

Mathematics Scientific Journal Vol. 6, No. 2, S. N. 13, (2010), 7-21

Redefined (anti) fuzzy BM-algebras

A. Borumand-Saeid^{$a,1$}

^aDepartment of Mathematics, Islamic Azad University, Kerman Branch, Kerman, Iran. Received 1 August 2010; Accepted 13 September 2010

Abstract

In this paper by using the notion of anti fuzzy points and its besideness to and non-quasi-coincidence with a fuzzy set the concepts of an anti fuzzy subalgebras in BM-algebras are generalized and their inter-relations and related properties are investigated.

Keywords: non-quasi coincident, $(\alpha, \beta)^*$ -fuzzy subalgebra, BM-algebras.

1 Introduction

Y. Imai and K. Iseki introduced two classes of abstract algebras: BCK -algebras and BCI -algebras [6, 7]. It is known that the class of BCK -algebras is a proper subclass of the class of BCI-algebras. In [4, 5] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCIalgebras is a proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim [13] introduced the notion of d−algebras which is another generalization of BCKalgebras, and also they introduced the notion of B-algebras [14, 15]. Moreover, Y. B. Jun, E. H. Roh and H. S. Kim [11] introduced a new notion, called a BH-algebra, which is a generalization of $BCH/BCI/BCK$ -algebras. Walendziak obtained the another equivalent axioms for B-algebra [18]. H. S. Kim, Y. H. Kim and J. Neggers [9] introduced the notion a (pre-) Coxeter algebra and showed that a Coxeter algebra is equivalent to an abelian group all of whose elements have order 2, i.e., a Boolean group. C. B. Kim and H. S. Kim $[8]$ introduced the notion of a BM -algebra which is a specialization of B-algebras.

¹Corresponding Author, E-mail:arsham@mail.uk.ac.ir

The concept of a fuzzy set was introduced in [19] by L. A. Zadeh. Since then it has become a vigorous area of research in engineering, medical science, social science, physics, statistics, graph theory, etc. In this paper, we introduce the concept of an anti fuzzy subalgebra of BM-algebras by using the notion of anti fuzzy points and its besideness to and non-quasi-coincidence with a fuzzy set, and investigate their inter-relations and related properties.

2 Preliminaries

Definition 2.1. [8] A *BM-algebra* is a non-empty set X with a consonant 0 and a binary operation ∗ satisfying the following axioms:

(I) $x * 0 = x$, (II) $(z * x) * (z * y) = y * x,$ for all $x, y, z \in X$.

In X we can define a binary relation by $x \leq y$ if and only if $x * y = 0$.

Proposition 2.2. [8] Let X be a BM -algebra. Then for any x, y and z in X, the following hold:

(a) $x * x = 0$, (b) $0 * (0 * x) = x$, (c) $0 * (x * y) = y * x$, (d) $(x * z) * (y * z) = x * y$, (e) $x * y = 0$ if and only if $y * x = 0$, (f) $(x * y) * z = (x * z) * y$.

Definition 2.3. A non-empty subset S of a BM -algebra X is called a *subalgebra* of X if $x * y \in S$ for any $x, y \in S$.

A mapping $f: X \longrightarrow Y$ of BM-algebras is called a BM-homomorphism if $f(x \ast Y)$ $y) = f(x) * f(y)$ for all $x, y \in X$.

We now review some fuzzy logic concept (see [19]).

Let X be a set. A fuzzy set A in X is characterized by a membership function $\mu_A: X \longrightarrow [0,1].$ Let f be a mapping from the set X to the set Y and let B be a fuzzy set in Y with membership function μ_B .

The inverse image of B, denoted $f^{-1}(B)$, is the fuzzy set in X with membership function $\mu_{f^{-1}(B)}$ defined by $\mu_{f^{-1}(B)}(x) = \mu_B(f(x))$ for all $x \in X$.

Conversely, let A be a fuzzy set in X with membership function μ_A . Then the image of A, denoted by $f(A)$, is the fuzzy set in Y such that:

$$
\mu_{f(A)}(y) = \begin{cases} \sup_{z \in f^{-1}(y)} \mu_A(z) & \text{if } f^{-1}(y) = \{x : f(x) = y\} \neq \emptyset, \\ 0 & \text{otherwise} \end{cases}
$$

A fuzzy set A in X of the form

$$
\mathcal{A}(y) := \begin{cases} t \in [0,1) & \text{if } y = x, \\ 1 & \text{if } y \neq x \end{cases}
$$

is called an *anti fuzzy point* with support x and value t and is denoted by x_t . A fuzzy set A in X is said to be *non-unit* if there exists $x \in X$ such that $\mathcal{A}(x) < 1$.

A fuzzy set A in a BM-algebra X is called an *anti-fuzzy subalgebra* of X if it satisfies [3]

$$
(\forall x, y \in X) \left(\mathcal{A}(x * y) \le \max\{\mathcal{A}(x), \mathcal{A}(y)\}\right). \tag{2.1}
$$

3 Redefined (anti) fuzzy subalgebras

From now $(X,*,0)$ or simply X is a BM-algebra.

Definition 3.1. An anti-fuzzy point x_t is said to beside to (resp. be non-quasi coincident with) a fuzzy set A, denoted by $x_t \leq A$ (resp. $x_t \uparrow \uparrow A$), if $A(x) \leq t$ (resp. $A(x) + t < 1$. We say that \leq (resp. Υ) is a beside to relation (resp. non-quasi coincident with relation) between anti-fuzzy points and fuzzy sets.

If $x_t \leq A$ or $x_t \Upsilon A$ (resp. $x_t \leq A$ and $x_t \Upsilon A$), we say that $x_t \leq \Upsilon A$ (resp. $x_t \leq \wedge \Upsilon \mathcal{A}$.

Proposition 3.2. Let $\mathcal A$ be a fuzzy set in a BM -algebra X. Then $\mathcal A$ satisfies the condition (2.1) if and only if it satisfies the following condition.

$$
(\forall x, y \in X) (\forall t_1, t_2 \in [0, 1)) (x_{t_1}, y_{t_2} \le A \Rightarrow (x * y)_{\max\{t_1, t_2\}} \le A).
$$
 (3.1)

Proof. Assume that A satisfies the condition (2.1). Let $x, y \in X$ and $t_1, t_2 \in [0, 1)$ satisfy $x_{t_1}, y_{t_2} \leq \mathcal{A}$. Then $\mathcal{A}(x) \leq t_1$ and $\mathcal{A}(y) \leq t_2$. Using (2.1) induces that

$$
\mathcal{A}(x * y) \le \max\{\mathcal{A}(x), \mathcal{A}(y)\} \le \max\{t_1, t_2\}.
$$

Hence $(x * y)_{\max\{t_1,t_2\}} \leq \mathcal{A}.$

Conversely, suppose that the condition (3.1) is valid. Since $x_{\mathcal{A}(x)} \leq \mathcal{A}$ and $y_{\mathcal{A}(y)} \leq \mathcal{A}$ for all $x, y \in X$, it follows from (3.1) that

$$
(x * y)_{\max\{\mathcal{A}(x), \mathcal{A}(y)\}} \le \mathcal{A}
$$

so that $\mathcal{A}(x * y) \leq \max\{\mathcal{A}(x), \mathcal{A}(y)\}\)$. This completes the proof.

Note that if A is a fuzzy set in X such that $A(x) \geq 0.5$ for all $x \in X$, then the set $\{x_t \mid x_t \leq \Lambda \Upsilon \mathcal{A}\}\$ is empty. In what follows let α and β denote any one of \leq , Υ , $\langle \vee \Upsilon \rangle$, or $\langle \wedge \Upsilon \rangle$ unless otherwise specified. To say that $x_t \overline{\alpha} A$ means that $x_t \alpha A$ does not hold.

