =
N∑
j=0

(u0(tj)− f(tj))
2,

therefore the coefficients can be obtained. The estimated values of a0, a1

are a0 = 1.011972 and a1 = 1.015392.

j Tikhonov SVD Exact

u(0, jk) u(0, jk) u(0, jk)

1 0.104994 0.766667 0.1

2 0.197793 0.866667 0.2

3 0.299521 0.966667 0.3

4 0.397968 0.392234 0.4

5 0.505003 0.475689 0.5
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Table 1. The comparison between exact and Tikhonov and SVD
solutions for u(0, jk) when x = ih, t = jk, k = 1

10
, h = 1

6
, τi = 0.05.

j Tikhonov SVD Exact

u(4
6
, jk) u(4

6
, jk) u(4

6
, jk)

1 0.762569 0.702231 0.766667

2 0.862768 0.883412 0.866667

3 0.959519 0.953321 0.966667

4 1.065250 0.985645 1.066667

5 1.166207 1.102333 1.166667

Table 2. The comparison between exact and Tikhonov and SVD
solutions for u(4

6
, jk) when x = ih, t = jk, k = 1

10
, h = 1

6
, τi = 0.05.

Example 2. In this example, let us consider the following inverse non-
linear parabolic problem

∂u

∂t
=

∂

∂x
(a(u)

∂u

∂x
), 0 < x < 1, 0 < t < T, (4.6)

u(x, 0) = (1− x2)1/2, 0 < x < 1, (4.7)

a(u(0, t))
∂u(0, t)

∂x
= 0, 0 < t < T, (4.8)

∂u(1, t)

∂x
=− 1

1 + 4t
(

1

(1 + 4t)1/2
− 1

1 + 4t
)−1/2, 0 < t < T,(4.9)

u(0, t) =
1

(1 + 4t)1/4
, 0 < t < T, (4.10)

with unique exact solution

a(u) = u2, u(x, t) = (
1

(1 + 4t)1/2
− x2

1 + 4t
)1/2.

Tables 3 and 4 show the comparison between the exact solution and
approximate solution result from our method by Tikhonov regularization
and SVD regularization.
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To solve the problem (4.6)-(4.10) the unknown coefficient a(u) defined
as the following form

a(u) = a0 + a1u
2.

For determine a0 and a1 we use

E(a0, a1) =
N∑
j=0

(u0(tj)− f(tj))
2,

therefore the coefficients can be obtained. The estimated values of a0, a1

are a0 = 0.0223002 and a1 = 1.37936.

j Tikhonov SVD Exact

u(0, jk) u(0, jk) u(0, jk)

1 0.922343 0.908767 0.919325

2 0.865587 0.874436 0.863340

3 0.834357 0.812341 0.821097

4 0.790013 0.776992 0.787511

5 0.755643 0.735467 0.759836

Table 3. The comparison between exact and Tikhonov and SVD
solutions for u(0, jk) when x = ih, t = jk, k = 1

10
, h = 1

3
, τi = 0.05.

j Tikhonov SVD Exact

u(2
3
, jk) u(2

3
, jk) u(2

3
, jk)

1 0.723563 0.709987 0.726425

2 0.702234 0.723411 0.706005

3 0.677891 0.653452 0.687153

4 0.683349 0.678354 0.670249

5 0.654356 0.6775463 0.655135

Table 4. The comparison between exact and Tikhonov and SVD
solutions for u(2

3
, jk) when x = ih, t = jk, k = 1

10
, h = 1

3
, τi = 0.05.
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Example 3. In this example, let us consider the following inverse non-
linear parabolic problem

∂u

∂t
=

∂

∂x
(a(u)

∂u

∂x
), 0 < x < 1, 0 < t < T, (4.11)

u(x, 0) = ex, 0 < x < 1, (4.12)

a(u(0, t))
∂u(0, t)

∂x
= 1− e−t, 0 < t < T, (4.13)

∂u(1, t)

∂x
= e1−t, 0 < t < T, (4.14)

u(0, t) = e−t, 0 < t < T, (4.15)

with unique exact solution

a(u) = et−x − 1, u(x, t) = ex−t.

