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Abstract

In this paper by using the notion of anti fuzzy points and its besideness to and
non-quasi-coincidence with a fuzzy set the concepts of an anti fuzzy subalgebras
in BM -algebras are generalized and their inter-relations and related properties
are investigated.
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1 Introduction

Y. Imai and K. Iseḱi introduced two classes of abstract algebras: BCK-algebras
and BCI-algebras [6, 7]. It is known that the class of BCK-algebras is a proper
subclass of the class of BCI-algebras. In [4, 5] Q. P. Hu and X. Li introduced a wide
class of abstract algebras: BCH-algebras. They have shown that the class of BCI-
algebras is a proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim
[13] introduced the notion of d−algebras which is another generalization of BCK-
algebras, and also they introduced the notion of B-algebras [14, 15]. Moreover, Y. B.
Jun, E. H. Roh and H. S. Kim [11] introduced a new notion, called a BH-algebra,
which is a generalization of BCH/BCI/BCK-algebras. Walendziak obtained the
another equivalent axioms for B-algebra [18]. H. S. Kim, Y. H. Kim and J. Neggers
[9] introduced the notion a (pre-) Coxeter algebra and showed that a Coxeter algebra
is equivalent to an abelian group all of whose elements have order 2, i.e., a Boolean
group. C. B. Kim and H. S. Kim [8] introduced the notion of a BM -algebra which is
a specialization of B-algebras.
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The concept of a fuzzy set was introduced in [19] by L. A. Zadeh. Since then it
has become a vigorous area of research in engineering, medical science, social science,
physics, statistics, graph theory, etc. In this paper, we introduce the concept of an
anti fuzzy subalgebra of BM -algebras by using the notion of anti fuzzy points and
its besideness to and non-quasi-coincidence with a fuzzy set, and investigate their
inter-relations and related properties.

2 Preliminaries

Definition 2.1. [8] A BM -algebra is a non-empty set X with a consonant 0 and a
binary operation ∗ satisfying the following axioms:

(I) x ∗ 0 = x,
(II) (z ∗ x) ∗ (z ∗ y) = y ∗ x,
for all x, y, z ∈ X.

In X we can define a binary relation by x ≤ y if and only if x ∗ y = 0.

Proposition 2.2. [8] Let X be a BM -algebra. Then for any x, y and z in X, the
following hold:

(a) x ∗ x = 0,
(b) 0 ∗ (0 ∗ x) = x,
(c) 0 ∗ (x ∗ y) = y ∗ x,
(d) (x ∗ z) ∗ (y ∗ z) = x ∗ y,
(e) x ∗ y = 0 if and only if y ∗ x = 0,
(f) (x ∗ y) ∗ z = (x ∗ z) ∗ y.

Definition 2.3. A non-empty subset S of a BM -algebra X is called a subalgebra of
X if x ∗ y ∈ S for any x, y ∈ S.

A mapping f : X −→ Y of BM -algebras is called a BM -homomorphism if f(x ∗
y) = f(x) ∗ f(y) for all x, y ∈ X.

We now review some fuzzy logic concept (see [19]).
Let X be a set. A fuzzy set A in X is characterized by a membership function

µA : X −→ [0, 1]. Let f be a mapping from the set X to the set Y and let B be a
fuzzy set in Y with membership function µB .

The inverse image of B, denoted f−1(B), is the fuzzy set in X with membership
function µf−1(B) defined by µf−1(B)(x) = µB(f(x)) for all x ∈ X.

Conversely, let A be a fuzzy set in X with membership function µA. Then the
image of A, denoted by f(A), is the fuzzy set in Y such that:

µf(A)(y) =

{
sup

z∈f−1(y)

µA(z) if f−1(y) = {x : f(x) = y} 6= ∅,

0 otherwise
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A fuzzy set A in X of the form

A(y) :=

{
t ∈ [0, 1) if y = x,
1 if y 6= x

is called an anti fuzzy point with support x and value t and is denoted by xt. A fuzzy
set A in X is said to be non-unit if there exists x ∈ X such that A(x) < 1.

A fuzzy set A in a BM -algebra X is called an anti-fuzzy subalgebra of X if it
satisfies [3]

(∀x, y ∈ X) (A(x ∗ y) ≤ max{A(x),A(y)}). (2.1)

3 Redefined (anti) fuzzy subalgebras

From now (X, ∗, 0) or simply X is a BM -algebra.

Definition 3.1. An anti-fuzzy point xt is said to beside to (resp. be non-quasi co-
incident with) a fuzzy set A, denoted by xt l A (resp. xtΥA), if A(x) ≤ t (resp.
A(x) + t < 1). We say that l (resp. Υ) is a beside to relation (resp. non-quasi
coincident with relation) between anti-fuzzy points and fuzzy sets.

If xt l A or xtΥA (resp. xt l A and xtΥA), we say that xt l ∨ΥA (resp.
xt l ∧ΥA).

Proposition 3.2. Let A be a fuzzy set in a BM -algebra X. Then A satisfies the
condition (2.1) if and only if it satisfies the following condition.

(∀x, y ∈ X) (∀t1, t2 ∈ [0, 1)) (xt1 , yt2 lA ⇒ (x ∗ y)max{t1,t2} lA). (3.1)

Proof. Assume that A satisfies the condition (2.1). Let x, y ∈ X and t1, t2 ∈ [0, 1)
satisfy xt1 , yt2 lA. Then A(x) ≤ t1 and A(y) ≤ t2. Using (2.1) induces that

A(x ∗ y) ≤ max{A(x),A(y)} ≤ max{t1, t2}.