Definition 3.3. A fuzzy set $\mathcal A$ in a BM-algebra X is called an $(\alpha, \beta)^*$ -fuzzy subalgebra of X, where $\alpha \neq \alpha \wedge \Upsilon$, if it satisfies the following implication:

$$
(\forall x, y \in X) (\forall t_1, t_2 \in [0, 1)) (x_{t_1} \alpha \mathcal{A}, y_{t_2} \alpha \mathcal{A} \Rightarrow (x * y)_{\max\{t_1, t_2\}} \beta \mathcal{A}). \tag{3.2}
$$

Example 3.4. [3] Let $X = \{0, 1, 2\}$ be a set with the following table:

Then $(X, \ast, 0)$ is a BM-algebra. Let A be a fuzzy set in X defined by $\mathcal{A}(0) = 0.4$, $\mathcal{A}(1) = 0.3$, and $\mathcal{A}(2) = 0.7$. It is routine to verify that A is a $(\leq, \leq \vee \Upsilon)^*$ -fuzzy subalgebra of X .

Theorem 3.5. In a BM-algebra, every $(\langle \vee \Upsilon, \langle \vee \Upsilon \rangle)$ ^{*}-fuzzy subalgebra is a $(\langle, \langle \vee \vee \rangle)$ Υ)[∗] -fuzzy subalgebra.

Proof. Let A be a $(\langle \vee \Upsilon, \langle \vee \Upsilon \rangle)$ ^{*}-fuzzy subalgebra of a BM-algebra X. Let $x, y \in X$ and $t_1, t_2 \in [0, 1)$ satisfy $x_{t_1} \leq A$ and $y_{t_2} \leq A$. Then $x_{t_1} \leq \vee \Upsilon A$ and $y_{t_2} \leq \vee \Upsilon A$, which imply that $(x * y)_{\max\{t_1,t_2\}} \leq \sqrt{\Upsilon} \mathcal{A}$. Hence A is a $(\leq, \leq \sqrt{\Upsilon})^*$ -fuzzy subalgebra of X.

The converse of Theorem 3.5 is not true in general. For example, the $(\langle, \langle \vee \Upsilon \rangle^*$ fuzzy subalgebra A of X in Example 3.4 is not a $($\vee \Upsilon$, $< \vee \Upsilon$ [*]-fuzzy subalgebra$ of X since $1_{0.5} \leq \mathsf{V} \Upsilon \mathcal{A}$ and $0_{0.4} \leq \mathsf{V} \Upsilon \mathcal{A}$, but $(0 * 1)_{\text{max}\{0.5,0.4\}} = 2_{0.5} \leq \mathsf{V} \Upsilon \mathcal{A}$.

Obviously any (\leq, \leq) ^{*}-fuzzy subalgebra is a $(\leq, \leq \vee \Upsilon)$ ^{*}-fuzzy subalgebra, but the converse is not true. For example, the $(\langle, \langle \nabla \Upsilon \rangle^*$ -fuzzy subalgebra A of X in Example 3.4 is not a (\leq, \leq) ^{*}-fuzzy subalgebra of X since $1_{0.38} \leq \mathcal{A}$ and $1_{0.34} \leq \mathcal{A}$, but $(1 \cdot 1)_{\text{max}\{0.34, 0.38\}} = 0_{0.38}$ $\leq \mathcal{A}.$

Also a $(\leq, \leq \vee \Upsilon)$ ^{*}-fuzzy subalgebra A of X may not be a $(\Upsilon, \leq \vee \Upsilon)$ ^{*}-fuzzy subalgebra. For example, the $(\leq, \leq \vee \Upsilon)$ ^{*}-fuzzy subalgebra A of X in Example 3.4 is not a $(\Upsilon, \ll \vee \Upsilon)$ ^{*}-fuzzy subalgebra of X since $1_{0.6}\Upsilon\mathcal{A}$ and $2_{0.1}\Upsilon\mathcal{A}$ but $(1 *$ $2)_{max\{0.6,0.1\}} = 2_{0.6}$ $\sqrt{\Upsilon}$ A.

Theorem 3.6. Let $\mathcal A$ be a fuzzy set in a BM -algebra X. Then the left diagram shows the relationship between $(\alpha, \beta)^*$ -fuzzy subalgebras of X, where α, β are one of \leq and Υ. Also we have the right diagram.

Proposition 3.7. Let $\mathcal A$ be a fuzzy set in a BM -algebra X which is non-unit. If $\mathcal A$ is an $(\alpha, \beta)^*$ -fuzzy subalgebra of X, then $\mathcal{A}(0) < 1$.

Proof. Assume that $\mathcal{A}(0) = 1$. Since \mathcal{A} is non-unit, there exists $x \in X$ such that $\mathcal{A}(x) = t < 1$. If $\alpha = \text{ and } \alpha = \text{ and } \infty$ Υ , then $x_t \alpha \mathcal{A}$, but $(x * x)_{\text{max}} \{t, t\} = 0_t \overline{\beta} \mathcal{A}$. This is a contradiction. If $\alpha = \Upsilon$, then $x_0 \alpha A$ because $A(x) + 0 = t + 0 = t < 1$. But $(x * x)_{\text{max}\{0,0\}} = 0_0 \overline{\beta} \mathcal{A}$, which is a contradiction. Hence $\mathcal{A}(0) < 1$.

Proposition 3.8. Let A be a fuzzy set in a BM-algebra X. If A is a (\leq, \leq) ^{*}-fuzzy subalgebra of X, then $A(0) \leq A(x)$, for all $x \in X$.

Proof. Since $x * x = 0$, for all $x \in X$. Then we get that $\mathcal{A}(0) = \mathcal{A}(x * x) \leq$ $\max(\mathcal{A}(x), \mathcal{A}(x)) = \mathcal{A}(x).$

For a fuzzy set A in a BM -algebra X , we denote

$$
X^* := \{ x \in X \mid \mathcal{A}(x) < 1 \}.
$$

Theorem 3.9. Let $\mathcal A$ be a fuzzy set in a BM -algebra X which is non-unit. If $\mathcal A$ is an $(\alpha, \beta)^*$ -fuzzy subalgebra of X where (α, β) is one of the following:

$$
\bullet (\lessdot, \lessdot), \quad \bullet (\lessdot, \Upsilon), \quad \bullet (\Upsilon, \lessdot), \quad \bullet (\Upsilon, \Upsilon),
$$

then the set X^* is a subalgebra of X.

Proof. (i) Assume that A is a (\leq, \leq) ^{*}-fuzzy subalgebra of X. Let $x, y \in X^*$. Then $\mathcal{A}(x) < 1$ and $\mathcal{A}(y) < 1$. Assume that $\mathcal{A}(x * y) = 1$. Note that $x_{\mathcal{A}(x)} < \mathcal{A}$ and $y_{\mathcal{A}(y)} \leq \mathcal{A}$. But, since $\mathcal{A}(x * y) = 1 > \max{\mathcal{A}(x), \mathcal{A}(y)}$, we get $(x * y)_{\mathcal{A}(x), \mathcal{A}(y)}\in \mathcal{A}$. This is a contradiction, and so $\mathcal{A}(x * y) < 1$ which shows that $x * y \in X^*$. Hence X^* is a subalgebra of X.

(ii) Assume that A is a $(\leq, \Upsilon)^*$ -fuzzy subalgebra of X. Let $x, y \in X^*$. Then $\mathcal{A}(x) < 1$ and $\mathcal{A}(y) < 1$. If $\mathcal{A}(x * y) = 1$, then

$$
\mathcal{A}(x * y) + \max\{\mathcal{A}(x), \mathcal{A}(y)\} \ge 1.
$$

Hence $(x*y)_{\max\{\mathcal{A}(x),\mathcal{A}(y)\}}\overline{\Upsilon}\mathcal{A}$, which is a contradiction since $x_{\mathcal{A}(x)} \leq \mathcal{A}$ and $y_{\mathcal{A}(y)} \leq \mathcal{A}$. Thus $\mathcal{A}(x * y) < 1$, and so $x * y \in X^*$. Therefore X^* is a subalgebra of X.

