

Mathematics Scientific Journal Vol. 9, No. 1, (2013), 31-45

Common fixed point theorems of contractive mappings sequence in partially ordered G-metric spaces

Leila Gholizadeh^{a,*}

^a Department of Mathematics, Science and Research Branch, Islamic Azad University(IAU), Tehran, Iran

Received 3 February 2013; accepted 17 October 2013

Abstract

We consider the concept of Ω -distance on a complete partially ordered Gmetric space and prove some common fixed point theorems.

Key words: Ω -distance, fixed point, G-metric space

2010 AMS Mathematics Subject Classification : 47H10.

1 Introduction

The Banach fixed point theorem for contraction mapping has been generalized and extended in many direction [1-15]. Nieto and Rodriguez-

^{*} Corresponding author's e-mail: l.gholizade@gmail.com(L.Gholizadeh)

Lopez [16], Ran and Reurings [17] and Petrusel and Rus [18] presented some new results for contractions in partially ordered metric spaces. The main idea in [12,16,17] involves combining the ideas of an iterative technique in the contraction mapping principle with those in the monotone technique. Also, Mustafa and sims [19] introduced the concept of G-metric. Some authors [20-24] have proved some fixed point theorems in these spaces. In [25] Gajić proved a common fixed point theorem for a sequence of mappings on this space. Recently, Saadati et al. [26], using the concept of G-metric, defined an Ω -distance on complete G-metric space and generalized the concept of ω -distance due to Kada et al. [27].

In [28,29] some fixed pointtheorems proved and generalized under this concept.

In this paper, we extend some fixed point theorems by using this concept in partially ordered G-metric spaces.

At first we recall some definitions and lemmas. For more information see [19,26].

Definition 1.1 [19] Let X be a non-empty set. A function $G : X \times X \times X \longrightarrow [0, \infty)$ is called a G-metric if the following conditions are satisfied:

- (i) G(x, y, z) = 0 if x = y = z (coincidence),
- (ii) G(x, x, y) > 0 for all $x, y \in X$, where $x \neq y$,
- (iii) $G(x, x, z) \leq G(x, y, z)$ for all $x, y, z \in X$, with $z \neq y$,
- (iv) $G(x, y, z) = G(p\{x, y, z\})$, where p is a permutation of x, y, z (symmetry),
- (v) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ for all $x, y, z, a \in X$ (rectangle inequality).

A G-metric is said to be symmetric if G(x, y, y) = G(y, x, x) for all $x, y \in X$.

Definition 1.2 [19] Let (X, G) be a G-metric space,

(1) a sequence $\{x_n\}$ in X is said to be G-Cauchy sequence if, for each

 $[\]varepsilon > 0$, there exists a positive integer n_0 such that for all

 $m, n, l \ge n_0, G(x_n, x_m, x_l) < \varepsilon.$

(2) a sequence $\{x_n\}$ in X is said to be G-convergent to a point $x \in X$ if, for each $\varepsilon > 0$, there exists a positive integer n_0 such that for all $m, n \ge n_0$, $G(x_m, x_n, x) < \varepsilon$.

Definition 1.3 [19] Let (X, G) be a G-metric space. Then a function

 $\Omega : X \times X \times X \longrightarrow [0, \infty)$ is called an Ω -distance on X if the following conditions are satisfied:

- (a) $\Omega(x, y, z) \leq \Omega(x, a, a) + \Omega(a, y, z)$ for all $x, y, z, a \in X$,
- (b) for any $x, y \in X, \Omega(x, y, .), \Omega(x, ., y) : X \to [0, \infty)$ are lower semi-continuous,
- (c) for each $\varepsilon > 0$, there exists a $\delta > 0$ such that $\Omega(x, a, a) \leq \delta$ and

 $\Omega(a, y, z) \le \delta \text{ imply } G(x, y, z) \le \varepsilon.$

Example 1.1 [26] Let (X, d) be a metric space and $G : X^3 \longrightarrow [0, \infty)$ defined by

$$G(x, y, z) = \max\{d(x, y), d(y, z), d(x, z)\},$$

for all $x, y, z \in X$. Then $\Omega = G$ is an Ω -distance on X .