Hence (x ∗ y)max{t1,t2} lA.
Conversely, suppose that the condition (3.1) is valid. Since xA(x)lA and yA(y)lA

for all x, y ∈ X, it follows from (3.1) that

(x ∗ y)max{A(x),A(y)} lA

so that A(x ∗ y) ≤ max{A(x),A(y)}. This completes the proof.
Note that if A is a fuzzy set in X such that A(x) ≥ 0.5 for all x ∈ X, then the

set {xt | xt l ∧ΥA} is empty. In what follows let α and β denote any one of l, Υ,
l∨Υ , or l∧Υ unless otherwise specified. To say that xtαA means that xtαA does
not hold.
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Definition 3.3. A fuzzy setA in a BM -algebraX is called an (α, β)∗-fuzzy subalgebra
of X, where α 6= l ∧Υ , if it satisfies the following implication:

(∀x, y ∈ X) (∀t1, t2 ∈ [0, 1)) (xt1αA, yt2αA ⇒ (x ∗ y)max{t1,t2}βA). (3.2)

Example 3.4. [3] Let X = {0, 1, 2} be a set with the following table:

∗ 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Then (X, ∗, 0) is a BM -algebra. Let A be a fuzzy set in X defined by A(0) = 0.4,
A(1) = 0.3, and A(2) = 0.7. It is routine to verify that A is a (l,l ∨ Υ )∗-fuzzy
subalgebra of X.

Theorem 3.5. In a BM -algebra, every (l∨Υ ,l∨Υ )∗-fuzzy subalgebra is a (l,l∨
Υ )∗-fuzzy subalgebra.

Proof. Let A be a (l ∨ Υ ,l ∨ Υ )∗-fuzzy subalgebra of a BM -algebra X. Let
x, y ∈ X and t1, t2 ∈ [0, 1) satisfy xt1lA and yt2lA. Then xt1l∨ΥA and yt2l∨ΥA,
which imply that (x ∗ y)max{t1,t2}l∨ΥA. Hence A is a (l,l∨Υ )∗-fuzzy subalgebra
of X.

The converse of Theorem 3.5 is not true in general. For example, the (l,l∨Υ )∗-
fuzzy subalgebra A of X in Example 3.4 is not a (l ∨Υ , l ∨Υ )∗-fuzzy subalgebra
of X since 10.5 l ∨ΥA and 00.4 l ∨ΥA, but (0 ∗ 1)max{0.5,0.4} = 20.5l ∨ΥA.

Obviously any (l,l)∗-fuzzy subalgebra is a (l,l ∨ Υ )∗-fuzzy subalgebra, but
the converse is not true. For example, the (l,l ∨ Υ )∗-fuzzy subalgebra A of X in
Example 3.4 is not a (l,l)∗-fuzzy subalgebra of X since 10.38 lA and 10.34 lA, but
(1 ∗ 1)max{0.34,0.38} = 00.38lA.

Also a (l,l ∨ Υ )∗-fuzzy subalgebra A of X may not be a (Υ,l ∨ Υ )∗-fuzzy
subalgebra. For example, the (l,l ∨ Υ )∗-fuzzy subalgebra A of X in Example
3.4 is not a (Υ,l ∨ Υ )∗-fuzzy subalgebra of X since 10.6ΥA and 20.1ΥA but (1 ∗
2)max{0.6,0.1} = 20.6l ∨ΥA.

Theorem 3.6. Let A be a fuzzy set in a BM -algebra X. Then the left diagram shows
the relationship between (α, β)∗-fuzzy subalgebras of X, where α, β are one of l and
Υ. Also we have the right diagram.

(α, α ∨ β)∗

(α, β)∗ (α, α)∗

(α, α ∧ β)∗

��� @@I

@@I ���

(l ∨Υ ,l ∨Υ )∗

(l ∨Υ ,Υ)∗ (l ∨Υ ,l)∗

(l ∨Υ ,l ∧Υ )∗

��� @@I

@@I ���
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Proposition 3.7. Let A be a fuzzy set in a BM -algebra X which is non-unit. If A
is an (α, β)∗-fuzzy subalgebra of X, then A(0) < 1.

Proof. Assume that A(0) = 1. Since A is non-unit, there exists x ∈ X such that
A(x) = t < 1. If α = l or α = l ∨ Υ , then xtαA, but (x ∗ x)max{t,t} = 0tβA. This
is a contradiction. If α = Υ, then x0αA because A(x) + 0 = t + 0 = t < 1. But
(x ∗ x)max{0,0} = 00βA, which is a contradiction. Hence A(0) < 1.

Proposition 3.8. Let A be a fuzzy set in a BM -algebra X. If A is a (l,l)∗-fuzzy
subalgebra of X, then A(0) ≤ A(x), for all x ∈ X.

Proof. Since x ∗ x = 0, for all x ∈ X. Then we get that A(0) = A(x ∗ x) ≤
max(A(x),A(x)) = A(x).

For a fuzzy set A in a BM -algebra X, we denote

X∗ := {x ∈ X | A(x) < 1}.

Theorem 3.9. Let A be a fuzzy set in a BM -algebra X which is non-unit. If A is
an (α, β)∗-fuzzy subalgebra of X where (α, β) is one of the following:

• (l,l), • (l,Υ), • (Υ,l), • (Υ,Υ),

then the set X∗ is a subalgebra of X.