(iii) Assume that A is a (Υ, \leq) ^{*}-fuzzy subalgebra of X. Let $x, y \in X^*$. Then $\mathcal{A}(x) < 1$ and $\mathcal{A}(y) < 1$. Thus $x_0 \Upsilon \mathcal{A}$ and $y_0 \Upsilon \mathcal{A}$. If $\mathcal{A}(x * y) = 1$, then $\mathcal{A}(x * y) = 1$ $1 > 0 = \max\{0, 0\}$. Therefore $(x * y)_{\max\{0, 0\}} \le A$, which is a contradiction. Hence $\mathcal{A}(x * y) < 1$, and so $x * y \in X^*$.

(iv) Assume that A is a $(\Upsilon, \Upsilon)^*$ -fuzzy subalgebra of X. Let $x, y \in X^*$. Then $\mathcal{A}(x) < 1$ and $\mathcal{A}(y) < 1$. If $\mathcal{A}(x * y) = 1$, then $\mathcal{A}(x * y) + \max\{0, 0\} = 1$ and so $(x * y)_{\max\{0,0\}}$ $\overline{Y}A$. This is impossible, and hence $\mathcal{A}(x * y) < 1$, i.e., $x * y \in X^*$. This completes the proof.

Corollary 3.10. Let $\mathcal A$ be a fuzzy set in a BM -algebra X which is non-unit. If $\mathcal A$ is an $(\alpha, \beta)^*$ -fuzzy subalgebra of X where (α, β) is one of the following:

> • $(\le, \le \wedge \Upsilon),$ • $(\le, \le \vee \Upsilon),$ • $(\Upsilon, \lessdot \wedge \Upsilon),$ • $(\Upsilon, \lessdot \vee \Upsilon),$ \bullet (\lessdot \lor Υ , \lessdot \lor Υ), \qquad \bullet (\lessdot \lor Υ , \lessdot \land Υ),

then the set X^* is a subalgebra of X.

Proof. By Theorem 3.6, it is enough to prove for the cases:

(i) $(\le, \le \vee \Upsilon)$ and (ii) $(\Upsilon, \le \vee \Upsilon)$.

(i) Let $x, y \in X^*$. Then $\mathcal{A}(x) < 1$ and $\mathcal{A}(y) < 1$, and so $\mathcal{A}(x) = t_1$ and $\mathcal{A}(y) = t_2$ for some $t_1, t_2 \in [0, 1)$. It follows that $x_{t_1} \leq A$ and $y_{t_2} \leq A$ so that $(x*y)_{\max\{t_1,t_2\}} \leq \vee \Upsilon A$, i.e., $(x*y)_{\max\{t_1,t_2\}} \le A$ or $(x*y)_{\max\{t_1,t_2\}}$ \mathcal{TA} . If $(x*y)_{\max\{t_1,t_2\}} \le A$, then $\mathcal{A}(x*y) \le$ $\max\{t_1, t_2\}$ < 1 and thus $x * y \in X^*$. If $(x * y)_{\max\{t_1, t_2\}}$ $\mathcal{A},$ then $\mathcal{A}(x * y) \leq \mathcal{A}(x * y) +$ $\max\{t_1, t_2\}$ < 1. Hence $x * y \in X^*$. For the case (ii), let $x, y \in X^*$. Then $\mathcal{A}(x) < 1$ and $\mathcal{A}(y)$ < 1, which imply that $x_0 \Upsilon \mathcal{A}$ and $y_0 \Upsilon \mathcal{A}$. Since \mathcal{A} is a $(\Upsilon, \preccurlyeq \vee \Upsilon)$ ^{*}-fuzzy subalgebra, $(x * y)_0 = (x * y)_{\max\{0,0\}} \leq \forall \Upsilon \mathcal{A}$, i.e., $(x * y)_0 \leq \mathcal{A}$ or $(x * y)_0 \Upsilon \mathcal{A}$. If $(x * y)_0 < A$, then $\mathcal{A}(x * y) = 0 < 1$. If $(x * y)_0 \Upsilon A$, then $\mathcal{A}(x * y) = \mathcal{A}(x * y) + 0 < 1$. Therefore $x * y \in X^*$. This completes the proof.

Theorem 3.11. Let $\mathcal A$ be a fuzzy set in a BM -algebra X which is non-unit. Then every $(\Upsilon, \Upsilon)^*$ -fuzzy subalgebra of X is a constant on X^* .

Proof. Let A be a $(\Upsilon, \Upsilon)^*$ -fuzzy subalgebra of X which is non-unit. Assume that A is not constant on X^* . Then there exists $y \in X^*$ such that $t_y = \mathcal{A}(y) \neq \mathcal{A}(0) = t_0$. Then either $t_y > t_0$ or $t_y < t_0$. If $t_y < t_0$, then $\mathcal{A}(y) + (1 - t_0) = t_y + 1 - t_0 < 1$ and so $y_{1-t_0} \Upsilon \mathcal{A}$. Since

$$
\mathcal{A}(y * y) + (1 - t_0) = \mathcal{A}(0) + 1 - t_0 = t_0 + 1 - t_0 = 1,
$$

we have $(y * y)_{\max\{1-t_0,1-t_0\}} \overline{\Upsilon} A$. This is a contradiction. Now assume that $t_y > t_0$. Choose $t_1, t_2 \in [0, 1)$ such that $t_1 < 1 - t_y < t_2 < 1 - t_0$. Then $\mathcal{A}(0) + t_2 = t_0 + t_2 < 1$ and $\mathcal{A}(y) + t_1 = t_y + t_1 < 1$. Thus $0_{t_2} \Upsilon \mathcal{A}$ and $y_{t_1} \Upsilon \mathcal{A}$. Since

$$
\mathcal{A}(y * 0) + \max\{t_1, t_2\} = \mathcal{A}(y) + t_2 = t_y + t_2 > 1,
$$

we get $(y * 0)_{\max\{t_1,t_2\}}\overline{T}\mathcal{A}$, which is a contradiction. Therefore $\mathcal A$ is a constant on X^* .

Theorem 3.12. Let A be a fuzzy set in a BM -algebra X. Then A is a non-unit $(\Upsilon, \Upsilon)^*$ -fuzzy subalgebra of X if and only if there exists a subalgebra S of X such that

$$
\mathcal{A}(x) := \begin{cases} t \in [0,1) & \text{if } x \in S, \\ 1 & \text{otherwise} \end{cases}
$$
 (3.3)

Proof. Let A be a non-unit $(\Upsilon, \Upsilon)^*$ -fuzzy subalgebra of X. Then by Proposition 3.7 and Theorems 3.11 and 3.9 we get that $\mathcal{A}(x) < 1$, for all $x \in X$ and X^* is a subalgebra of X, and

$$
\mathcal{A}(x) := \left\{ \begin{array}{ll} \mathcal{A}(0) & \text{if } x \in X^*, \\ 1 & \text{otherwise} \end{array} \right.
$$

Conversely, let S be a subalgebra of X which satisfy (3.3). Assume that $x_s \Upsilon A$ and $y_r \Upsilon \mathcal{A}$ for some $s, r \in [0, 1)$. Then $\mathcal{A}(x) + s < 1$ and $\mathcal{A}(y) + r < 1$, and so $\mathcal{A}(x) \neq 1$ and $\mathcal{A}(y) \neq 1$. Thus $x, y \in S$ and so $x * y \in S$. It follows that $\mathcal{A}(x * y) + \max\{s, r\} =$ $t + \max\{s, r\} < 1$ so that $(x * y)_{\max\{s, r\}}$ ΥA . Therefore A is a non-unit $(\Upsilon, \Upsilon)^*$ -fuzzy subalgebra of X.