Example 1.2 [26] In $X = \mathbb{R}$ we consider the *G*-metric *G* defined by

$$G(x, y, z) = \frac{1}{3}(|x - y| + |y - z| + |x - z|)$$

$$x \ y \ z \in \mathbb{R} \quad Then \ \Omega : \mathbb{R}^3 \longrightarrow [0, \infty) \ defined \ by$$

for all $x, y, z \in \mathbb{R}$. Then $\Omega : \mathbb{R}^3 \longrightarrow [0, \infty)$ defined by

$$\Omega(x, y, z) = \frac{1}{3}(|x - y|) + |x - z|,$$

for all $x, y, z \in \mathbb{R}$ is an Ω -distance on \mathbb{R} .

For more example see [26].

Lemma 1.1 [26] Let X be a metric space with metric G and Ω be

an Ω -distance on X. Let $\{x_n\}, \{y_n\}$ be sequences in X, $\{\alpha_n\}, \{\beta_n\}$ be sequences in $[0, \infty)$ converging to zero and let $x, y, z, a \in X$. Then we have the following:

- (1) If $\Omega(y, x_n, x_n) \leq \alpha_n$ and $\Omega(x_n, y, z) \leq \beta_n$ for $n \in \mathbb{N}$, then $G(y, y, z) < \varepsilon$ and hence y = z.
- (2) If $\Omega(y_n, x_n, x_n) \leq \alpha_n$ and $\Omega(x_n, y_m, z) \leq \beta_n$ for m > n, then $G(y_n, y_m, z) \to 0$ and hence $y_n \to z$.
- (3) If $\Omega(x_n, x_m, x_l) \leq \alpha_n$ for any $l, m, n \in \mathbb{N}$ with $n \leq m \leq l$, then $\{x_n\}$ is a G-Cauchy sequence.
- (4) If $\Omega(x_n, a, a) \leq \alpha_n$ for any $n \in \mathbb{N}$, then $\{x_n\}$ is a G-Cauchy sequence.

Definition 1.4 [26] *G*-metric space X is said to be Ω -bounded if there is a constant M > 0 such that $\Omega(x, y, z) \leq M$ for all $x, y, z \in X$.

2 Conclusion

In this section, we obtain common fixed point theorems for sequence of mappings satisfying contractiv and expansive conditions on partially ordered complete G-metric spaces.

Definition 2.1 Suppose (X, \leq) is a partially ordered space and $T: X \to X$ is a mapping of X into itself. We say that T is nondecreasing if for $x, y \in X$,

$$x \le y \Longrightarrow T(x) \le T(y).$$

Theorem 2.1 Let (X, \leq) and (Y, \leq) be a partially ordered space. Suppose that there exists a G-metric on X and Y such that (X, G)and (Y, G) are complete G-metric space and Ω_1 is an Ω -distance on X, Ω_2 is Ω -distance on Y such that X be Ω_1 -bounded and Y be Ω_2 -bounded. Let $T_n : X \longrightarrow Y$, $n \in \mathbb{N}$ and $S_n : Y \longrightarrow X$, $n \in$ $\mathbb{N} \cup \{0\}$ be a non-decreasing and continuous sequence of mappings with following properties:

(a) for all $x, y, z \in X$, $x', y', z' \in Y$ and $i, j, k \in \mathbb{N}$ such that $0 \le r < 1$,

$$\Omega_1(S_iT_ix, S_jT_jy, S_kT_kz) \le r \max \{\Omega_1(y, S_jT_jy, S_kT_kz), \Omega_1(x, y, z), \\\Omega_2(T_ix, T_jy, T_kz)\},\$$

$$\Omega_{2}(T_{i}S_{i-1}x', T_{j}S_{j-1}y', T_{k}S_{k-1}z') \leq r \max\{\Omega_{2}(y', T_{j}S_{j-1}y', T_{k}S_{k-1}z'), \\ \Omega_{2}(x', y', z'), \Omega_{1}(S_{i-1}x', S_{j-1}y', S_{k-1}z')\};$$

(b) for every $x, y, z \in X$ with $y \neq S_n T_n y, n \in \mathbb{N}$,

$$\inf\{\Omega(x,y,x)+\Omega(x,y,z)+\Omega(x,z,y):x\leq z\}>0;$$

(c) for every $x', y', z' \in Y$ with $y' \neq T_n S_{n-1} y', n \in \mathbb{N}$,

$$\inf\{\Omega(x',y',x') + \Omega(x',y',z') + \Omega(x',z',y') : x' \le z'\} > 0;$$

(d) $\Omega_2(T_ix, T_iy, T_iz) = 0$ for each $x, y, z \in X$ and $\Omega_1(S_ix', S_iy', S_iz') = 0$ for each $x', y', z' \in Y$.

Then $\{S_nT_n\}$ has a unique common fixed point u in X and $\{T_nS_{n-1}\}$ has a unique common fixed point w in Y. Furthermore, $\lim_{n\to\infty} T_n u = w$ and $\lim_{n\to\infty} S_n w = u$.

Proof: Let $x_0 \in X$ such that $S_n T_n(x_{n-1}) = x_n$ and $T_n(x_{n-1}) = y_n$ and $x_n \leq x_{n+1}$ for any $n \in \mathbb{N}$. For all $n \in \mathbb{N}$ and $t \geq 0$,

$$\begin{aligned} \Omega_1(x_n, x_{n+1}, x_{n+t}) &= \Omega_1(S_n T_n(x_{n-1}), S_{n+1} T_{n+1}(x_n), S_{n+t} T_{n+t}(x_{n+t-1})) \\ &\leq r \max\{\Omega_1(x_{n-1}, x_n, x_{n+t-1}), \Omega_1(x_n, x_{n+1}, x_{n+t}), \\ &\Omega_2(T_n(x_{n-1}), T_{n+1}(x_n), T_{n+t}(x_{n+t-1}))\} \\ &= r \max\{\Omega_1(x_{n-1}, x_n, x_{n+t-1}), \Omega_1(x_n, x_{n+1}, x_{n+t}), \\ &\Omega_2(y_n, y_{n+1}, y_{n+t})\}. \end{aligned}$$

Then,

 $\Omega_1(x_n, x_{n+1}, x_{n+t}) \le r \max\{\Omega_1(x_{n-1}, x_n, x_{n+t-1}), \Omega_2(y_n, y_{n+1}, y_{n+t})\}.$

Similarly,

$$\Omega_2(y_n, y_{n+1}, y_{n+t}) \le r \max\{\Omega_2(y_{n-1}, y_n, y_{n+t-1}), \Omega_1(x_{n-1}, x_n, x_{n+t-1})\}.$$

So,

$$\Omega_1(x_n, x_{n+1}, x_{n+t}) \le r^n \max\{\Omega_1(x_0, x_1, x_t), \Omega_2(y_1, y_2, y_{t+1})\},\$$

and

$$\Omega_2(y_n, y_{n+1}, y_{n+t}) \le r^n \max\{\Omega_1(x_0, x_1, x_t), \Omega_2(y_0, y_1, y_t)\}.$$