Proof. (i) Assume that A is a (l,l)∗-fuzzy subalgebra of X. Let x, y ∈ X∗.
Then A(x) < 1 and A(y) < 1. Assume that A(x ∗ y) = 1. Note that xA(x) l A and
yA(y) lA. But, since A(x ∗ y) = 1 > max{A(x),A(y)}, we get (x ∗ y){A(x),A(y)}lA.
This is a contradiction, and so A(x ∗ y) < 1 which shows that x ∗ y ∈ X∗. Hence X∗

is a subalgebra of X.

(ii) Assume that A is a (l,Υ)∗-fuzzy subalgebra of X. Let x, y ∈ X∗. Then
A(x) < 1 and A(y) < 1. If A(x ∗ y) = 1, then

A(x ∗ y) + max{A(x),A(y)} ≥ 1.

Hence (x∗y)max{A(x),A(y)}ΥA, which is a contradiction since xA(x)lA and yA(y)lA.
Thus A(x ∗ y) < 1, and so x ∗ y ∈ X∗. Therefore X∗ is a subalgebra of X.

(iii) Assume that A is a (Υ,l)∗-fuzzy subalgebra of X. Let x, y ∈ X∗. Then
A(x) < 1 and A(y) < 1. Thus x0ΥA and y0ΥA. If A(x ∗ y) = 1, then A(x ∗ y) =
1 > 0 = max{0, 0}. Therefore (x ∗ y)max{0,0}lA, which is a contradiction. Hence
A(x ∗ y) < 1, and so x ∗ y ∈ X∗.

(iv) Assume that A is a (Υ,Υ)∗-fuzzy subalgebra of X. Let x, y ∈ X∗. Then
A(x) < 1 and A(y) < 1. If A(x ∗ y) = 1, then A(x ∗ y) + max{0, 0} = 1 and so
(x ∗ y)max{0,0}ΥA. This is impossible, and hence A(x ∗ y) < 1, i.e., x ∗ y ∈ X∗. This
completes the proof.
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Corollary 3.10. Let A be a fuzzy set in a BM -algebra X which is non-unit. If A is
an (α, β)∗-fuzzy subalgebra of X where (α, β) is one of the following:

• (l, l ∧Υ ), • (l, l ∨Υ ),
• (Υ, l ∧Υ ), • (Υ, l ∨Υ ),
• (l ∨Υ , l ∨Υ ), • (l ∨Υ , l ∧Υ ),

then the set X∗ is a subalgebra of X.

Proof. By Theorem 3.6, it is enough to prove for the cases:

(i) (l,l ∨Υ ) and (ii) (Υ,l ∨Υ ).

(i) Let x, y ∈ X∗. Then A(x) < 1 and A(y) < 1, and so A(x) = t1 and A(y) = t2 for
some t1, t2 ∈ [0, 1). It follows that xt1 lA and yt2 lA so that (x∗y)max{t1,t2}l∨ΥA,
i.e., (x∗y)max{t1,t2}lA or (x∗y)max{t1,t2}ΥA. If (x∗y)max{t1,t2}lA, then A(x∗y) ≤
max{t1, t2} < 1 and thus x∗y ∈ X∗. If (x∗y)max{t1,t2}ΥA, then A(x∗y) ≤ A(x∗y)+
max{t1, t2} < 1. Hence x ∗ y ∈ X∗. For the case (ii), let x, y ∈ X∗. Then A(x) < 1
and A(y) < 1, which imply that x0ΥA and y0ΥA. Since A is a (Υ,l ∨ Υ )∗-fuzzy
subalgebra, (x ∗ y)0 = (x ∗ y)max{0,0} l ∨ΥA, i.e., (x ∗ y)0 l A or (x ∗ y)0ΥA. If
(x ∗ y)0 lA, then A(x ∗ y) = 0 < 1. If (x ∗ y)0ΥA, then A(x ∗ y) = A(x ∗ y) + 0 < 1.
Therefore x ∗ y ∈ X∗. This completes the proof.

Theorem 3.11. Let A be a fuzzy set in a BM -algebra X which is non-unit. Then
every (Υ,Υ)∗-fuzzy subalgebra of X is a constant on X∗.

Proof. Let A be a (Υ,Υ)∗-fuzzy subalgebra of X which is non-unit. Assume that
A is not constant on X∗. Then there exists y ∈ X∗ such that ty = A(y) 6= A(0) = t0.
Then either ty > t0 or ty < t0. If ty < t0, then A(y) + (1− t0) = ty + 1− t0 < 1 and
so y1−t0ΥA. Since

A(y ∗ y) + (1− t0) = A(0) + 1− t0 = t0 + 1− t0 = 1,

we have (y ∗ y)max{1−t0,1−t0}ΥA. This is a contradiction. Now assume that ty > t0.
Choose t1, t2 ∈ [0, 1) such that t1 < 1− ty < t2 < 1− t0. Then A(0) + t2 = t0 + t2 < 1
and A(y) + t1 = ty + t1 < 1. Thus 0t2ΥA and yt1ΥA. Since

A(y ∗ 0) + max{t1, t2} = A(y) + t2 = ty + t2 > 1,

we get (y ∗0)max{t1,t2}ΥA, which is a contradiction. Therefore A is a constant on X∗.

