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Best approximation by closed unit balls

H. R. Kamali a,∗ H. Mazaheri b H. R. Khadezadeh b

H. Ardakani b

aDepartment of Mathematics,Ardakan Branch,Islamic Azad
university,Ardakan,Iran.

bFaculty of Mathematics, Yazd University, Yazd, Iran.

Received 16 July 2011; accepted 5 November 2011

Abstract

We obtain a sufficint and nesessery theoreoms simple for compactness and
weakly compactness of the best approximate sets by closed unit balls. Also we
consider relations Kadec-Klee property and shur property with this objects.
These theorems are extend of papers mohebi and Narayana.
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1 Introduction

Let W be a non-empty subset of a normed linear space X. For any
x ∈ X, the (possibly empty) set of best approximations x from M is
defined by

PW (x) = {y ∈ W : ‖x− y‖ = d(x,W )},
where d(x,W ) = inf{‖x− y‖ : y ∈ W}.
The subset W is said to be proximinal if the set PW (x) is non-empty for
every x ∈ X.
We denoted by BX the closed unit ball of X, that is

BX = {x ∈ X : ‖x‖ ≤ 1}.

Theorem 1.1. [7] Let X be a normed linear space, W a subspace of X.
For x ∈ X

PW (x) = W
⋂

(x+ d(x,W ))BX .

Example 1.2. Consider X = R2 with two norm

‖(x, y)‖1 = max(|x|, |y|), ‖(x, y)‖2 = |x|+ |y|,

also W = {(x, y) : y = 0, x ∈ R}.
With ‖.‖1
BR2 = {(x, y) : max{|x|, |y|} ≤ 1} and d((0, 1),W ) = inf{‖(x, 1)‖1 : x ∈
R} = 1. Therefore

((0, 1)+d((0, 1),W )BR2)
⋂
W = {(x, 0) : max{|x|, 1} ≤ 1} = {(x, 0) : |x| ≤ 1}.

With ‖.‖2
BR2 = {(x, y) : |x| + |y| ≤ 1} and d((0, 1),W ) = inf{‖(x, 1)‖1 : x ∈
R} = inf{|x|+ 1 : x ∈ R} = 1. Also

((0, 1) + d((0, 1),W )BR2)
⋂
W = {(0, 0)}.

Example 1.3. The space X = C[0, 1]with norm ‖f‖ = supx∈[0,1]|f(x)| is
a normed linear space, we consider the subspace W = {f ∈ X : f(0) =
0} of X. If f ∈ X, then g = f − f(0) is a best approximation of f in W
and

BX = {f ∈ X : ‖f‖ ≤ 1} = {f ∈ X : |f(x)| ≤ 1 ∀x ∈ [0, 1]},
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also d(f,W ) = |f(0)|. Then

PW (f) = W
⋂
{f+|f(0)|BX) = {g ∈ X : g(0) = 0,

|g(x)− f(x)|
|f(0)|

≤ 1 ∀x ∈ [0, 1]}.

Also it follows that g = f + f(0) is a best approximation of f .

2 Best approximation by closed unit balls

In this section we will consider the best approximation and compactness
and weakly compactness by closed unit balls. The following Theorems
are extends of Lemma 2.1 and theorem 2.1, of [5].

Theorem 2.1. Let X be a normed linear space, W a linear subspace of
X.

(a) If W is proximinal, then for r > 0 there exists z ∈ rBX such that
d(z,W ) = r.

(b) If for r > 0 there exists z ∈ rBX such that d(z,W ) = r and
codimen(W ) = 1, then W is proximinal.

Proof. a) Suppose W is proximinal and r > 0 be given. For x ∈ X\W
consider g0 ∈ PW (x). Put y = x−g0

d(x,W )
. Then y ∈ BX and d(y,W ) = 1. If

z = ry, we have z ∈ rBX and d(z,W ) = r.
b) If for r > 0, there exists a z ∈ rBX such that d(z,W ) = r. Since
codim(W ) = 1, we have X = W

⊕
< z >. For arbitrary x ∈ X\W .

There exists the element h ∈ W and the scaler α such that x = h + α
r
z.

In this case h ∈ PW (x), and the set PW (x) 6= ∅. �

Conclusion 2.2. Let X be a normed linear space, W a linear subspace of
X with codimension n. Then W is proximinal if and only if for r > 0 there
exists z1, z2, . . . , zn ∈ rBX such that d(zi,W ) = r for every 1 ≤ i ≤ n.
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Theorem 2.3. Let X be a normed linear space, W a closed linear sub-
space of X. Then the following stements are equivalent:

(a) W is proximinal.

(b) For every x ∈ X in the subspace of X to form Fx = W
⊕

< x >
there exists z such that d(z,W ) = 1.

Proof. Form Theorem 2.1 and codimFxW = 1, we have a)⇒ b).
Also X =

⋃
x∈X Fx, then we have b)⇒ a).

Theorem 2.4. Let X be a normed linear space, W a linear subspace of
X and r > 0.