Now, for any l > m > n with m = n + k and l = m + t $(k, t \in \mathbb{N})$, we have

$$\lim_{n,m,l\to\infty}\Omega_1(x_n,x_m,x_l)=0.$$

Since X is Ω_1 -bounded and,

$$\begin{split} \Omega_1(x_n, x_m, x_l) &\leq \Omega_1(x_n, x_{n+1}, x_{n+1}) + \Omega_1(x_{n+1}, x_m, x_l) \\ &\leq \Omega_1(x_n, x_{n+1}, x_{n+1}) + \Omega_1(x_{n+1}, x_{n+2}, x_{n+2}) \\ &+ \dots + \Omega_1(x_{m-1}, x_m, x_l) \\ &\leq r^n M + r^{n+1} M + \dots + r^{m-1} M \\ &\leq \sum_{j=0}^{n-m+1} r^{n-j} M \\ &\leq \frac{r^n}{1-r} M. \end{split}$$

So, by $0 \leq r < 1$ and Part (3) of Lemma (1.6), $\{x_n\}$ is a G-Cauchy sequence. Since X is G-complete, $\{x_n\}$ converges to a point $u \in X$. Similarly, $\{y_n\}$ is a G-Cauchy sequence such that has a limit w in Y. Fixed $n \in \mathbb{N}$ and by the lower semi-continuity of Ω , we have

$$\Omega_1(x_n, x_m, u) \le \liminf_{p \to \infty} \Omega_1(x_n, x_m, x_p) \le \frac{r^n}{1 - r} M, \qquad m \ge n$$
$$\Omega_1(x_n, u, x_l) \le \liminf_{p \to \infty} \Omega_1(x_n, x_p, x_l) \le \frac{r^n}{1 - r} M, \qquad l \ge n.$$
Assume that $u \ne S_n T_n u$. Since $x_n \le x_{n+1}$, we have

36

$$0 < \inf \{ \Omega_1(x_n, u, x_n) + \Omega_1(x_n, u, x_{n+1}) + \Omega_1(x_n, x_{n+1}, u) \}$$

$$\leq 3 \inf \{ \frac{r^n}{1 - r} M : n \in \mathbb{N} \}$$

$$= 0,$$

which is a contraction. Therefor, $u = S_n T_n u$ and consequently u is a common fixed point $\{S_n T_n\}$. Similarly, w is a common fixed point $\{T_n S_{n-1}\}$.

To prove the uniqueness, suppose $\{S_nT_n\}$ has another fixed point u'. Then,

$$\Omega_{1}(u, u', u') = \Omega_{1}(S_{n}T_{n}u, S_{n}T_{n}u', S_{n}T_{n}u')$$

$$\leq r \max\{\Omega_{1}(u, u', u'), \Omega_{1}(u', S_{n}T_{n}u', S_{n}T_{n}u'),$$

$$\Omega_{2}(T_{n}u, T_{n}u', T_{n}u')\}$$

$$= r \max\{\Omega_{1}(u, u', u'), \Omega_{1}(u', u', u'),$$

$$\Omega_{2}(T_{n}u, T_{n}u', T_{n}u')\}.$$

By (d) either $\Omega_1(u, u', u') = 0$ or $\Omega_1(u, u', u') \le r\Omega_1(u', u', u')$. Since,

$$\Omega_{1}(u', u', u') = \Omega_{1}(S_{n}T_{n}u', S_{n}T_{n}u', S_{n}T_{n}u')$$

$$\leq r \max\{\Omega_{1}(u', u', u'), \Omega_{1}(u', S_{n}T_{n}u', S_{n}T_{n}u'),$$

$$\Omega_{2}(T_{n}u', T_{n}u', T_{n}u')\},$$

then, $\Omega_1(u', u', u') = 0$ and consequently $\Omega_1(u, u', u') = 0$. By Part (c) of Definition (1.3) fixed point of $\{S_nT_n\}$ is unique. Similarly, w is a unique fixed point of $\{T_nS_{n-1}\}$. By continuity of $\{T_n\}$, we have

$$\lim_{n \to \infty} T_n u = \lim_{n \to \infty} T_n(x_{n-1}) = \lim_{n \to \infty} y_n = w_n$$