Theorem 3.12. Let A be a fuzzy set in a BM -algebra X. Then A is a non-unit
(Υ,Υ)∗-fuzzy subalgebra of X if and only if there exists a subalgebra S of X such
that

A(x) :=

{
t ∈ [0, 1) if x ∈ S,
1 otherwise

(3.3)
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Proof. Let A be a non-unit (Υ,Υ)∗-fuzzy subalgebra of X. Then by Proposition
3.7 and Theorems 3.11 and 3.9 we get that A(x) < 1, for all x ∈ X and X∗ is a
subalgebra of X, and

A(x) :=

{
A(0) if x ∈ X∗,
1 otherwise

Conversely, let S be a subalgebra of X which satisfy (3.3). Assume that xsΥA and
yrΥA for some s, r ∈ [0, 1). Then A(x) + s < 1 and A(y) + r < 1, and so A(x) 6= 1
and A(y) 6= 1. Thus x, y ∈ S and so x ∗ y ∈ S. It follows that A(x ∗ y) + max{s, r} =
t+ max{s, r} < 1 so that (x ∗ y)max{s,r}ΥA. Therefore A is a non-unit (Υ,Υ)∗-fuzzy
subalgebra of X.

Theorem 3.13. Let S be a subalgebra of a BM -algebra X and let A be a fuzzy set
in X such that

(i) (∀x ∈ X \ S) (A(x) = 1),

(ii) (∀x ∈ S) (A(x) ≤ 0.5).

Then A is a (Υ,l ∨Υ )∗-fuzzy subalgebra of X.

Proof. Let x, y ∈ X and t1, t2 ∈ [0, 1) be such that xt1ΥA and yt2ΥA, that is,
A(x) + t1 < 1 and A(y) + t2 < 1. If x ∗ y /∈ S, then x ∈ X \ S or y ∈ X \ S, i.e.,
A(x) = 1 or A(y) = 1. It follows that t1 < 0 or t2 < 0. This is a contradiction, and so
x ∗ y ∈ S. Hence A(x ∗ y) ≤ 0.5. If max{t1, t2} < 0.5, then A(x ∗ y) + max{t1, t2} < 1
and thus (x ∗ y)max{t1,t2}ΥA. If max{t1, t2} ≥ 0.5, then A(x ∗ y) ≤ 0.5 ≤ max{t1, t2}
and so (x ∗ y)max{t1,t2} l A. Therefore (x ∗ y)max{t1,t2} l ∨ΥA. This completes the
proof.

Theorem 3.14. Let A be a (Υ,l ∨Υ )∗-fuzzy subalgebra of a BM -algebra X such
that A is not constant on X∗. Then there exists x ∈ X such thatA(x) ≤ 0.5. Moreover
A(x) ≤ 0.5 for all x ∈ X∗.

Proof. Assume that A(x) > 0.5 for all x ∈ X. Since A is not constant on X∗,
there exists x ∈ X∗ such that tx = A(x) 6= A(0) = t0. Then either t0 > tx or t0 < tx.
For the first case, choose δ < 0.5 such that tx + δ < 1 < t0 + δ. It follows that xδΥA,

A(x ∗ x) = A(0) = t0 > δ = max{δ, δ},

A(x ∗ x) + max{δ, δ} = A(0) + δ = t0 + δ > 1

so that (x ∗ x)max{δ,δ}l ∨ΥA. This is a contradiction. For the second case, we
can choose δ < 0.5 such that tx + δ > 1 > t0 + δ. Then 0δΥA and x1ΥA, but
(x ∗ 0)max{1,δ} = x1l ∨ΥA since A(x) > 0.5 > δ and A(x) + δ = tx + δ > 1.
This leads to a contradiction. Therefore A(x) ≤ 0.5 for some x ∈ X. We now show
that A(0) ≤ 0.5. Assume that A(0) = t0 > 0.5. Since there exists x ∈ X such that
A(x) = tx ≤ 0.5, we have t0 > tx. Choose t1 < t0 such that tx + t1 < 1 < t0 + t1.
Then A(x) + t1 = tx + t1 < 1, and so xt1ΥA. Now we get

A(x ∗ x) + max{t1, t1} = A(0) + t1 = t0 + t1 > 1,
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A(x ∗ x) = A(0) = t0 > t1 = max{t1, t1}.
Hence (x∗x)max{t1,t1}l ∨ΥA, a contradiction. ThereforeA(0) ≤ 0.5. Finally suppose
that tx = A(x) > 0.5 for some x ∈ X∗. Let t be such that 0 < t < 0.5 and tx > 0.5+t.
ThereforeA(x)+0 < 1 andA(0)+(0.5−t) < 1 which imply that x0ΥA and 0(0.5−t)ΥA.
But (x ∗ 0)max(0,0.5−t) = x(0.5−t) and so A(x) > 0.5− t and A(x) + 0.5− t > 1, thus

(x ∗ 0)0,0.5−t)l ∨ΥA, which is a contradiction. Hence A(x) ≤ 0.5.
We give a characterization of a (l,l ∨Υ )∗-fuzzy subalgebra.

Theorem 3.15. Let A be a fuzzy set in a BM -algebra X. Then A is a (l,l∨Υ )∗-
fuzzy subalgebra of X if and only if it satisfies the following inequality.