Theorem 3.13. Let S be a subalgebra of a BM -algebra X and let A be a fuzzy set in X such that

- (i) $(\forall x \in X \setminus S)$ $(\mathcal{A}(x) = 1),$
- (ii) $(\forall x \in S)$ $(\mathcal{A}(x) \leq 0.5)$.

Then A is a $(\Upsilon, \langle \vee \Upsilon \rangle)$ ^{*}-fuzzy subalgebra of X.

Proof. Let $x, y \in X$ and $t_1, t_2 \in [0, 1)$ be such that $x_{t_1} \Upsilon \mathcal{A}$ and $y_{t_2} \Upsilon \mathcal{A}$, that is, $\mathcal{A}(x) + t_1 < 1$ and $\mathcal{A}(y) + t_2 < 1$. If $x * y \notin S$, then $x \in X \setminus S$ or $y \in X \setminus S$, i.e., $\mathcal{A}(x) = 1$ or $\mathcal{A}(y) = 1$. It follows that $t_1 < 0$ or $t_2 < 0$. This is a contradiction, and so $x * y \in S$. Hence $\mathcal{A}(x * y) \leq 0.5$. If $\max\{t_1, t_2\} < 0.5$, then $\mathcal{A}(x * y) + \max\{t_1, t_2\} < 1$ and thus $(x * y)_{\max\{t_1,t_2\}}$ ΥA . If $\max\{t_1,t_2\} \ge 0.5$, then $\mathcal{A}(x * y) \le 0.5 \le \max\{t_1,t_2\}$ and so $(x * y)_{\max\{t_1,t_2\}} \leq A$. Therefore $(x * y)_{\max\{t_1,t_2\}} \leq \sqrt{\Upsilon} A$. This completes the proof.

Theorem 3.14. Let A be a $(\Upsilon, \leq \vee \Upsilon)$ ^{*}-fuzzy subalgebra of a BM-algebra X such that A is not constant on X^* . Then there exists $x \in X$ such that $\mathcal{A}(x) \leq 0.5$. Moreover $\mathcal{A}(x) \leq 0.5$ for all $x \in X^*$.

Proof. Assume that $\mathcal{A}(x) > 0.5$ for all $x \in X$. Since \mathcal{A} is not constant on X^* , there exists $x \in X^*$ such that $t_x = \mathcal{A}(x) \neq \mathcal{A}(0) = t_0$. Then either $t_0 > t_x$ or $t_0 < t_x$. For the first case, choose $\delta < 0.5$ such that $t_x + \delta < 1 < t_0 + \delta$. It follows that $x_{\delta} \Upsilon A$,

$$
\mathcal{A}(x * x) = \mathcal{A}(0) = t_0 > \delta = \max{\delta, \delta},
$$

$$
\mathcal{A}(x * x) + \max{\delta, \delta} = \mathcal{A}(0) + \delta = t_0 + \delta > 1
$$

so that $(x * x)_{\max{\delta,\delta}} \leq \sqrt{\Upsilon} A$. This is a contradiction. For the second case, we can choose δ < 0.5 such that $t_x + \delta > 1 > t_0 + \delta$. Then $0_\delta \Upsilon \mathcal{A}$ and $x_1 \Upsilon \mathcal{A}$, but $(x * 0)_{\max\{1,\delta\}} = x_1 \overline{\langle \cdot \rangle} \mathcal{T} A$ since $\mathcal{A}(x) > 0.5 > \delta$ and $\mathcal{A}(x) + \delta = t_x + \delta > 1$. This leads to a contradiction. Therefore $\mathcal{A}(x) \leq 0.5$ for some $x \in X$. We now show that $\mathcal{A}(0) \leq 0.5$. Assume that $\mathcal{A}(0) = t_0 > 0.5$. Since there exists $x \in X$ such that $\mathcal{A}(x) = t_x \leq 0.5$, we have $t_0 > t_x$. Choose $t_1 < t_0$ such that $t_x + t_1 < 1 < t_0 + t_1$. Then $\mathcal{A}(x) + t_1 = t_x + t_1 < 1$, and so $x_{t_1} \Upsilon \mathcal{A}$. Now we get

$$
\mathcal{A}(x * x) + \max\{t_1, t_1\} = \mathcal{A}(0) + t_1 = t_0 + t_1 > 1,
$$

$$
\mathcal{A}(x * x) = \mathcal{A}(0) = t_0 > t_1 = \max\{t_1, t_1\}.
$$

Hence $(x*x)_{\max\{t_1,t_1\}}\leq \sqrt{\Upsilon}\mathcal{A}$, a contradiction. Therefore $\mathcal{A}(0)\leq 0.5$. Finally suppose that $t_x = A(x) > 0.5$ for some $x \in X^*$. Let t be such that $0 < t < 0.5$ and $t_x > 0.5 + t$. Therefore $\mathcal{A}(x)+0 < 1$ and $\mathcal{A}(0)+(0.5-t) < 1$ which imply that $x_0 \Upsilon \mathcal{A}$ and $0_{(0.5-t)} \Upsilon \mathcal{A}$. But $(x * 0)_{\max(0,0.5-t)} = x_{(0.5-t)}$ and so $\mathcal{A}(x) > 0.5-t$ and $\mathcal{A}(x) + 0.5-t > 1$, thus $(x * 0)_{0,0.5-t} \leq \sqrt{\Upsilon} A$, which is a contradiction. Hence $\mathcal{A}(x) \leq 0.5$.

We give a characterization of a $(<, < v \Upsilon$ ^{*}-fuzzy subalgebra.

Theorem 3.15. Let A be a fuzzy set in a BM-algebra X. Then A is a $(\leq, \leq \vee \Upsilon)^*$ fuzzy subalgebra of X if and only if it satisfies the following inequality.

$$
(\forall x, y \in X) \left(\mathcal{A}(x * y) \le \max\{\mathcal{A}(x), \mathcal{A}(y), 0.5\}\right). \tag{3.4}
$$

Proof. Assume that A is a $(\leq, \leq \vee \Upsilon)^*$ -fuzzy subalgebra of X. Let $x, y \in X$ be such that $\max\{\mathcal{A}(x),\mathcal{A}(y)\}\geq 0.5$. Then $\mathcal{A}(x*y)\leq \max\{\mathcal{A}(x),\mathcal{A}(y)\}\.$ If it is not true, then $\mathcal{A}(x * y) < t < \max\{\mathcal{A}(x), \mathcal{A}(y)\}\$ for some $t \in (0.5, 1)$. It follows that $x_t < \mathcal{A}$ and $y_t \leq A$, but $(x * y)_{\max\{t,t\}} = (x * y)_t \leq \sqrt{\Upsilon} A$ which is a contradiction. Hence $\mathcal{A}(x*y) \leq \max\{\mathcal{A}(x), \mathcal{A}(y)\}\$ whenever $\max\{\mathcal{A}(x), \mathcal{A}(y)\} > 0.5$. If $\max\{\mathcal{A}(x), \mathcal{A}(y)\} \leq$ 0.5, then $x_{0.5} < A$ and $y_{0.5} < A$ which imply that $(x*y)_{0.5} = (x*y)_{\text{max}}_{0.5,0.5} \cdot \sqrt{\Upsilon} A$. Therefore $\mathcal{A}(x * y) \le 0.5$ because if $\mathcal{A}(x * y) > 0.5$, then $\mathcal{A}(x * y) + 0.5 > 0.5 + 0.5 = 1$, a contradiction. Hence $\mathcal{A}(x * y) \le \max\{\mathcal{A}(x), \mathcal{A}(y), 0.5\}$ for all $x, y \in X$.

