

Mathematics Scientific Journal Vol. 10, No. 2, (2016), 23-32

Approximate fixed point theorems for Geraghty-contractions

S. A. M. Mohsenialhosseini $^{\mathrm{a},*}$ H. Mazaheri $^{\mathrm{b}}$

 ^aFaculty of Mathematics, Vali-e-Asr University, Rafsanjan, Iran—Faculty of Mathematics, Yazd University, Yazd, Iran
 ^bFaculty of Mathematics, Yazd University, Yazd, Iran

Received 22 April 2015; accepted 25 June 2016

Abstract

The purpose of this paper is to obtain necessary and sufficient conditions for existence approximate fixed point on Geraghty-contraction. In this paper, definitions of approximate -pair fixed point for two maps T_{α}, S_{α} , and their diameters are given in a metric space.

Key words: Approximate fixed point; Approximate-pair fixed point;
Geraghty-contraction.
2010 AMS Mathematics Subject Classification : 54H25, 54E50, 54E99, 68Q55.

* Corresponding author's E-mail: mohsenhosseini@yazd.ac.ir; amah@vru.ac.ir

1 Introduction

In 1973, Geraghty [2] introduced the Geraghty-contraction and proved the fixed point property for it. In 2006, MăDălina Berinde [1] proved the approximate fixed point property for various types of well known generalized contractions on metric spaces.

In this paper, starting from the article of Zhang, Su, Cheng [3], we study Geraghty-contraction on partially ordered metric spaces, and we give some qualitative and quantitative results regarding approximate fixed points of such contraction mapping.

Throughout this article, we denote by Γ the functions $\beta : [0, \infty) \to [0, 1)$ satisfying the following condition:

$$\beta(t_n) \to 1 \Rightarrow t_n \to 0.$$

Definition 1.1 [2] Let (X, d) be a metric space. A mapping $T : X \to X$ is said to be a Geraghty-contraction if there exists $\beta \in \Gamma$ such that for any $x, y \in X$,

$$d(Tx, Ty) \le \beta(d(x, y))d(x, y).$$

Theorem 1.1 [2] Let (X, d) be a complete metric space, and let $T : X \to X$ be an operator. Suppose that there exists $\beta \in \Gamma$ such that for any $x, y \in X$,

$$d(Tx, Ty) \le \beta(d(x, y))d(x, y).$$

Then T has a unique fixed point.

In 2012, Caballero et al. considered another contraction condition also give a generalization of Theorem 1.2 by considering a non-self mapping, and they get the following theorems.

Definition 1.2 [4] Let A, B be two nonempty subsets of a metric space (X, d). A mapping $T : A \to B$ is said to be a Geraghty-contraction if there exists $\beta \in \Gamma$ such that for any $x, y \in A$,

$$d(Tx, Ty) \le \beta(d(x, y))d(x, y).$$

In [1], the author defined the approximate fixed point property for self mapping on metric spaces.

Definition 1.3 [1] Let (X, d) be a metric space, $\epsilon > 0$ and $T : X \to X$ be a map. Then $x_0 \in X$ is ϵ -fixed point for T if $d(Tx_0, x_0) < \epsilon$.

Definition 1.4 [1] In this paper we will denote the set of all ϵ - fixed points of T, for a given ϵ , by :

$$F_{\epsilon}(T) = \{ x \in X \mid x \text{ is an } \epsilon - fixed \text{ point of } T \}.$$

Definition 1.5 [1] Let (X, d) be a metric space and $T : X \to X$ be a map. Then T has the approximate fixed point property if

$$\forall \epsilon > 0, \ F_{\epsilon}(T) \neq \emptyset.$$

Definition 1.6 [5] Let $(X, \|.\|)$ be a completely norm space and $T : X \to X$, and $T_{\alpha} : X \to X$ be a map as follow:

$$T_{\alpha} = \alpha I + (1 - \alpha)T, \ 0 < \alpha < 1.$$

Then $x_0 \in X$ is ϵ -fixed point for T_{α} if $||T_{\alpha}x_0 - x_0|| < \epsilon$.