(∀x, y ∈ X) (A(x ∗ y) ≤ max{A(x),A(y), 0.5}). (3.4)

Proof. Assume that A is a (l,l ∨ Υ )∗-fuzzy subalgebra of X. Let x, y ∈ X be
such that max{A(x),A(y)} > 0.5. Then A(x∗y) ≤ max{A(x),A(y)}. If it is not true,
then A(x ∗ y) < t < max{A(x),A(y)} for some t ∈ (0.5, 1). It follows that xt l A
and yt l A, but (x ∗ y)max{t,t} = (x ∗ y)tl ∨ΥA which is a contradiction. Hence
A(x∗y) ≤ max{A(x),A(y)} whenever max{A(x),A(y)} > 0.5. If max{A(x),A(y)} ≤
0.5, then x0.5lA and y0.5lA which imply that (x∗y)0.5 = (x∗y)max{0.5,0.5}l∨ΥA.
Therefore A(x∗y) ≤ 0.5 because if A(x∗y) > 0.5, then A(x∗y)+0.5 > 0.5+0.5 = 1,
a contradiction. Hence A(x ∗ y) ≤ max{A(x),A(y), 0.5} for all x, y ∈ X.

Conversely, assume that A satisfies (3.4). Let x, y ∈ X and t1, t2 ∈ [0, 1) be such
that xt1 lA and yt2 lA. Then A(x) ≤ t1 and A(y) ≤ t2. Suppose that A(x ∗ y) >
max{t1, t2}. If max{A(x),A(y)} > 0.5 then

A(x ∗ y) ≤ max{A(x),A(y), 0.5} = max{A(x),A(y)} ≤ max{t1, t2}.

This is a contradiction, and so max{A(x),A(y)} ≤ 0.5. It follows that

A(x ∗ y) + max{t1, t2} < 2A(x ∗ y) ≤ 2 max{A(x),A(y), 0.5} ≤ 1

so that (x ∗ y)max{t1,t2}ΥA. Hence (x ∗ y)max{t1,t2} l ∨ΥA, and consequently A is a
(l,l ∨Υ )∗-fuzzy subalgebra of X.

Theorem 3.16. For any subset S of a BM -algebra X, let χS denote the characteristic
function of S. Then the function χcS : X → [0, 1] defined by χcS(x) = 1−χS(x) for all
x ∈ X is a (l,l ∨Υ )∗-fuzzy subalgebra of X if and only if S is a subalgebra of X.

Proof. Assume that χcS is a (l,l ∨Υ )∗-fuzzy subalgebra of X and let x, y ∈ S.
Then χcS(x) = 1 − χS(x) = 0 and χcS(y) = 1 − χS(y) = 0. Hence x0 l χcS and
y0 l χcS , which imply that (x ∗ y)0 = (x ∗ y)max{0,0} l ∨ΥχcS . Thus χcS(x ∗ y) ≤ 0
or χcS(x ∗ y) + 0 < 1. If χcS(x ∗ y) ≤ 0, then 1 − χS(x ∗ y) = 0, i.e., χS(x ∗ y) = 1.
Hence x ∗ y ∈ S. If χcS(x ∗ y) + 0 < 1, then χS(x ∗ y) > 0. Thus χS(x ∗ y) = 1, and so
x ∗ y ∈ S. Therefore S is a subalgebra of X.

Conversely, suppose that S is a subalgebra of X. Let x, y ∈ X. If x, y ∈ S, then
x ∗ y ∈ S, and thus

χcS(x ∗ y) = max{χcS(x), χcS(y)} ≤ max{χcS(x), χcS(y), 0.5}.
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If any one of x and y does not belong to S, then χcS(x) = 1 or χcS(y) = 1. Hence
χcS(x ∗ y) ≤ max{χcS(x), χcS(y)} ≤ max{χcS(x), χcS(y), 0.5}. Using Theorem 3.15, we
know that χcS is a (l,l ∨Υ )∗-fuzzy subalgebra of X.

Theorem 3.17. A fuzzy set A in a BM -algebra X is a (l,l∨Υ )∗-fuzzy subalgebra
of X if and only if the set

L(A; t) := {x ∈ X | A(x) ≤ t}, t ∈ [0.5, 1)

is a subalgebra of X.

Proof. Assume that A is a (l,l ∨ Υ )∗-fuzzy subalgebra of X and let x, y ∈
L(A; t). Then A(x) ≤ t and A(y) ≤ t, and so xt l A and yt l A. It follows from
Theorem 3.15 that

A(x ∗ y) ≤ max{A(x),A(y), 0.5} ≤ max{t, 0.5} = t

so that x ∗ y ∈ L(A; t). Hence L(A; t) is a subalgebra of X.
Conversely, let A be a fuzzy set in X such that the set L(A; t) := {x ∈ X |

A(x) ≤ t} is a subalgebra of X for all t ∈ [0.5, 1). If there exist x, y ∈ X such that
A(x ∗ y) > max{A(x),A(y), 0.5}, then we can take t ∈ (0, 1) such that

max{A(x),A(y), 0.5} < t < A(x ∗ y).

Thus x, y ∈ L(A; t) and t > 0.5, and so x ∗ y ∈ L(A; t), i.e., A(x ∗ y) ≤ t. This is
a contradiction. Therefore A(x ∗ y) ≤ max{A(x),A(y), 0.5} for all x, y ∈ X. Using
Theorem 3.15, we conclude that A is a (l,l ∨Υ )∗-fuzzy subalgebra of X.

Proposition 3.18. Let A be a fuzzy set in a BM -algebra X. Then A is a (l,l)∗-
fuzzy subalgebra of X if and only if for all t ∈ [0, 1], the nonempty level set L(A; t) is
a subalgebra of X.

Proof. The proof follows from Proposition 3.2.

Theorem 3.19. Let A be a fuzzy set in a BM -algebra X. Then A is a non-unit
(Υ,Υ)∗-fuzzy subalgebra of X if and only if L(A;A(0)) = X∗ and for all t ∈ [0, 1],
the nonempty level set L(A; t) is a subalgebra of X.