Similarly, $\lim_{n\to\infty} S_n w = u$. \Box

Corollary 2.1 Let (X, \leq) be a partially ordered space. Suppose that there exists a G-metric on X such that (X, G) is a complete G-metric space and Ω is an Ω -distance on X such that X is Ω -

bounded. Let $T_n : X \longrightarrow X$, $n \in \mathbb{N}$ be a non-decreasing sequence of mappings with property that for any $i, j, k \in \mathbb{N}$, we have:

(a) for all $x, y, z \in X$ and $0 \le r < 1$,

$$\Omega(T_i x, T_j y, T_k z) \le r \max\{\Omega(x, y, z), \Omega(y, T_j y, T_k z)\};$$

(b) for every $x, y, z \in X$ with $y \neq T_n y, n \in \mathbb{N}$,

$$\inf\{\Omega(x, y, x) + \Omega(x, y, z) + \Omega(x, z, y) : x \le z\} > 0.$$

Then $\{T_n\}$ has a unique common fixed point u in X and $\Omega(u, u, u) = 0$.

Proof: It is sufficient that put $\Omega = \Omega_1 = \Omega_2$, X = Y and $S_n = I_n$ that I_n is identity mapping on X in Theorem (2.2). \Box

Theorem 2.2 Let (X, \leq) be a partially ordered space. Suppose that there exists a G-metric on X such that (X, G) is a complete G-metric space and Ω is an Ω -distance on X such that X is Ω bounded. Let $T_n : X \longrightarrow X$, $n \in \mathbb{N}$ be a non-decreasing sequence of mappings with property that for any $i, j, k \in \mathbb{N}$, we have:

(a) for all $x, y, z \in X$ and $0 \le r < 1$, $\Omega(T_i x, T_j y, T_k z) \le r \Omega(x, y, z)$;

(b) for every $x, y, z \in X$ with $y \neq T_n y, n \in \mathbb{N}$,

 $\inf \{ \Omega(x, y, x) + \Omega(x, y, z) + \Omega(x, z, y) : x \le z \} > 0.$

Then $\{T_n\}$ has a unique common fixed point u in X and $\Omega(u, u, u) = 0$.

Proof: Theorem is proved by similar proof of Theorem 2.1. \Box

Corollary 2.2 Let (X, \leq) be a partially ordered space. Suppose that there exists a G-metric on X such that (X, G) is a complete G-metric space and Ω is an Ω -distance on X such that X is Ω -

bounded. Let $T_n : X \longrightarrow X$, $n \in \mathbb{N}$ be a non-decreasing sequence of mappings with property that for some $m \in \mathbb{N}$ and each $i, j, k \in \mathbb{N}$, we have:

- (a) for all $x, y, z \in X$ and $0 \le r < 1$, $\Omega(T_i^m x, T_j^m y, T_k^m z) \le r\Omega(x, y, z);$
- (b) for every $x, y, z \in X$ with $y \neq T_n y, n \in \mathbb{N}$,

$$\inf\{\Omega(x, y, x) + \Omega(x, y, z) + \Omega(x, z, y) : x \le z\} > 0.$$

Then $\{T_n\}$ has a unique common fixed point u in X and $\Omega(u, u, u) = 0$.

Proof: By Theorem 2.2, the sequence $\{T_n^m\}$ has the unique common fixed point u. But,

$$T_n u = T_n(T_n^m u) = T_n^{m+1} u = T_n^m(T_n u).$$

So, $T_n u$ is the fixed point $\{T_n^m\}$. Now, by uniqueness of the fixed point, $T_n u = u$. \Box