Remark 1.1 [5] In this paper we will denote the set of all ϵ -fixed points of T_{α} , for a given ϵ , by :

$$F_{\epsilon}(T_{\alpha}) = \{ x \in X \mid x \text{ is an } \epsilon - fixed \text{ point of } T_{\alpha} \}.$$

${\bf 2} \quad \epsilon- {\rm \ fixed \ point \ in \ Geraghty-contraction \ for \ } T \ {\rm \ and \ } T_\alpha \ {\rm \ maps}$

In this section, we give some results on ϵ - fixed point in Geraghtycontraction and its diameter.

Theorem 2.1 Let (X, d) be a metric space and $T : X \to X$ be a map, $x_0 \in X$ and $\epsilon > 0$. If $d(T^n(x_0), T^{n+k}(x_0)) \to 0$ as $n \to \infty$ for some k > 0, then T^k has an ϵ -fixed point.

Proof: Since $d(T^n(x_0), T^{n+k}(x_0)) \to 0$ as $n \to \infty$, $\epsilon > 0$ $\exists n_0 > 0 \quad s.t. \quad \forall n \ge n_0 \quad d(T^n(x_0), T^{n+k}(x_0)) < \epsilon.$

Then

$$d(T^{n_0}(x_0), T^k(T^{n_0}(x_0)) < \epsilon$$

therefore $T^{n_0}(x_0)$ is an ϵ -fixed point of T^k .

Theorem 2.2 Let (X, d) be a metric space and $T : X \to X$ a Geraghtycontraction map. Then:

$$\forall \epsilon > 0, \ F_{\epsilon}(T) \neq \emptyset.$$

Proof: Let $\epsilon > 0, x \in X$.

$$d(T^{n}(x), T^{n+1}(x)) = d(T(T^{n-1}(x)), T(T^{n}(x)))$$

$$\leq \beta(d(T^{n-1}(x), T^{n}(x)))d(T^{n-1}(x), T^{n}(x))$$

$$\leq \dots$$

$$\leq (\beta(d(T^{n-1}(x), T^{n}(x))))^{n-1}d(T(x), T^{2}(x))$$

$$\leq (\beta(d(T^{n-1}(x), T^{n}(x))))^{n}d(x, Tx).$$

But $\beta \in \Gamma$ Therefore

$$Lim_{n\to\infty}d(T^n(x), T^{n+1}(x)) = 0, \ \forall x \in X.$$

Now by Theorem 2.3 it follows that $F_{\epsilon}(T) \neq \emptyset, \forall \epsilon > 0$.

Theorem 2.3 Let (X, d) be a metric space and $T : X \to X$ a Geraghtycontraction map. If $F_{\epsilon}(T)$, the set of Approximate fixed point of T, is nonempty then the mapping

$$T_{\alpha} = \alpha I + (1 - \alpha)T, \ 0 < \alpha < 1$$

satisfy in Geraghty-contraction and $F_{\epsilon}(T) = F_{\epsilon}(T_{\alpha})$. Moreover $d(T_{\alpha}^{n}(x), T_{\alpha}^{n+k}(x)) \rightarrow 0$ as $n \rightarrow \infty$, for some k > 0, $\epsilon > 0$.

Proof: By the definition of $F_{\epsilon}(T)$, $F_{\epsilon}(T) = F_{\epsilon}(T_{\alpha})$. Also, since T satisfy in Geraghty-contraction and I is identify function, it follows that T_{α} satisfy in Geraghty-contraction. Now, we prove $d(T_{\alpha}^{n}(x_{0}), T_{\alpha}^{n+k}(x_{0})) \to 0$ as $n \to \infty$. Suppose $x \in X$ now, observe first that $d(T_{\alpha}x, T_{\alpha}^{2}x) \leq \beta(d(x, T_{\alpha}x))d(x, T_{\alpha}x)$ and, by induction, that $d(T_{\alpha}^{n}x, T_{\alpha}^{n+1}x) \leq (\beta(d(x, T_{\alpha}x)))^{n}d(x, T_{\alpha}x)$. Thus, for any n and any k > 0, we have

$$d(T_{\alpha}^{n}(x), T_{\alpha}^{n+k}(x)) \leq \sum_{i=n}^{n+k-1} d(T_{\alpha}^{i}(x), T_{\alpha}^{i+1}(x))$$

$$\leq ((\beta(d(x, T_{\alpha}x)))^{n} + \dots + (\beta(d(x, T_{\alpha}x)))^{n+k-1})d(x, T_{\alpha}x))$$

$$\leq \frac{(\beta(d(x, T_{\alpha}x)))^{n}}{1 - (\beta(d(x, T_{\alpha}x)))}d(x, T_{\alpha}x).$$

But $\beta \in \Gamma$ Therefore $d(T^n_{\alpha}(x_0), T^{n+k}_{\alpha}(x_0)) \to 0$ as $n \to \infty$.