Proof. Let A be a non-unit (Υ,Υ)∗-fuzzy subalgebra of X. Then by Theorem
3.12 we have

A(x) =

{
A(0) if x ∈ X∗

1 otherwise

So it is easy to check that L(A;A(0)) = X∗. Let x, y ∈ L(A; t), for t ∈ [0, 1]. Then
A(x) ≤ t and A(y) ≤ t. If t = 1, then it is clear that x ∗ y ∈ L(A; 1). Now let
t ∈ [0, 1). Then x, y ∈ X∗ and so x ∗ y ∈ X∗. Hence A(x ∗ y) = A(0) ≤ t. Therefore
L(A; t) is a subalgebra of X.
Conversely, since L(A;A(0)) = X∗ and 0 ∈ L(A;A(0)), X∗ is a subalgebra of X
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and A is non-unit. Now let x ∈ X∗. Then A(x) ≥ A(0) and A(x) > 0. Since
L(A;A(x)) 6= ∅, so L(A;A(x)) is a subalgebra of X. Then 0 ∈ L(A;A(x)) implies
that A(0) ≥ A(x). Hence A(x) = A(0), for all x ∈ X∗. Therefore

A(x) =

{
A(0) if x ∈ X∗

1 otherwise

Hence by Theorem 3.12 A is a (Υ,Υ)∗-fuzzy subalgebra of X.

Theorem 3.20. Every (Υ,Υ)∗-fuzzy subalgebra is a (l,l)∗-fuzzy subalgebra.

Proof. The proof follows from Theorem 3.19 and Proposition 3.18.

Theorem 3.21. Let A be a non-unit (Υ,l ∨Υ )∗-fuzzy subalgebra of X. Then the
nonempty level set L(A; t) is a subalgebra of X, for all t ∈ [0.5, 1].

Proof. If A is a constant on X∗, then by Theorem 3.12, A is a (Υ,Υ)∗-fuzzy
subalgebra. Thus by Theorem 3.19 we have the nonempty level set L(A; t) is a
subalgebra of X, for t ∈ [0, 1]. If A is not a constant on X∗, then by Theorem 3.12,
we have

A(x) =

{
α if x ∈ X∗

1 otherwise

where α ≤ 0.5. Now we show that the nonempty level set L(A; t) is a subalgebra of
X for t ∈ [0.5, 1]. If t = 1, then it is clear that L(A; t) is a subalgebra of X. Now let
t ∈ [0.5, 1) and x, y ∈ L(A; t). Then A(x),A(y) ≤ t < 1 imply that x, y ∈ X∗. Thus
x ∗ y ∈ X∗ and so A(x ∗ y) ≤ 0.5 ≤ t. Therefore x ∗ y ∈ L(A; t).

Theorem 3.22. Let A be a non-unit fuzzy set of BM algebra X, L(A; 0.5) = X∗

and the nonempty level set L(A; t) is a subalgebra of X, for all t ∈ [0, 1]. Then A is
a (Υ,l ∨Υ )∗-fuzzy subalgebra of X.

Proof. SinceA 6= 1 we get that X∗ 6= ∅. Thus by hypothesis we have L(A; 0.5) 6= ∅
and so X∗ is a subalgebra of X. Also A(x) ≤ 0.5, for all x ∈ X∗ and A(x) = 1, if
x 6∈ X∗. Therefore by Theorem 3.21, A is a (Υ,l ∨Υ )∗-fuzzy subalgebra of X.

Theorem 3.23. Let A be an (Υ,l∨Υ )∗-fuzzy subalgebra of BM algebra X. Then
for all t ∈ [0.5, 1], the nonempty level set L(A; t) is a subalgebra of X. Conversely,
if the nonempty level set A is a subalgebra of X, for all t ∈ [0, 1], then A is an
(Υ,l ∨Υ )∗-fuzzy subalgebra of X.

Proof. Let A be an (Υ,l ∨ Υ )∗-fuzzy subalgebra of X. If t = 1, then L(A; t)
is a subalgebra of X. Now let L(A; t) 6= ∅, 0.5 ≤ t < 1 and x, y ∈ L(A; t). Then
A(x),A(y) ≤ t. Thus by hypothesis we have A(x ∗ y) ≤ max(A(x),A(y), 0.5) ≤
max(t, 0.5) ≤ t. Therefore L(A; t) is a subalgebra of X.

Conversely, let x, y ∈ X. Then we have

A(x),A(y) ≤ max(A(x),A(y), 0.5) = t0

Hence x, y ∈ L(A; t0), for t0 ∈ [0, 1] and so x ∗ y ∈ L(A; t0). Therefore A(x ∗ y) ≤
t0 = max(A(x),A(y), 0.5), then A is a (Υ,l ∨Υ )∗-fuzzy subalgebra of X.
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For any fuzzy set A in X and t ∈ [0, 1), we denote

At := {x ∈ X | xtΥA} and [A]t := {x ∈ X | xt l ∨ΥA}.

Obviously [A]t = L(A; t) ∪ At.

Theorem 3.24. A fuzzy set A in a BM -algebra X is a (l,l∨Υ )∗-fuzzy subalgebra
of X if and only if [A]t is a subalgebra of X for all t ∈ [0, 1).