Definition 2.2 Let (X, G) be a *G*-metric space, Ω be an Ω -distance on *X* and *T* be a selfmapping on *X*. Then *T* is called expansive mapping with respect Ω if there exists a constant a > 1 such that for all $x, y, z \in X$, we have:

$$\Omega(Tx, Ty, Tz) \ge a\Omega(x, y, z).$$

Theorem 2.3 Let (X, \leq) be a partially ordered space. Suppose that there exists a G-metric on X such that (X, G) is a complete G-metric space and Ω is an Ω -distance on X such that X is Ω bounded. Let $T_n : X \longrightarrow X$, $n \in \mathbb{N}$ be a non-decreasing sequence of surjective mappings and $S_n : X \longrightarrow X$, $n \in \mathbb{N}$ be a non-decreasing sequence of injective mappings with property that for any $i, j, k \in \mathbb{N}$, we have:

(a) for all $x, y, z \in X$ and a > 1, $\Omega(T_i x, T_j y, T_k z) \ge a \Omega(S_i x, S_j y, S_k z)$;

(b) for all $n \in \mathbb{N}$, T_n and S_n commute;

(c) for every $x, y, z \in X$ with $y \neq T_n y, n \in \mathbb{N}$,

$$\inf\{\Omega(x,y,x) + \Omega(x,y,z) + \Omega(x,z,y) : x \le z\} > 0$$

Then $\{T_n\}$ and $\{S_n\}$ have a unique common fixed point u in X and $\Omega(u, u, u) = 0$.

Proof: If $T_i x = T_i y$ for any $i \in \mathbb{N}$ and $x, y \in X$, then,

$$\Omega(T_i x, T_j y, T_j y) \ge a \Omega(S_i x, S_j y, S_j y);$$

$$\Omega(T_j y, T_i x, T_i y) \ge a \Omega(S_j y, S_i x, S_i y);$$

thus,

$$\Omega(S_i x, S_j y, S_j y) \le \frac{1}{a} \Omega(T_i x, T_j y, T_j y);$$

$$\Omega(S_j y, S_i x, S_i y) \le \frac{1}{a} \Omega(T_j y, T_i x, T_i y).$$

Now, since a > 1 and X is Ω -bounded then, for any $\varepsilon > 0$, we choose $\delta = \frac{1}{a}M$, which implies, $\Omega(S_ix, S_jy, S_jy) \leq \delta$ and $\Omega(S_jy, S_ix, S_iy) \leq \delta$. By Part (c) of Definition (1.3), $G(S_ix, S_ix, S_iy) \leq \varepsilon$. Since ε is arbitrary, hence $S_ix = S_iy$. Now, by injectivity S_i for every $i \in \mathbb{N}$, we imply that x = y. So, T_n is injective and consequently invertible. Let H_n be the inverse mapping of T_n for any $n \in \mathbb{N}$. Then,

$$\Omega(x, y, z) = \Omega(T_i(H_i x), T_j(H_j y), T_k(H_k z))$$

$$\geq a\Omega(S_i(H_i x), S_j(H_j y), S_k(H_k z)).$$

So, for each $x, y, z \in X$ and any $i, j, k \in \mathbb{N}$, we obtain

$$\Omega(S_i o H_i x, S_j o H_i y, S_k o H_k z) \le r \Omega(x, y, z),$$

where $r = \frac{1}{a}$. Then $\Omega(G_i x, G_j y, G_k z) \leq r\Omega(x, y, z)$, where $G_n = S_n o H_n$. By Theorem 2.1, G_n or $S_n o H_n$ have a unique common fixed point u in X, i.e. $G_n u = u = S_n o H_n u$. It follows that $T_n(S_n(H_n u) =$

 $T_n u$, Since, T_n and S_n commute, we obtain

$$S_n(T_n(H_n u) = T_n u \Longrightarrow S_n u = T_n u$$

for any $n \in \mathbb{N}$. If we put $x = u, y = H_j u$ and $z = H_k u$, we have

$$\Omega(T_i u, T_j(H_j u), T_k(H_k u)) \ge a\Omega(S_i u, S_j(H_j u), S_k(H_k u)).$$

So,

$$\Omega(T_i u, u, u) \ge a\Omega(S_i u, u, u) = a\Omega(T_i u, u, u).$$

Since a > 1, then $\Omega(T_iu, u, u) = 0$. By putting $x = H_iu, y = H_ju, z = H_ku$ and similar proof $\Omega(u, u, u) = 0$. Now by Part (3) of Definition (1.3), $T_iu = u$. Hence $T_nu = S_nu = u$ and u is a unique common fixed point of T_n and S_n . \Box

The following corollary is a generalization of [18, theorem 2.1].