Tables 5, 6, 7, and 8 show the comparison between the exact solution and
approximate solution result from our method by Tikhonov regularization
and SVD regularization.

j Tikhonov SVD Exact

u(0, jk) u(0, jk) u(0, jk)

1 0.902249 0.931245 0.904837

2 0.803214 0.795439 0.818731

3 0.731245 0.731242 0.740818

4 0.669875 0.654312 0.670320

5 0.606452 0.603214 0.606531

Table 5. The comparison between exact and Tikhonov and SVD
solutions for u(0, jk) when x = ih, t = jk, k = 1

10
, h = 1

10
, τi = 0.05.
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j Tikhonov SVD Exact

u( 6
10
, jk) u( 6

10
, jk) u( 6

10
, jk)

1 1.64543 1.63443 1.64872

2 1.49887 1.50543 1.49182

3 1.33987 1.31265 1.34986

4 1.223692 1.20341 1.22140

5 1.11234 1.14321 1.10517

Table 6. The comparison between exact and Tikhonov and SVD
solutions for u( 6

10
, jk) when x = ih, t = jk, k = 1

10
, h = 1

10
, τi = 0.05.

j Tikhonov SVD Exact

a(u(0, jk)) a(u(0, jk)) a(u(0, jk))

1 0.105854 0.102134 0.105171

2 0.223213 0.213698 0.221403

3 0.347865 0.335987 0.349859

4 0.494652 0.473426 0.491825

5 0.646984 0.659768 0.648721

Table 7. The comparison between exact and Tikhonov and SVD
solutions for a(u(0, jk)) when x = ih, t = jk, k = 1

10
, h = 1

10
, τi = 0.05.
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j Tikhonov SVD Exact

a(u( 6
10
, jk)) a(u( 6

10
, jk)) a(u( 6

10
, jk))

1 −0.395467 −0.412364 −0.393469

2 −0.329123 −0.376549 −0.329680

3 −0.258863 −0.234562 −0.259182

4 −0.181543 −0.154378 −0.181269

5 −0.095432 −0.090875 −0.095162

Table 8. The comparison between exact and Tikhonov and SVD
solutions for a(u( 6

10
, jk)) when x = ih, t = jk, k = 1

10
, h = 1

10
,

τi = 0.05.

5 Conclusion

A numerical method to estimate unknown coefficient is proposed for an
inverse nonlinear parabolic problem and the following results are ob-
tained.

1. The present study, successfully applies the numerical method involv-
ing the Laplace transform technique and the finite difference method in
conjunction with the least-squares scheme to an IHCP.

2. From the illustrated examples it can be seen that the proposed numer-
ical method is efficient and accurate to estimate the thermal diffusivity
in a one-dimensional nonlinear inverse diffusion problem.

3. Owing to the application of the Laplace transform, the present method
is not a time-stepping procedure. Thus the unknown thermal diffusivity
at any specific time can be predicted without any step-by-step compu-
tations from t = t0. We also apply other different sets of the initial
guesses, such as {a0, a1, ..., aι} = {0.4, 0.4, ..., 0.4}, {0.7, 0.7, ..., 0.7} and
{1.1, 1.1, ..., 1.1}, results show that the effect of the initial guesses on the
accuracy of the estimates is not significant for the present method.
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4. Numerical results show that, thermal diffusivity evolutions estimated
by the Tikhonov regularization is accurate that those obtained by the
SVD regularization with noisy data.

5. we can used the result of this article in following subject: Thermal
management of electronic devices and systems, Thermodynamics, Ther-
mometer, Temperature of the universe ( Heat death of the universe) ,
Thermal resistance in electronics, Heat pipe, improve Calibration ther-
mometer, Atomic diffusion, Mass diffusivity, Phase transformations in
solids and so on.
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