Conversely, assume that A satisfies (3.4). Let $x, y \in X$ and $t_1, t_2 \in [0, 1)$ be such that $x_{t_1} \leq A$ and $y_{t_2} \leq A$. Then $\mathcal{A}(x) \leq t_1$ and $\mathcal{A}(y) \leq t_2$. Suppose that $\mathcal{A}(x * y) >$ $\max\{t_1, t_2\}$. If $\max\{\mathcal{A}(x), \mathcal{A}(y)\} > 0.5$ then

$$
\mathcal{A}(x*y) \le \max\{\mathcal{A}(x), \mathcal{A}(y), 0.5\} = \max\{\mathcal{A}(x), \mathcal{A}(y)\} \le \max\{t_1, t_2\}.
$$

This is a contradiction, and so $\max\{\mathcal{A}(x), \mathcal{A}(y)\}\leq 0.5$. It follows that

$$
\mathcal{A}(x * y) + \max\{t_1, t_2\} < 2\mathcal{A}(x * y) \le 2\max\{\mathcal{A}(x), \mathcal{A}(y), 0.5\} \le 1
$$

so that $(x * y)_{\max\{t_1,t_2\}} \Upsilon \mathcal{A}$. Hence $(x * y)_{\max\{t_1,t_2\}} \ll \vee \Upsilon \mathcal{A}$, and consequently \mathcal{A} is a $(\leq, \leq \vee \Upsilon)^*$ -fuzzy subalgebra of X.

Theorem 3.16. For any subset S of a BM -algebra X, let χ_S denote the characteristic function of S. Then the function $\chi_S^c : X \to [0,1]$ defined by $\chi_S^c(x) = 1 - \chi_S(x)$ for all $x \in X$ is a $(\le, \le \vee \Upsilon)$ ^{*}-fuzzy subalgebra of X if and only if S is a subalgebra of X.

Proof. Assume that χ_S^c is a $(\ll, \ll \vee \Upsilon^*)^*$ -fuzzy subalgebra of X and let $x, y \in S$. Then $\chi_S^c(x) = 1 - \chi_S(x) = 0$ and $\chi_S^c(y) = 1 - \chi_S(y) = 0$. Hence $x_0 \ll \chi_S^c$ and $y_0 \ll \chi_S^c$, which imply that $(x * y)_0 = (x * y)_{\max\{0,0\}} \ll \forall \Upsilon \chi_S^c$. Thus $\chi_S^c(x * y) \leq 0$ or $\chi^c_S(x * y) + 0 < 1$. If $\chi^c_S(x * y) \leq 0$, then $1 - \chi_S(x * y) = 0$, i.e., $\chi_S(x * y) = 1$. Hence $x * y \in S$. If $\chi_S^c(x * y) + 0 < 1$, then $\chi_S(x * y) > 0$. Thus $\chi_S(x * y) = 1$, and so $x * y \in S$. Therefore S is a subalgebra of X.

Conversely, suppose that S is a subalgebra of X. Let $x, y \in X$. If $x, y \in S$, then $x * y \in S$, and thus

$$
\chi_S^c(x * y) = \max\{\chi_S^c(x), \chi_S^c(y)\} \le \max\{\chi_S^c(x), \chi_S^c(y), 0.5\}.
$$

If any one of x and y does not belong to S, then $\chi^c_S(x) = 1$ or $\chi^c_S(y) = 1$. Hence $\chi_S^c(x * y) \leq \max\{\chi_S^c(x), \chi_S^c(y)\}\leq \max\{\chi_S^c(x), \chi_S^c(y), 0.5\}.$ Using Theorem 3.15, we know that χ_S^c is a $(<, < \vee \Upsilon$ ^{*}-fuzzy subalgebra of X.

Theorem 3.17. A fuzzy set A in a BM -algebra X is a $(\leq, \leq \vee \Upsilon)$ ^{*}-fuzzy subalgebra of X if and only if the set

$$
L(\mathcal{A}; t) := \{ x \in X \mid \mathcal{A}(x) \le t \}, t \in [0.5, 1)
$$

is a subalgebra of X.

Proof. Assume that A is a $(\ll, \ll \lor \Upsilon)$ ^{*}-fuzzy subalgebra of X and let $x, y \in$ $L(\mathcal{A};t)$. Then $\mathcal{A}(x) \leq t$ and $\mathcal{A}(y) \leq t$, and so $x_t \leq \mathcal{A}$ and $y_t \leq \mathcal{A}$. It follows from Theorem 3.15 that

$$
\mathcal{A}(x*y) \le \max\{\mathcal{A}(x), \mathcal{A}(y), 0.5\} \le \max\{t, 0.5\} = t
$$

so that $x * y \in L(\mathcal{A}; t)$. Hence $L(\mathcal{A}; t)$ is a subalgebra of X.

Conversely, let A be a fuzzy set in X such that the set $L(\mathcal{A};t) := \{x \in X$ $\mathcal{A}(x) \leq t$ is a subalgebra of X for all $t \in [0.5, 1)$. If there exist $x, y \in X$ such that $\mathcal{A}(x * y) > \max\{\mathcal{A}(x), \mathcal{A}(y), 0.5\}$, then we can take $t \in (0, 1)$ such that

$$
\max\{\mathcal{A}(x), \mathcal{A}(y), 0.5\} < t < \mathcal{A}(x \ast y).
$$

Thus $x, y \in L(\mathcal{A}; t)$ and $t > 0.5$, and so $x * y \in L(\mathcal{A}; t)$, i.e., $\mathcal{A}(x * y) \leq t$. This is a contradiction. Therefore $\mathcal{A}(x * y) \leq \max\{\mathcal{A}(x), \mathcal{A}(y), 0.5\}$ for all $x, y \in X$. Using Theorem 3.15, we conclude that A is a $(\leq, \leq \vee \Upsilon)$ ^{*}-fuzzy subalgebra of X.

Proposition 3.18. Let A be a fuzzy set in a BM-algebra X. Then A is a $(\leq, \leq)^*$ fuzzy subalgebra of X if and only if for all $t \in [0, 1]$, the nonempty level set $L(\mathcal{A}; t)$ is a subalgebra of X.

Proof. The proof follows from Proposition 3.2.

Theorem 3.19. Let A be a fuzzy set in a BM -algebra X. Then A is a non-unit $(\Upsilon, \Upsilon)^*$ -fuzzy subalgebra of X if and only if $L(\mathcal{A}; \mathcal{A}(0)) = X^*$ and for all $t \in [0, 1]$, the nonempty level set $L(\mathcal{A};t)$ is a subalgebra of X.

Proof. Let A be a non-unit $(\Upsilon, \Upsilon)^*$ -fuzzy subalgebra of X. Then by Theorem 3.12 we have

$$
\mathcal{A}(x) = \begin{cases} \mathcal{A}(0) & \text{if } x \in X^* \\ 1 & \text{otherwise} \end{cases}
$$

So it is easy to check that $L(\mathcal{A}; \mathcal{A}(0)) = X^*$. Let $x, y \in L(\mathcal{A}; t)$, for $t \in [0, 1]$. Then $\mathcal{A}(x) \leq t$ and $\mathcal{A}(y) \leq t$. If $t = 1$, then it is clear that $x * y \in L(\mathcal{A}; 1)$. Now let $t \in [0,1)$. Then $x, y \in X^*$ and so $x * y \in X^*$. Hence $\mathcal{A}(x * y) = \mathcal{A}(0) \leq t$. Therefore $L(\mathcal{A};t)$ is a subalgebra of X.