Corollary 2.3 Let (X, \leq) be a partially ordered space. Suppose that there exists a G-metric on X such that (X, G) is a complete G-metric space and Ω is an Ω -distance on X such that X is Ω bounded. Let $T_n : X \longrightarrow X$, $n \in \mathbb{N}$ be a non-decreasing sequence of surjective mappings with property that for any $i, j, k \in \mathbb{N}$, we have:

- (a) for all $x, y, z \in X$ and a > 1, $\Omega(T_i x, T_j y, T_k z) \ge a \Omega(x, y, z);$
- (b) for every $x, y, z \in X$ with $y \neq T_n y, n \in \mathbb{N}$,

$$\inf\{\Omega(x,y,x) + \Omega(x,y,z) + \Omega(x,z,y) : x \le z\} > 0.$$

Then $\{T_n\}$ has a unique common fixed point u in X and $\Omega(u, u, u) = 0$.

Proof: Follows from Theorem 2.3, by taking $S_n = I_n$ for any $n \in \mathbb{N}$ such that I_n is identity mapping on X. \Box

Corollary 2.4 Let (X, \leq) be a partially ordered space. Suppose that there exists a G-metric on X such that (X, G) is a complete

G-metric space and Ω is an Ω -distance on X such that X is Ω bounded. Let $T_n : X \longrightarrow X$, $n \in \mathbb{N}$ be a non-decreasing sequence of surjective mappings with property that for each $i, j, k \in \mathbb{N}$, we have:

(a) for all $x, y, z \in X$ and a > 1,

$$\Omega(T_i x, T_j y, T_k z) \ge a \max\{\Omega(x, y, y) + \Omega(y, y, z), \Omega(x, z, z) + \Omega(z, y, z)\},\$$

(b) for every $x, y, z \in X$ with $y \neq T_n y, n \in \mathbb{N}$,

$$\inf\{\Omega(x, y, x) + \Omega(x, y, z) + \Omega(x, z, y) : x \le z\} > 0.$$

Then $\{T_n\}$ has a unique common fixed point u in X and $\Omega(u, u, u) = 0$.

Proof: Since by Part (a) of Definition (1.3),

 $a \max\{\Omega(x, y, y) + \Omega(y, y, z), \Omega(x, z, z) + \Omega(z, y, z)\} \ge a\Omega(x, y, z).$ So, Theorem 2.3 implies that $\{T_n\}$ has a unique common fixed point u in X and $\Omega(u, u, u) = 0$. \Box

Acknowledgements

The author would like to thank the referees for giving valuable comments and suggestions for the improvement of this paper.

References

 B. Ahmad, M. Ashraf, B. Rhoades, Fixed point theorem for expansive mappings in G-metric spaces, J. Pure Appl. Math. 32 (2001) 1513-1518.