(a) If there exists an unique z ∈ rBX such that d(z,W ) = r. Then W is
Chebyshev.

(b) If W is Chebyshev and codimen(W ) = 1, Then there exists a z ∈ rBX

such that d(z,W ) = r and for any z′ ∈ rBX such that d(z′,W ) = r. Then
z = αz′ where |α| = 1.

Proof. (a) If there exists a z ∈ rBX , such that d(z,W ) = r. Then by
Lemma 1.4, W is proximinal. For x ∈ X suppose g1, g2 ∈ PW (x), consider
zi = r x−gi

d(x,W )
, for i = 1, 2. Then zi ∈ rBX and d(zi,W ) = r, for i = 1, 2.

Therefore z1 = z2 and it follows that g1 = g2.
(b) Since W is proximinal, by Lemma 1.3, there exists a z ∈ rBX such
that d(z,W ) = r. If z′ ∈ X and z′ ∈ rBX such that d(z′,W ) = r. Since
codimen(W ) = 1, X = W⊕ < z >= W⊕ < z′ >, therefore there exists
a g ∈ W such that z = g + αz′. Also

‖z‖ = d(z,W ) = r = ‖z − g‖ = d(z,W ).

It follows that 0, g ∈ PW (z). Because W is Chebyshev. Then g = 0 and
z = αz′. Also ‖z‖ = ‖z′‖ = r, therefore |α| = 1.

Example 2.5. Suppose X = R2 and W = {(x, 0) : x ∈ R}. Then

38



codimen(W ) = 1, if z = (0, 1). Then d(z,W ) = 1 and ‖Z‖2 = 1. by
Theorem 2.1, W is proximinal. If there exists a z′ = (x, y) such that
d(z′,W ) = ‖z′‖2 = 1. Then |x| + |y| = 1 and min{|x − x0|, |y| = 1}.
Theorem (x, y) = y(0, 1) and |y| = 1, by Theorem 2.4, W is Chebyshev.

Theorem 2.6. Let X be a normed linear space, W a linear subspace of
X and r > 0.

(a) If for every sequence {xn} ⊆ rBX by d(xn,W ) = r, has a conver-
gent subsequence (weakly convergent subsequence). Then the set PW (x)
is compact (weakly compact) for every x ∈ X\W .

(b) If the set PW (x) is compact (weakly compact) for every x ∈ X\W
and codimen(W ) = 1. Then for r > 0 and every sequence {xn} ⊆ rBX ,
by d(xn,W ) = r, has a convergent subsequence (weakly convergent sub-
sequence).

Proof. (a) Suppose x ∈ X\W and {gn} ⊆ PW (x). Hence xn = r x−gn
d(x,W )

∈
rBX and d(xn,W ) = r. There exists a subsequence {xnk

} and x0 ∈ X,
such that xn → x0 (xnk

⇀ x0). Therefore

gnk
→ x− 1

r
x0d(x,W ) (gnk

⇀ x− 1

r
x0d(x,W )).

Since W is closed (weakly closed) g0 = x − 1
r
x0d(x,W ) ∈ W. Also

1
r
x0d(x,W ) ∈ d(x,W )BX , Therefore g0 ∈ PW (x).

(b) Since codim(W ) = 1, there exists z ∈ X such that X = W
⊕
< z >.

Choose r > 0, Suppose {xn} ⊆ rBX and d(xn,W ) = r. Therefore

xn = gn + knz

for some gn ∈ W and scalars kn. Thus gn
kn
∈ PW (z) and |kn| = r

d(z,W )
. Since

{kn} is a bounded sequence of scalars, has a convergent subsequence and
{gn} has a convergent sequence (weakly convergent subsequence). There-
fore {xn} has a convergent sequence (weakly convergent subsequence).

If we omit the condition codimen(W ) = 1 at (b). Then the theorem is
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not true.

Example 2.7. Let W = W0 = `1 with the standard basis {en}n≥1. Put
X = W

⊕
W0 and define a norm on X by

‖x+ y‖ =
∞∑
n=1

[|cn| ∨ (2−n‖y‖)] < +∞,

where
∑∞
n=1 cnen = x ∈ W , y ∈ W0 and a ∨ b = max(a, b).

Then by [3], the set PW (x) is compact for every x ∈ X\W . Let xn =
(0, . . . , 0, 1, 0, . . . ), n = 1, 2, . . . ; where the term 1 is in the nth place.
Then d(xn,W ) = 1 and ‖xn‖ = 1. But the sequence {xn} hasn’t any
convergent sequence.

Definition 2.8. let X be a normed space. The set X is said to have the
sequential Kadec-Klee property if weak and norm sequential convergence
coincide on SX = {x ∈ X : ‖x‖ = 1}.

Theorem 2.9. Let X be a normed linear space, X is a reflexive space
and has the Kadec-Klee property. Then in every closed linear subspace of
W of X, the set PW (x) is compact for every x ∈ X\W .