Conversely, since $L(A; A(0)) = X^*$ and $0 \in L(A; A(0)), X^*$ is a subalgebra of X

and A is non-unit. Now let $x \in X^*$. Then $\mathcal{A}(x) \geq \mathcal{A}(0)$ and $\mathcal{A}(x) > 0$. Since $L(\mathcal{A}; \mathcal{A}(x)) \neq \emptyset$, so $L(\mathcal{A}; \mathcal{A}(x))$ is a subalgebra of X. Then $0 \in L(\mathcal{A}; \mathcal{A}(x))$ implies that $\mathcal{A}(0) \geq \mathcal{A}(x)$. Hence $\mathcal{A}(x) = \mathcal{A}(0)$, for all $x \in X^*$. Therefore

$$
\mathcal{A}(x) = \begin{cases} \mathcal{A}(0) & \text{if } x \in X^* \\ 1 & \text{otherwise} \end{cases}
$$

Hence by Theorem 3.12 A is a $(\Upsilon, \Upsilon)^*$ -fuzzy subalgebra of X.

Theorem 3.20. Every $(\Upsilon, \Upsilon)^*$ -fuzzy subalgebra is a $(\ll, \ll)^*$ -fuzzy subalgebra.

Proof. The proof follows from Theorem 3.19 and Proposition 3.18.

Theorem 3.21. Let A be a non-unit $(\Upsilon, \leq \vee \Upsilon)$ ^{*}-fuzzy subalgebra of X. Then the nonempty level set $L(\mathcal{A};t)$ is a subalgebra of X, for all $t \in [0.5, 1]$.

Proof. If A is a constant on X^* , then by Theorem 3.12, A is a $(\Upsilon, \Upsilon)^*$ -fuzzy subalgebra. Thus by Theorem 3.19 we have the nonempty level set $L(\mathcal{A};t)$ is a subalgebra of X, for $t \in [0,1]$. If A is not a constant on X^* , then by Theorem 3.12, we have

$$
\mathcal{A}(x) = \begin{cases} \alpha & \text{if } x \in X^* \\ 1 & \text{otherwise} \end{cases}
$$

where $\alpha \leq 0.5$. Now we show that the nonempty level set $L(\mathcal{A};t)$ is a subalgebra of X for $t \in [0.5, 1]$. If $t = 1$, then it is clear that $L(\mathcal{A}; t)$ is a subalgebra of X. Now let $t \in [0.5, 1)$ and $x, y \in L(\mathcal{A}; t)$. Then $\mathcal{A}(x), \mathcal{A}(y) \leq t < 1$ imply that $x, y \in X^*$. Thus $x * y \in X^*$ and so $\mathcal{A}(x * y) \leq 0.5 \leq t$. Therefore $x * y \in L(\mathcal{A}; t)$.

Theorem 3.22. Let A be a non-unit fuzzy set of BM algebra $X, L(A, 0.5) = X^*$ and the nonempty level set $L(\mathcal{A};t)$ is a subalgebra of X, for all $t \in [0,1]$. Then A is a $(\Upsilon, \ll \vee \Upsilon)$ ^{*}-fuzzy subalgebra of X.

Proof. Since $A \neq 1$ we get that $X^* \neq \emptyset$. Thus by hypothesis we have $L(A; 0.5) \neq \emptyset$ and so X^* is a subalgebra of X. Also $\mathcal{A}(x) \leq 0.5$, for all $x \in X^*$ and $\mathcal{A}(x) = 1$, if $x \notin X^*$. Therefore by Theorem 3.21, A is a $(\Upsilon, \langle \vee \Upsilon \rangle^*)$ -fuzzy subalgebra of X.

Theorem 3.23. Let A be an $(\Upsilon, \leq \vee \Upsilon)$ ^{*}-fuzzy subalgebra of BM algebra X. Then for all $t \in [0.5, 1]$, the nonempty level set $L(\mathcal{A}; t)$ is a subalgebra of X. Conversely, if the nonempty level set A is a subalgebra of X, for all $t \in [0,1]$, then A is an $(\Upsilon, \ll \vee \Upsilon)^*$ -fuzzy subalgebra of X.

Proof. Let A be an $(\Upsilon, \ll \vee \Upsilon)$ ^{*}-fuzzy subalgebra of X. If $t = 1$, then $L(\mathcal{A};t)$ is a subalgebra of X. Now let $L(\mathcal{A}; t) \neq \emptyset$, $0.5 \leq t < 1$ and $x, y \in L(\mathcal{A}; t)$. Then $\mathcal{A}(x), \mathcal{A}(y) \leq t$. Thus by hypothesis we have $\mathcal{A}(x * y) \leq \max(\mathcal{A}(x), \mathcal{A}(y), 0.5) \leq$ $\max(t, 0.5) \leq t$. Therefore $L(\mathcal{A}; t)$ is a subalgebra of X.

Conversely, let $x, y \in X$. Then we have

$$
\mathcal{A}(x), \mathcal{A}(y) \le \max(\mathcal{A}(x), \mathcal{A}(y), 0.5) = t_0
$$

Hence $x, y \in L(\mathcal{A}; t_0)$, for $t_0 \in [0, 1]$ and so $x * y \in L(\mathcal{A}; t_0)$. Therefore $\mathcal{A}(x * y) \leq$ $t_0 = \max(\mathcal{A}(x), \mathcal{A}(y), 0.5)$, then \mathcal{A} is a $(\Upsilon, \langle \vee \Upsilon \rangle)$ ^{*}-fuzzy subalgebra of X.

For any fuzzy set A in X and $t \in [0, 1)$, we denote

$$
\mathcal{A}_t := \{ x \in X \mid x_t \Upsilon \mathcal{A} \} \quad \text{and} \quad [\mathcal{A}]_t := \{ x \in X \mid x_t \leq \vee \Upsilon \mathcal{A} \}.
$$

Obviously $[\mathcal{A}]_t = L(\mathcal{A}; t) \cup \mathcal{A}_t$.

Theorem 3.24. A fuzzy set A in a BM -algebra X is a $(\leq, \leq \vee \Upsilon)$ ^{*}-fuzzy subalgebra of X if and only if $[\mathcal{A}]_t$ is a subalgebra of X for all $t \in [0,1)$.

Proof. Let A be a $(\leq, \leq \vee \Upsilon)$ ^{*}-fuzzy subalgebra of X and let $x, y \in [\mathcal{A}]_t$ for $t \in [0, 1)$. Then $x_t \leq \sqrt{\Upsilon} A$ and $y_t \leq \sqrt{\Upsilon} A$, that is, $A(x) \leq t$ or $A(x) + t > 1$, and $\mathcal{A}(y) \leq t$ or $\mathcal{A}(y) + t > 1$. Since $\mathcal{A}(x * y) \leq \max{\{\mathcal{A}(x), \mathcal{A}(y), 0.5\}}$ by Theorem 3.15, we have $\mathcal{A}(x*y) \leq \max\{t, 0.5\}$. If it is not true, then $x_t \leq \sqrt{\Upsilon} \mathcal{A}$ or $y_t \leq \sqrt{\Upsilon} \mathcal{A}$, a contradiction. If $t \geq 0.5$, then $\mathcal{A}(x*y) \leq \max\{t, 0.5\} = t$ and so $x*y \in L(\mathcal{A}; t) \subseteq [\mathcal{A}]_t$. If $t < 0.5$, then $\mathcal{A}(x * y) \le \max\{t, 0.5\} = 0.5$ and thus $\mathcal{A}(x * y) + t < 0.5 + 0.5 = 1$. Hence $(x * y)_t \Upsilon A$, and so $x * y \in A_t \subseteq [A]_t$. Therefore $[A]_t$ is a subalgebra of X.