Corollary 2.1 Let (X, d) be a metric space and $T : X \to X$ a Geraghtycontraction map. If $F_{\epsilon}(T)$, the set of Approximate fixed point of T, is nonempty then the mapping

$$T_{\alpha} = \alpha I + (1 - \alpha)T, \ 0 < \alpha < 1$$

satisfy in Geraghty-contraction and $F_{\epsilon}(T) = F_{\epsilon}(T_{\alpha})$. Then:

$$\forall \epsilon > 0, \ F_{\epsilon}(T_{\alpha}) \neq \emptyset.$$

Proof: By Theorem 2.4 it follows that $F_{\epsilon}(T) \neq \emptyset, \forall \epsilon > 0$, Therefore

$$F_{\epsilon}(T_{\alpha}) \neq \emptyset, \forall \epsilon > 0.$$

Definition 2.1 Let $T: X \to X$, be a map and $\epsilon > 0$. We define diameter $F_{\epsilon}(T)$ by

 $diam(F_{\epsilon}(T)) = \sup\{d(x, y) : x, y \in F_{\epsilon}(T)\}.$

Theorem 2.4 Let $T : X \to X$, and $\epsilon > 0$. If $T : X \to X$ a Geraghtycontraction map. Then

$$diam(F_{\epsilon}(T) \leq \frac{2\epsilon}{1 - \beta(d(x, Tx))}, \quad \beta \in \Gamma.$$

Proof. If $x, y \in F_{\epsilon}(T)$, then

$$d(x,y) \le d(x,Tx) + d(Tx,Ty) + d(Ty,y)$$

$$\le \epsilon_1 + \beta(d(x,Tx))d(x,y) + \epsilon_2.$$

 $put \, \epsilon = Max\{\epsilon_1, \epsilon_2\}, \, therefore \, d(x, y) \leq \frac{2\epsilon}{1 - \beta(d(x, Tx))}. \, Hence \, diam(F_{\epsilon}(T)) \leq \frac{2\epsilon}{1 - \beta(d(x, Tx))}. \blacksquare$

Definition 2.2 Let $T : X \to X$ a map,

$$T_{\alpha} = \alpha I + (1 - \alpha)T, \ 0 < \alpha < 1$$

a map and $\epsilon > 0$. We define diameter $F_{\epsilon}(T_{\alpha})$ by

$$diam(F_{\epsilon}(T_{\alpha})) = \sup\{d(x, y) : x, y \in F_{\epsilon}(T_{\alpha})\}.$$

Theorem 2.5 Let $T : X \to X$, and $\epsilon > 0$. If $T : X \to X$ a Geraghtycontraction map and $T_{\alpha} : X \to X$ be a map as follow:

$$T_{\alpha} = \alpha I + (1 - \alpha)T, \ 0 < \alpha < 1$$

Then

$$diam(F_{\epsilon}(T_{\alpha}) \le \frac{2\epsilon}{1 - \beta(d(x, T_{\alpha}x))}.$$

Proof. If $x, y \in F_{\epsilon}(T_{\alpha})$, then

$$d(x,y) \leq d(x,T_{\alpha}x) + d(T_{\alpha}x,T_{\alpha}y) + d(T_{\alpha}y,y)$$

$$\leq \epsilon_1 + \beta(d(x,T_{\alpha}x))d(x,y) + \epsilon_2.$$

 $put \, \epsilon = Max\{\epsilon_1, \epsilon_2\}, \, therefore \, d(x, y) \leq \frac{2\epsilon}{1 - \beta(d(x, T_\alpha x))}. \, Hence \, diam(F_\epsilon(T_\alpha)) \leq \frac{2\epsilon}{1 - \beta(d(x, T_\alpha x))}. \blacksquare$