Proof. Since X is reflexive, the closed unit ball BX is weakly compact.
Choose x ∈ X\W , consider the sequence {gn} ⊆ PW (x). We define

xn =
x− gn
d(x,W )

.

Then xn ∈ BX and d(xn,W ) = 1. Therefore there exists a subsequence
{xnk
} and x0 ∈ BX such that xnk

⇀ x0. Since X has Kadec-Klee prop-
erty, xnk

→ x0. Thus

gnk
→ x− x0d(x,W ).

Then the set PW (x) is compact.
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Conclusion 2.10. Let X be a reflexive normed linear space, closed linear
subspace of W of X has Kadec-Klee property, Then the set PW (x) is
compact for every x ∈ X\W .

Remark 2.11. Let X be a normed linear space, W a linear subspace of
X and x ∈ X\W . then

x+ d(x,W )BX = {g ∈ X : ‖x− g‖ = d(x,W )}.

Theorem 2.12. Let X be a normed linear space, W a linear subspace of
X and x ∈ X\W . If the set x+ d(x,W )BX is compact(weakly compact).
Then for r > 0 and every sequence {xn} ⊆ rBX by d(xn,W ) = r, has a
convergent subsequence (weakly convergent subsequence).

Proof. For r > 0, we consider the sequence {xn} ⊆ rBX by d(xn,W ) = r.
Define the sequence {gn} by gn = x− xn

r
d(x,W ). Then ‖gn−x‖ = d(x,W )

and {gn} ⊆ x + d(x,W )BX and {gn} has a convergent subsequence
(weakly convergent subsequence). Therefore {xn} has a convergent sub-
sequence (weakly convergent subsequence).

Definition 2.13. A Banach space X has the Schur property if every
weakly null sequence in X is norm null.

Theorem 2.14. Let X be a reflexive normed linear space. If X has
the Shur property. Then for r > 0 and every sequence {xn} ⊆ rBX by
d(xn,W ) = r, has a convergent subsequence (weakly convergent subse-
quence).

Proof. The set x + d(x,W )BX is compact for every x ∈ X\W . Form
Theorem 2.8, for r > 0 and every sequence {xn} ⊆ rBX by d(xn,W ) = r,
has a convergent subsequence (weakly convergent subsequence).
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3 The orthogonality by closed unit balls

Definition 3.1. Let X be a normed linear space, W a linear subspace
of X and x ∈ X. We say that x is Birkhoff orthogonality with W and
denoted by x⊥BW if and only if ‖x‖ ≤ ‖x+αy‖ for every y ∈ W and for
every scaler α. (see [7]) If y ∈ X, then x⊥By if and only if x⊥B < y >.

Theorem 3.2. Let X be a normed linear space, W a linear subspace of
X and x ∈ X. Then x⊥BW if and only if x ∈ d(x,W )BX .

Proof. We have

x⊥BW ⇐⇒‖x‖ ≤ ‖x+ αy‖ ∀y ∈ W, ∀α scalar

⇐⇒‖x‖ ≤ d(x,W )

⇐⇒ x ∈ d(x,W )BX .

Definition 3.3. Let X be a normed linear space, W a linear subspace of
X, x ∈ X and ε > 0. We say that x⊥Bε W if and only if ‖x‖ ≤ ‖x+αy‖+ε
for every y ∈ W and for every scaler α, (see [7]).

Corollary 3.4. Let X be a normed linear space, W a linear subspace of
X, x ∈ X and ε > 0. Then x⊥Bε W if and only if x ∈ (d(x,W ) + ε)BX .

Lemma 3.5. Let X be a normed linear space, W a linear subspace of X
and x ∈ X\W . Define

Wx = {f ∈ X∗ : f |W = 0, f(x) = d(x,W )}.

Then Wx is closed and convex.

Proof. The Proof is trivial.
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Theorem 3.6. [7] Let X be a normed linear space, W a linear subspace
of X, x ∈ X\W and M ⊆ W . Then M ⊆ PW (x) if and only if there
exists f ∈ X∗ such that

f |W = 0, ‖f‖ = 1, f(x− g0) = ‖x− g0‖ for all g0 ∈M.

For every g0 ∈ PW (x) such f ∈ X∗ is denoted by fg0.

Theorem 3.7. Let X be a normed linear space, W a linear subspace of
X and x ∈ X\W . Then the map

Ψ : PW (x) −→ BX∗
⋂
Wx,

where for g0 ∈ PW (x) we have Ψ(g0) = fg0, is well define and onto.

Corollary 3.8. Let X be a normed linear space, W a linear subspace of
X and x, y ∈ X\W . Then
a) x⊥By if and only if there exists f ∈ X∗ such that

‖f‖ = 1, f(x) = ‖x‖ and f(y) = 0;

b) x⊥BW if and only if there exists f ∈ X∗ such that

‖f‖ = 1, f(x) = d(x,W ) and f |W = 0;

relatively low numbers of data points.
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