Conversely, let A be a fuzzy set in X and $t \in [0, 1)$ be such that $[\mathcal{A}]_t$ is a subalgebra of X. Let $\max\{\mathcal{A}(x), \mathcal{A}(y), 0.5\} < t < \mathcal{A}(x * y)$ for some $t \in (0.5, 1)$. Then $x, y \in$ $L(\mathcal{A};t) \subseteq [\mathcal{A}]_t$, which implies that $x * y \in [\mathcal{A}]_t$. Hence $\mathcal{A}(x * y) \leq t$ or $\mathcal{A}(x * y) + t < 1$, a contradiction. Therefore $\mathcal{A}(x * y) \leq \max\{\mathcal{A}(x), \mathcal{A}(y), 0.5\}$ for all $x, y \in X$. Using Theorem 3.15, we know that $\mathcal A$ is a $(\leq, \leq \vee \Upsilon)$ ^{*}-fuzzy subalgebra of X.

Theorem 3.25. Let $\{A_i \mid i \in \Lambda\}$ be a family of $(\langle, \langle \vee \Upsilon \rangle^*)$ -fuzzy subalgebras of a BM-algebra X. Then $\mathcal{A} := \bigcap$ $\bigcap_{i\in\Lambda} \mathcal{A}_i$ is a $(\ll, \ll \vee \Upsilon)^*$ -fuzzy subalgebra of X.

Proof. By Theorem 3.15 we have $\mathcal{A}_i(x * y) \leq \max\{\mathcal{A}(x), \mathcal{A}(y), 0.5\}$, and so

$$
\mathcal{A}(x * y) = \inf_{i \in \Lambda} \mathcal{A}_i(x * y)
$$

\n
$$
\leq \inf_{i \in \Lambda} \max \{ \mathcal{A}_i(x), \mathcal{A}_i(y), 0.5 \}
$$

\n
$$
= \max \{ \inf_{i \in \Lambda} \mathcal{A}_i(x), \inf_{i \in \Lambda} \mathcal{A}_i(y), 0.5 \}
$$

\n
$$
= \max \{ \mathcal{A}(x), \mathcal{A}(y), 0.5 \}.
$$

By Theorem 3.15 we know that A is a $(\leq, \leq \vee \Upsilon)$ ^{*}-fuzzy subalgebra of X.

Theorem 3.26. Let $\{A_i \mid i \in \Lambda\}$ be a family of $(\alpha, \beta)^*$ -fuzzy subalgebras of X. Then $\mathcal{A} := \bigcap \mathcal{A}_i$ is an $(\alpha, \beta)^*$ -fuzzy subalgebra of X, where (α, β) is one of the following i∈Λ forms

Proof. We prove theorem for an (Υ, Υ) ^{*}-fuzzy subalgebra. The proof of the other cases is similar.

If there exists $i \in \Lambda$ such that $\mathcal{A}_i = 0$, then $\mathcal{A} = 0$. So \mathcal{A} is a $(\Upsilon, \Upsilon)^*$ -fuzzy subalgebra. Let $A_i \neq 0$ for all $i \in \Lambda$. Then by Theorem 3.12 we have

$$
\mathcal{A}_i(x) = \begin{cases} \mathcal{A}_i(0) & \text{if } x \in X_i^* \\ 1 & \text{otherwise} \end{cases}
$$

for all $i \in \Lambda$. So it is clear that

$$
\mathcal{A}(x) = \begin{cases} \mathcal{A}(0) & \text{if } x \in \bigcap_{i \in \Lambda} X_i^* \\ 1 & \text{otherwise} \end{cases}
$$

Since $\bigcap X_i^*$ is a subalgebra of X, then by Theorem 3.12 A is a $(\Upsilon, \Upsilon)^*$ -fuzzy subal $i \in \Lambda$
gebra of X.

Theorem 3.27. Let $\{A_i \mid i \in \Lambda\}$ be a family of $(\leq,\leq)^*$ -fuzzy subalgebras of a BM-algebra X. Then $A := \bigcup A_i$ is a (\leq, \leq) ^{*}-fuzzy subalgebra of X. i∈Λ

Proof. Let $x_t \leq A$ and $y_r \leq A$, where $t, r \in [0, 1)$. Then $\mathcal{A}(x) \leq t$ and $\mathcal{A}(y) \leq r$. Thus for all $i \in \Lambda$, we have $\mathcal{A}_i(x) \leq t$ and $\mathcal{A}_i(y) \leq r$ and so $\mathcal{A}_i(x * y) \leq \max(t, r)$. Therefore $\mathcal{A}(x * y) \leq \max(t, r)$. Hence $(x * y)_{max(t, r)} \leq \mathcal{A}$.

The following is our question: Is the union of two $(<, < V \Upsilon$ ^{*}-fuzzy subalgebras of a BM-algebra X a $(<, < \vee \Upsilon$ ^{*}-fuzzy subalgebra of X?

Lemma 3.28. Let $f : X \to Y$ be a BM-homomorphism and G be a fuzzy set of Y with membership function \mathcal{A}_G . Then $x_t \alpha \mathcal{A}_{f^{-1}(G)} \Leftrightarrow f(x)_t \alpha \mathcal{A}_G$, for all $\alpha \in$ $\{\Upsilon, \lessdot, \lessdot \vee \Upsilon, \lessdot \wedge \Upsilon\}.$

Proof. Let $\alpha = \leq$. Then

 $x_t \alpha A_{f^{-1}(G)} \Leftrightarrow A_{f^{-1}(G)}(x) \leq t \Leftrightarrow A_G(f(x)) \leq t \Leftrightarrow (f(x))_t \alpha A_G$

The proof of the other cases is similar to above argument.

Theorem 3.29. Let $f : X \to Y$ be a BM-homomorphism and G be a fuzzy set of Y with membership function A_G .

(i) If G is an $(\alpha, \beta)^*$ -fuzzy subalgebra of Y, then $f^{-1}(G)$ is an $(\alpha, \beta)^*$ -fuzzy subalgebra of X ,

(ii) Let f be epimorphism. If $f^{-1}(G)$ is an $(\alpha, \beta)^*$ -fuzzy subalgebra of X, then G is an $(\alpha, \beta)^*$ -fuzzy subalgebra of Y.

Proof. (i) Let $x_t \alpha \mathcal{A}_{f^{-1}(G)}$ and $y_r \alpha \mathcal{A}_{f^{-1}(G)}$, for $t, r \in [0, 1)$. Then by Lemma 3.28, we get that $(f(x))_t \alpha \mathcal{A}_G$ and $(f(y))_r \alpha \mathcal{A}_G$. Hence by hypothesis $(f(x)*f(y))_{\max(t,r)} \beta \mathcal{A}_G$. Then $(f(x * y))_{\max(t,r)} \beta \mathcal{A}_G$ and so $(x * y)_{\max(t,r)} \beta \mathcal{A}_{f^{-1}(G)}$.

(ii) Let $x, y \in Y$. Then by hypothesis there exist $x', y' \in X$ such that $f(x') = x$ and $f(y') = y$. Assume that $x_t \alpha \overline{\mathcal{A}}_G$ and $y_r \alpha \overline{\mathcal{A}}_G$, then $(f(x'))_t \alpha \overline{\mathcal{A}}_G$ and $(f(y'))_r \alpha \overline{\mathcal{A}}_G$. Thus $x_t \alpha \mathcal{A}_{f^{-1}(G)}$ and $y_r \alpha \mathcal{A}_{f^{-1}(G)}$ and therefore $(x' * y')_{\max(t,r)} \beta \mathcal{A}_{f^{-1}(G)}$. So

$$
(f(x^{'} * y^{'}))_{\max(t,r)} \beta \mathcal{A}_{G} \Rightarrow (f(x^{'}) * f(y^{'}))_{\max(t,r)} \beta \mathcal{A}_{G} \Rightarrow (x * y)_{\max(t,r)} \beta \mathcal{A}_{G}.
$$

Theorem 3.30. Let $f : X \to Y$ be a BM-homomorphism and H be a $(\leq, \leq \vee \Upsilon)^*$ fuzzy subalgebra of X with membership function \mathcal{A}_H . If \mathcal{A}_H is f-invariant, then $f(H)$ is a $(\leq, \leq \vee \Upsilon)$ ^{*}-fuzzy subalgebra of Y.