Proof. Let A be a (l,l ∨ Υ )∗-fuzzy subalgebra of X and let x, y ∈ [A]t for
t ∈ [0, 1). Then xt l ∨ΥA and yt l ∨ΥA, that is, A(x) ≤ t or A(x) + t > 1,
and A(y) ≤ t or A(y) + t > 1. Since A(x ∗ y) ≤ max{A(x),A(y), 0.5} by Theorem
3.15, we have A(x∗y) ≤ max{t, 0.5}. If it is not true, then xtl ∨ΥA or ytl ∨ΥA, a
contradiction. If t ≥ 0.5, then A(x∗y) ≤ max{t, 0.5} = t and so x∗y ∈ L(A; t) ⊆ [A]t.
If t < 0.5, then A(x ∗ y) ≤ max{t, 0.5} = 0.5 and thus A(x ∗ y) + t < 0.5 + 0.5 = 1.
Hence (x ∗ y)tΥA, and so x ∗ y ∈ At ⊆ [A]t. Therefore [A]t is a subalgebra of X.

Conversely, let A be a fuzzy set in X and t ∈ [0, 1) be such that [A]t is a subalgebra
of X. Let max{A(x),A(y), 0.5} < t < A(x ∗ y) for some t ∈ (0.5, 1). Then x, y ∈
L(A; t) ⊆ [A]t, which implies that x∗ y ∈ [A]t. Hence A(x∗ y) ≤ t or A(x∗ y) + t < 1,
a contradiction. Therefore A(x ∗ y) ≤ max{A(x),A(y), 0.5} for all x, y ∈ X. Using
Theorem 3.15, we know that A is a (l,l ∨Υ )∗-fuzzy subalgebra of X.

Theorem 3.25. Let {Ai | i ∈ Λ} be a family of (l,l ∨Υ )∗-fuzzy subalgebras of a
BM -algebra X. Then A :=

⋂
i∈Λ

Ai is a (l,l ∨Υ )∗-fuzzy subalgebra of X.

Proof. By Theorem 3.15 we have Ai(x ∗ y) ≤ max{A(x),A(y), 0.5}, and so

A(x ∗ y) = inf
i∈Λ
Ai(x ∗ y)

≤ inf
i∈Λ

max{Ai(x),Ai(y), 0.5}

= max{inf
i∈Λ
Ai(x), inf

i∈Λ
Ai(y), 0.5}

= max{A(x),A(y), 0.5}.

By Theorem 3.15 we know that A is a (l,l ∨Υ )∗-fuzzy subalgebra of X.

Theorem 3.26. Let {Ai | i ∈ Λ} be a family of (α, β)∗-fuzzy subalgebras of X. Then

A :=
⋂
i∈Λ

Ai is an (α, β)∗-fuzzy subalgebra of X, where (α, β) is one of the following

forms
(i) (l,Υ), (ii) (l,l ∧Υ ),
(iii) (Υ,l), (iv) (Υ,l ∧Υ ),
(v) (l ∨Υ ,Υ), (vi) (l ∨Υ ,l ∧Υ ),
(vii) (l ∨Υ ,l), (viii) (Υ,l ∨Υ ),
(ix) (Υ,Υ).
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Proof. We prove theorem for an (Υ,Υ)∗-fuzzy subalgebra. The proof of the other
cases is similar.
If there exists i ∈ Λ such that Ai = 0, then A = 0. So A is a (Υ,Υ)∗-fuzzy subalgebra.
Let Ai 6= 0 for all i ∈ Λ. Then by Theorem 3.12 we have

Ai(x) =

{
Ai(0) if x ∈ X∗i
1 otherwise

for all i ∈ Λ. So it is clear that

A(x) =

 A(0) if x ∈
⋂
i∈Λ

X∗i

1 otherwise

Since
⋂
i∈Λ

X∗i is a subalgebra of X, then by Theorem 3.12 A is a (Υ,Υ)∗-fuzzy subal-

gebra of X.

Theorem 3.27. Let {Ai | i ∈ Λ} be a family of (l,l)∗-fuzzy subalgebras of a
BM -algebra X. Then A :=

⋃
i∈Λ

Ai is a (l,l)∗-fuzzy subalgebra of X.

Proof. Let xt lA and yr lA, where t, r ∈ [0, 1). Then A(x) ≤ t and A(y) ≤ r.
Thus for all i ∈ Λ, we have Ai(x) ≤ t and Ai(y) ≤ r and so Ai(x ∗ y) ≤ max(t, r).
Therefore A(x ∗ y) ≤ max(t, r). Hence (x ∗ y)max(t,r) lA.

The following is our question: Is the union of two (l,l ∨Υ )∗-fuzzy subalgebras
of a BM -algebra X a (l,l ∨Υ )∗-fuzzy subalgebra of X?

Lemma 3.28. Let f : X → Y be a BM -homomorphism and G be a fuzzy set
of Y with membership function AG. Then xtαAf−1(G) ⇔ f(x)tαAG, for all α ∈
{Υ,l,l ∨Υ ,l ∧Υ }.

Proof. Let α = l. Then

xtαAf−1(G) ⇔ Af−1(G)(x) ≤ t⇔ AG(f(x)) ≤ t⇔ (f(x))tαAG

The proof of the other cases is similar to above argument.

Theorem 3.29. Let f : X → Y be a BM -homomorphism and G be a fuzzy set of
Y with membership function AG.

(i) If G is an (α, β)∗-fuzzy subalgebra of Y , then f−1(G) is an (α, β)∗-fuzzy sub-
algebra of X,

(ii) Let f be epimorphism. If f−1(G) is an (α, β)∗-fuzzy subalgebra of X, then G
is an (α, β)∗-fuzzy subalgebra of Y .