3 Approximate-pair fixed point and (T_{α}, S_{α})

In this section we will consider the existence of approximate fixed points for two maps $T_{\alpha}: A \cup B \to A \cup B$, $S_{\alpha}: A \cup B \to A \cup B$, where

$$T_{\alpha} = \alpha I + (1 - \alpha)T, \ S_{\alpha} = \alpha I + (1 - \alpha)S, \ 0 < \alpha < 1,$$

and $T: A \cup B \to A \cup B, S: A \cup B \to A \cup B$.

In 2011, Mohsenalhosseini et al. considered the existence of approximate best proximity points for two maps $T: A \cup B \to A \cup B$, $S: A \cup B \to A \cup B$ and they get the following theorems.

Definition 3.1 [6] Let A and B be nonempty subsets of a metric space (X, d) and $T : A \cup B \to A \cup B$, $S : A \cup B \to A \cup B$ be two maps such that $T(A) \subseteq B$, $S(B) \subseteq A$. A point (x,y) in $A \times B$ is said to be an approximate-pair fixed point for (T, S) in X, if there exists $\epsilon > 0$

$$d(Tx, Sy) \le d(A, B) + \epsilon.$$

We say that the pair (T,S) has the approximate-pair fixed property in X if

$$P^a_{(T,S)}(A,B) \neq \emptyset$$

where

 $P^a_{(T,S)}(A,B) = \{(x,y) \in A \times B : d(Tx,Sy) \le d(A,B) + \epsilon \text{ for some } \epsilon > 0\}.$

Theorem 3.1 [6] Let A and B be nonempty subsets of a metric space (X, d) and $T : A \cup B \to A \cup B$, $S : A \cup B \to A \cup B$ be two maps such that $T(A) \subseteq B$, $S(B) \subseteq A$. If, for every $(x, y) \in A \times B$,

$$d(T^n(x), S^n(y)) \to d(A, B)$$

then (T, S) has the approximate-pair fixed property.

Definition 3.2 Let A and B be nonempty subsets of a metric space (X,d) and $T_{\alpha}: A \cup B \to A \cup B$, $S_{\alpha}: A \cup B \to A \cup B$ be two Geraghty-contraction maps such that $T_{\alpha}(A) \subseteq B$, $S_{\alpha}(B) \subseteq A$. A point (x,y) in

 $A \times B$ is said to be an approximate-pair fixed point for (T_{α}, S_{α}) in X, if there exists $\epsilon > 0$

$$d(T_{\alpha}x, S_{\alpha}y) \le d(A, B) + \epsilon.$$

We say that the pair (T_{α}, S_{α}) has the approximate-pair fixed property in X if

$$P^{\epsilon}_{(T_{\alpha},S_{\alpha})}(A,B) \neq \emptyset,$$

where

$$P^{\epsilon}_{(T_{\alpha},S_{\alpha})}(A,B) = \{(x,y) \in A \times B : \ d(T_{\alpha}x,S_{\alpha}y) \le d(A,B) + \epsilon \ for \ some \ \epsilon > 0\}.$$

Theorem 3.2 Let A and B be nonempty subsets of a metric space (X, d)and $T_{\alpha} : A \cup B \to A \cup B$, $S_{\alpha} : A \cup B \to A \cup B$ be two maps such that $T_{\alpha}(A) \subseteq B$, $S_{\alpha}(B) \subseteq A$. If, for every $(x, y) \in A \times B$,

$$d(T^n_{\alpha}(x), S^n_{\alpha}(y)) \to d(A, B)$$

then (T_{α}, S_{α}) has the approximate-pair fixed property.