Proof. Let y_1 and $y_2 \in Y$. If $f^{-1}(y_1)$ or $f^{-1}(y_2) = \emptyset$, then $\mathcal{A}_{f(H)}(y_1 * y_2) \leq$ $\max(A_{f(H)}(y_1), A_{f(H)}(y_2), 0.5)$. Now let $f^{-1}(y_1)$ and $f^{-1}(y_2) \neq \emptyset$. Then there exist $x_1, x_2 \in X$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Thus by hypothesis we have

$$
\begin{array}{rcl}\n\mathcal{A}_{f(H)}(y_1 * y_2) & = & \sup_{t \in f^{-1}(y_1 * y_2)} \mathcal{A}_H(t) \\
& = & \sup_{t \in f^{-1}(f(x_1 * x_2))} \mathcal{A}_H(t) \\
& = & \mathcal{A}_H(x_1 * x_2) \\
& \leq & \max(\mathcal{A}_H(x_1), \mathcal{A}_H(x_2), 0.5) \\
& = & \max(\sup_{t \in f^{-1}(y_1)} \mathcal{A}_H(t), \sup_{t \in f^{-1}(y_2)} \mathcal{A}_H(t), 0.5) \\
& = & \max(\mathcal{A}_{f(H)}(y_1), \mathcal{A}_{f(H)}(y_2), 0.5).\n\end{array}
$$

So by Theorem 3.15, $f(H)$ is a $(\leq, \leq \vee \Upsilon)$ ^{*}-fuzzy subalgebra of Y.

Lemma 3.31. Let $f : X \to Y$ be a *BM*-homomorphism.

- (i) If S is a subalgebra of X, then $f(S)$ is a subalgebra of Y,
- (ii) If S' is a subalgebra of Y, then $f^{-1}(S')$ is a subalgebra of X.

Proof. The proof is easy.

Theorem 3.32. Let $f : X \to Y$ be a BM-homomorphism. If H is a non-unit $(\Upsilon, \Upsilon)^*$ -fuzzy subalgebra of X with membership function \mathcal{A}_H , then $f(H)$ is a nonunit $(\Upsilon, \Upsilon)^*$ -fuzzy subalgebra of Y.

Proof. Let H be a non-unit $(\Upsilon, \Upsilon)^*$ -fuzzy subalgebra of X. Then by Theorem 3.12, we have

$$
\mathcal{A}_H(x) = \begin{cases} \mathcal{A}_H(0) & \text{if } x \in X^* \\ 1 & otherwise \end{cases}
$$

Now we show that

$$
\mathcal{A}_{f(H)}(y) = \begin{cases} \mathcal{A}_H(0) & \text{if } y \in f(X^*)\\ 1 & \text{otherwise} \end{cases}
$$

Let $y \in Y$. If $y \in f(X^*)$, then there exists $x \in X^*$ such that $f(x) = y$. Thus $\mathcal{A}_{f(H)}(y) = \text{sup} \quad \mathcal{A}_H(t) = \mathcal{A}_H(0).$ If $y \notin f(X^*)$, then it is clear that $\mathcal{A}_{f(H)}(y) = 1.$ $t \in f^{-1}(y)$ Since X^* is a subalgebra of X, $f(X^*)$ is a subalgebra of Y. Therefore by Theorem 3.12, $f(H)$ is a non-unit $(\Upsilon, \Upsilon)^*$ -fuzzy subalgebra of Y.

Theorem 3.33. Let $f: X \to Y$ be a BM-homomorphism. If H is an $(\alpha, \beta)^*$ fuzzy subalgebra of X with membership function \mathcal{A}_H , then $f(H)$ is an $(\alpha, \beta)^*$ -fuzzy subalgebra of Y, where (α, β) is one of the following forms

Theorem 3.34. Let $f : X \to Y$ be a BM-homomorphism and H be an (\leq, \leq) ^{*}-fuzzy subalgebra of X with membership function \mathcal{A}_H . If \mathcal{A}_H is an f-invariant, then $f(H)$ is an (\leq, \leq) *-fuzzy subalgebra of Y.

Proof. Let $z_t \leq A_{f(H)}$ and $y_r \leq A_{f(H)}$, where $t, r \in [0, 1)$. Then $A_{f(H)}(z) \leq t$ and $\mathcal{A}_{f(H)}(y) \leq r$. Thus $f^{-1}(z)$, $f^{-1}(y) \neq \emptyset$ imply that there exist $x_1, x_2 \in X$ such that $f(x_1) = z$ and $f(x_2) = y$. Since \mathcal{A}_H is f-invariant, then $\mathcal{A}_{f(H)}(z) \leq t$ and $\mathcal{A}_{f(H)}(y) \leq r$ imply that $\mathcal{A}_{H}(x_1) \leq t$ and $\mathcal{A}_{H}(x_2) \leq r$. So by hypothesis we have

$$
\mathcal{A}_{f(H)}(z * y) = \sup_{t \in f^{-1}(z * y)} \mathcal{A}_{H}(t)
$$

$$
= \sup_{t \in f^{-1}(f(x_1 * x_2))} \mathcal{A}_{H}(t)
$$

$$
= \mathcal{A}_{H}(x_1 * x_2)
$$

$$
\leq \max(t, r)
$$

Therefore $(z * y)_{\max(t,r)} \in \mathcal{A}_{f(H)}$, and hence $f(H)$ is a (\leq, \leq) ^{*}-fuzzy subalgebra of Y.

Acknowledgments: The author wish to thank the reviewers for their excellent suggestions that have been incorporated into this paper.

References

- [1] S. A. Bhatti, M. A. Chaudhry and B. Ahmad, On classification of BCI-algebras, Math. Jap. 34 (1989), 865–876.
- [2] S. K. Bhakat and P. Das, $(\in, \in \vee q)$ -fuzzy subgroup, Fuzzy Sets and Systems 80 (1996), 359–368.
- [3] A. Borumand Saeid, Fuzzy BM-algebras, Indian J. Sci. Technol. 3 (2010), 523– 529.
- [4] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313–320.
- [5] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659– 661.
- [6] K. Iséki and S. Tanaka, An introduction to theory of BCK -algebras, Math. Japonica 23 (1978), 1–26.
- [7] K. Iséki, On *BCI*-algebras, *Math. Seminar Notes* 8 (1980), 125–130.
- [8] C. B. Kim and H. S. Kim, On BM-algebras, Sci. Math. Japo. Online e-2006 (2006), 215–221.
- [9] H. S. Kim, Y. H. Kim and J. Neggers, Coxeters and pre-Coxeter algebras in Smarandache setting, Honam Math. J. 26 (2004), 471–481.
- [10] Y. B. Jun, On (α, β) -fuzzy subalgebras of BCI/BCK -algebras, Bull. Korean Math. Soc. 42 (2005), 703–711.
- [11] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japonica Online 1 (1998), 347–354.
- [12] J. Meng and Y. B. Jun, BCK -algebras, Kyung Moon Sa, Co., Seoul, 1994.
- [13] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19–26.
- [14] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21–29.
- [15] J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for Balgebras, Int. Math. J. 2 (2002), 215–219.
- [16] A. Rosenfeld, Fuzzy Groups, *J. Math. Anal. Appl.* **35** (1971), 512-517.
- [17] A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca 56 (2006), 301–306.
- [18] A. Walendziak, A note on normal subalgebras in B-algebras, Sci. Math. Jap. Online e-2005 (2005), 49–53.
- [19] L. A. Zadeh, Fuzzy Sets, Inform. Control 8 (1965), 338–353.