Proof. (i) Let xtαAf−1(G) and yrαAf−1(G), for t, r ∈ [0, 1). Then by Lemma 3.28,
we get that (f(x))tαAG and (f(y))rαAG. Hence by hypothesis (f(x)∗f(y))max(t,r)βAG.
Then (f(x ∗ y))max(t,r)βAG and so (x ∗ y)max(t,r)βAf−1(G).
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(ii) Let x, y ∈ Y . Then by hypothesis there exist x
′
, y
′ ∈ X such that f(x

′
) = x

and f(y
′
) = y. Assume that xtαAG and yrαAG, then (f(x

′
))tαAG and (f(y

′
))rαAG.

Thus x
′

tαAf−1(G) and y
′

rαAf−1(G) and therefore (x
′ ∗ y′)max(t,r)βAf−1(G). So

(f(x
′
∗ y
′
))max(t,r)βAG ⇒ (f(x

′
) ∗ f(y

′
))max(t,r)βAG ⇒ (x ∗ y)max(t,r)βAG.

Theorem 3.30. Let f : X → Y be a BM -homomorphism and H be a (l,l ∨Υ )∗-
fuzzy subalgebra of X with membership function AH . If AH is f -invariant, then
f(H) is a (l,l ∨Υ )∗-fuzzy subalgebra of Y .

Proof. Let y1 and y2 ∈ Y . If f−1(y1) or f−1(y2) = ∅, then Af(H)(y1 ∗ y2) ≤
max(Af(H)(y1),Af(H)(y2), 0.5). Now let f−1(y1) and f−1(y2) 6= ∅. Then there exist
x1, x2 ∈ X such that f(x1) = y1 and f(x2) = y2. Thus by hypothesis we have

Af(H)(y1 ∗ y2) = sup
t∈f−1(y1∗y2)

AH(t)

= sup
t∈f−1(f(x1∗x2))

AH(t)

= AH(x1 ∗ x2)

≤ max(AH(x1),AH(x2), 0.5)

= max( sup
t∈f−1(y1)

AH(t), sup
t∈f−1(y2)

AH(t), 0.5)

= max(Af(H)(y1),Af(H)(y2), 0.5).

So by Theorem 3.15, f(H) is a (l,l ∨Υ )∗-fuzzy subalgebra of Y .

Lemma 3.31. Let f : X → Y be a BM -homomorphism.
(i) If S is a subalgebra of X, then f(S) is a subalgebra of Y ,
(ii) If S

′
is a subalgebra of Y , then f−1(S

′
) is a subalgebra of X.

Proof. The proof is easy.

Theorem 3.32. Let f : X → Y be a BM -homomorphism. If H is a non-unit
(Υ,Υ)∗-fuzzy subalgebra of X with membership function AH , then f(H) is a non-
unit (Υ,Υ)∗-fuzzy subalgebra of Y .

Proof. Let H be a non-unit (Υ,Υ)∗-fuzzy subalgebra of X. Then by Theorem
3.12, we have

AH(x) =

{
AH(0) if x ∈ X∗

1 otherwise

Now we show that

Af(H)(y) =

{
AH(0) if y ∈ f(X∗)

1 otherwise
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Let y ∈ Y . If y ∈ f(X∗), then there exists x ∈ X∗ such that f(x) = y. Thus
Af(H)(y) = sup

t∈f−1(y)

AH(t) = AH(0). If y 6∈ f(X∗), then it is clear that Af(H)(y) = 1.

Since X∗ is a subalgebra of X, f(X∗) is a subalgebra of Y . Therefore by Theorem
3.12, f(H) is a non-unit (Υ,Υ)∗-fuzzy subalgebra of Y .

Theorem 3.33. Let f : X → Y be a BM -homomorphism. If H is an (α, β)∗-
fuzzy subalgebra of X with membership function AH , then f(H) is an (α, β)∗-fuzzy
subalgebra of Y , where (α, β) is one of the following forms

(i) (l,Υ), (ii) (l,l ∧Υ ),
(iii) (Υ,l), (iv) (Υ,l ∧Υ ),
(v) (l ∨Υ ,Υ), (vi) (l ∨Υ ,l ∧Υ ),
(vii) (l ∨Υ ,l), (viii) (Υ,l ∨Υ ).

Theorem 3.34. Let f : X → Y be a BM -homomorphism and H be an (l,l)∗-fuzzy
subalgebra of X with membership function AH . If AH is an f -invariant, then f(H)
is an (l,l)∗-fuzzy subalgebra of Y .

Proof. Let zt l Af(H) and yr l Af(H), where t, r ∈ [0, 1). Then Af(H)(z) ≤ t
and Af(H)(y) ≤ r. Thus f−1(z), f−1(y) 6= ∅ imply that there exist x1, x2 ∈ X such
that f(x1) = z and f(x2) = y. Since AH is f -invariant, then Af(H)(z) ≤ t and
Af(H)(y) ≤ r imply that AH(x1) ≤ t and AH(x2) ≤ r. So by hypothesis we have

Af(H)(z ∗ y) = sup
t∈f−1(z∗y)

AH(t)

= sup
t∈f−1(f(x1∗x2))

AH(t)

= AH(x1 ∗ x2)

≤ max(t, r)

Therefore (z ∗ y)max(t,r) ∈ Af(H), and hence f(H) is a (l,l)∗-fuzzy subalgebra of Y .
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