Proof. For $\epsilon > 0$, Suppose $(x, y) \in A \times B$. Since

$$d(T^n_{\alpha}(x), S^n_{\alpha}(y)) \to d(A, B)$$

 $\exists n_0 > 0 \ s.t. \ \forall n \ge n_0: \ d(T^n_\alpha(x), S^n_\alpha(y)) < d(A, B) + \epsilon$

Then $d(T_{\alpha}(T_{\alpha}^{n-1}(x), S_{\alpha}(S_{\alpha}^{n-1}(y)) < d(A, B) + \epsilon \text{ for every } n \geq n_0.$ Put $x_0 = T_{\alpha}^{n_0-1}(x)$ and $y_0 = S_{\alpha}^{n_0-1}(y)$. Hence $d(T_{\alpha}(x_0), S_{\alpha}(y_0)) \leq d(A, B) + \epsilon$ and $P_{(T_{\alpha}, S_{\alpha})}^a(A, B) \neq \emptyset.$

Definition 3.3 Let $T_{\alpha} : A \cup B \to A \cup B$, $S_{\alpha} : A \cup B \to A \cup B$ be continues maps such that $T_{\alpha}(A) \subseteq B$, $S_{\alpha}(B) \subseteq A$. We define diameter $P^{\epsilon}_{(T_{\alpha},S_{\alpha})}(A,B)$ by,

$$diam(P^a_{(T_\alpha,S_\alpha)}(A,B)) = \sup\{d(x,y): \ d(T_\alpha x,S_\alpha y) \le \epsilon + d(A,B) \ for \ some \ \epsilon > 0\}.$$

Example 3.6. Suppose $A = \{(x,0): 0 \le x \le 1\}, B = \{(x,1): 0 \le x \le 1\}, T(x,0) = T(x,1) = (\frac{1}{2},1) \text{ and } S(x,1) = S(x,0) = (\frac{1}{2},0).$ Then d(T(x,0),S(y,1)) = 1 and $diam(P^{\epsilon}_{(T_{\alpha},S_{\alpha})}(A,B)) = diam(A \times B) = \sqrt{2}.$

30

Theorem 3.3 Let $T_{\alpha} : A \cup B \to A \cup B$, $S_{\alpha} : A \cup B \to A \cup B$ be continues maps such that $T_{\alpha}(A) \subseteq B$, $S_{\alpha}(B) \subseteq A$. If, there exists a $k \in [0, 1]$,

$$d(x, T_{\alpha}x) + d(S_{\alpha}y, y) \le kd(x, y).$$

Then

$$diam(P^{\epsilon}_{(T_{\alpha},S_{\alpha})}(A,B)) \leq \frac{\epsilon}{1-k} + \frac{d(A,B)}{1-k} \text{ for some } \epsilon > 0.$$

Proof. If $(x, y) \in P^{\epsilon}_{(T_{\alpha}, S_{\alpha})}(A, B)$, then

$$d(x,y) \le d(x,T_{\alpha}x) + d(T_{\alpha}x,S_{\alpha}y) + d(S_{\alpha}y,y)$$

$$\le \epsilon + kd(x,y) + d(A,B).$$

Therefore $d(x,y) \leq \frac{\epsilon}{1-k} + \frac{d(A,B)}{1-k}$. Then $diam(P^a_{(T_\alpha,S_\alpha)}(A,B)) \leq \frac{\epsilon}{1-k} + \frac{d(A,B)}{1-k}$.

Acknowledge

The authors are extremely grateful to the referees for their helpful suggestions for the improvement of the paper.

References

- M. Berinde, "Approximate Fixed Point Theorems," *Mathematica*, vol. LI, no. 1, 2006.
- [2] M. Geraghty, "On contractive mappings," Proc. Amer. Math. Soc. 40 (1973) 604-608.
- [3] Jingling Zhang, Yongfu Su, Qingqing Cheng, "Best proximity point theorems for generalized contractions in partially ordered metric spaces," Fixed Point Theory and Applications 2013, 2013-200.

- [4] J. Caballero et al., A best proximity point theorem for Geraghtycontractions, Fixed Point Theory and Applications 2012, 2012-231.
- [5] S.A.M. Mohsenalhosseini, H. Mazaheri, Fixed Point For completely norm Space and map T_{α} , Mathematica Moravica. Vol. 16-2 (2012), 25-35.
- [6] S. A. M. Mohsenalhosseini, H. Mazaheri, M. A. Dehghan, Approximate Best Proximity Pairs in Metric Space, Abstract and Applied Analysis, Volume 2011, Article ID 596971, 9 pages.

32