42

- [2] R.P. Agarwal, M.A. El-Gebeily, D. O'Regan, Generalized in partially ordered metric space, *Appl. Anal.* 87(2008) 1-8.
- [3] M. Abbas, B. Rhoades, Common fixed point results for noncommuting mappings without continuity in generalized metric spaces, *Appl. Math. Comput.* **215** (2009) 262-269.
- [4] L.B. Cirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974) 267-273.
- [5] L.B. Cirić, Coincidence of fixed points for maps on topological spaces, *Topology Appl.* 154 (2007) 3100-3106.
- [6] L.B. Ćirić, S.N. Jšić, M.M. Milovanović, J.S. Ume, On the steepest descent approximation method for the zeros of generalized accretive oprators, *Nonlinear Anal-TMA*.69 (2008) 763-769.
- [7] B.C. Dhoage, Proving fixed point theorems in D-metric spaces via general existence principles, J. Pure Appl. Math. 34 (2003) 609-628.
- [8] J.X. Fang, Y. Gao, Common fixed point theorems under stric contractive conditions in Menger space, Nonlinear Anal-TMA. 70 (2006) 184-193.
- [9] T. Gnana Bhaskar, V. Lakshmikantham, J. Vasundhara Devi, Monotone interativ technique for functional differential equations with retardation and anticipation, *Nonlinear Anal-TMA*.66 (2007) 12237-2242.
- [10] T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, *Nonlinear Anal-TMA*. 65 (2006) 1379-1393.
- [11] N. Hussain, Common fixed point in best approximation for Banach opaerator pairs with Ciric type *I*-contractions, *J. Math. Anal. Appl.* 338 (2008) 1351-1363.
- [12] J.J. Nieto, R.R. Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. Eng. Ser. 23 (2007) 2205-2212.
- [13] D. O'Regan, R. Saadati, Nonlinear contraction theorems in probabilistic spaces, Appl. Math. Comput. 195 (2008) 86-93.
 - 43

- [14] E. Firouz, S. J. Hosseini Ghoncheh, Common fixed point theorem for w-distance with new integral type contraction, *Mathematics Scientific Journal.* 8 (2013) 33–39.
- [15] H. Soleimani, S. M. Vaezpour, M. Asadi, Fixed point theorems and their stability in metric trees, *Mathematics Scientific Journal.* 8 (2012) 109–116.
- [16] J.J. Nieto, R. Rodriguez-Lopez, Contractive mapping theorems in partally ordered sets and applications to ordinary differential equations, order. 22 (2005) 223-239.
- [17] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, *Proc. Amer. Math. Soc.* **132** (2004) 1435-1443.
- [18] A. Petrusel, L.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134 (2006) 411-418.
- [19] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006) 289-297.
- [20] Z. Mustafa, F. Awawded, W. Shantanawi, Fixed point theorem for expansive mappings in G-metric spaces, Int. J. Contemp. Math. Sciences. 5 (2010) 2463-2472.
- [21] S. Manro, S.S. Bhatia, S. Kumar, Expansion mappings theorems in G-metric spaces, J. Contemp. Math. Sciences. 5 (2010) 2529-2535.
- [22] Z. Mustafa, T. Obiedat, F. Awawdeh, Some fixed point theorems for mapping on complete G-metric space, *Fixed Point theory Appl.* 12(2008) Article ID 189870.
- [23] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, *Fixed Point theory Appl.* **10** (2009) Article ID 917175.
- [24] W. Shatanawi, Fixed point theory for contractive mappings satisfying Φ -maps in G-metric spaces, *Fixed Point theory Appl.* **9** (2010) Article ID 181650.
- [25] L. Gajić, On a common fixed point for sequence of selfmappings in generalized metric space, J. Math. 36 (2006) 153-156.

- [26] R. Saadati, S.M. Vaezpour, P. Vetro, B.E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, *Math. Comput. Model.* 52 (2010) 797-801.
- [27] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric space, *Math. Japonica.* 44 (1996) 381-391.
- [28] L. Gholizadeh, R. Saadati, W. Shatanawi S. M. Vaezpour, Contractive mapping in generalized, ordered metric spaces with application in integral equations, *Math. Prob. Engineering.* 2011 (2011) Article ID 380784.
- [29] L. Gholizadeh, A xed point theorem in generalized ordered metric spaces with its application, J. Nonlinear Sci. Appl. 6 (2013) 244– 251.

45