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Abstract

In this paper, we find the relationships between module contractibility of a
Banach algebra and its ideals. We also prove that module contractibility of
a Banach algebra is equivalent to module contractibility of its module uniti-
zation. Finally, we show that when a maximal group homomorphic image of
an inverse semigroup S with the set of idempotents E is finite, the module
projective tensor product `1(S)⊗̂`1(E)`

1(S) is `1(E)-module contractible.
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1 Introduction

A Banach algebra A is called contractible (super-amenable) if
H1(A,X ) = {0} for every Banach A-bimodule X , where the left hand
side is the first cohomology group of A with coefficient in X (see [6,?]).
A Banach space E has the approximation property if there is a net (Tj)j
in F(E), the space of the bounded finite rank operators on E such that
Tj −→ idE uniformly on compact subsets on E. It is shown in [15, The-
orem 4.1.5] if A is a contractible Banach algebra and has the approxi-
mation property, then A is finite dimensional. In particular `1 has the
approximation property [6], so `1-convolution algebra of infinite semi-
group is not contractible. Also if S is a regular semigroup with a finite
number of idempotents, then contractibilty of `1(S) implies finiteness of
S [8, Theorem 3.5]. But for groups, Selivanov showed in [16] that for any
locally compact group G, L1(G) is contractible if and only if G is finite
(see also [15, Exercise 4.1.7]).

Amini in [1] introduced the concept of module amenability and showed
that for an inverse semigroup S, the semigroup algebra `1(S) is module
amenable as a Banach module on `1(E), where E is the set of idempo-
tents of S, if and only if S is amenable. This is the semigroup analog
of Johnson’s theorem for locally compact groups [10]. Pourmahmood in
[12] developed the concept of contractibility for a Banach algebra A to
the case that there is an extra A-module structure on A, and show that
`1(S) is contractible (as `1(E)-module) if and only if an appropriate group
homomorphic image of S is finite. When S is a group, this is just the
Selivanov’s theorem (in the discrete case); see [16]. For an finite group G,
it follows from the Selivanov’s theorem [16] and [15, Excersie 4.1.4] that
the projective tensor product `1(G)⊗̂`1(G) = `1(G × G) is contractible.
This is not true for any discrete semigroup.

In the current paper, we investigate the hereditary properties of module
contractibility for Banach algebras. Among many other things, we study
the relationships between module contractibility of a Banach algebra and
its ideals. We also find a similar result for module contractibility of the
semigroup algebra of an inverse semigroup which is the semigroup ana-
log of Selivanov’s theorem for locally compact groups [16] with another
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method. We employ this result to show that when `1(S)⊗̂`1(E)`
1(S) is

`1(E)-module contractible (the module amenability case of this has ear-
lier been proved in [5] by author).

2 Module contractibility

Throughout this paper, A and A are Banach algebras such that A is a
Banach A-bimodule with compatible actions, that is

α · (ab) = (α · a)b, (ab) · α = a(b · α)

where a, b ∈ A, α ∈ A.

Let X be a Banach A-bimodule and a Banach A-bimodule with compat-
ible actions, that is

α · (a · x) = (α · a) · x, a · (α · x) = (a · α) · x, (α · x) · a = α · (x · a)

where a ∈ A, α ∈ A, x ∈ X . and similarly for the right or two-sided
actions. Then we say that X is a Banach A-A-module. Moreover, if α·x =
x · α for all α ∈ A, x ∈ X , then X is called a commutative A-A-module.

Consider the module projective tensor product A⊗̂AA which is isomor-
phic to the quotient space (A⊗̂A)/I, where I is the closed linear span
of {a · α ⊗ b − a ⊗ α · b : α ∈ A, a, b ∈ A}. Also consider the closed
ideal J of A generated by elements of the form (a · α)b − a(α · b) for
α ∈ A, a, b ∈ A. Then I and J are A-submodules and A-submodules
of A⊗̂A and A, respectively, and the quotients A⊗̂AA and A/J are A-
modules and A-modules. Also, A/J is a Banach A-A-module when A
acts on A/J canonically. Also, let ω : A⊗̂A −→ A be the product map,
i.e., ω(a ⊗ b) = ab, and let ω̃ : A⊗̂AA = (A⊗̂A)/I −→ A/J be its
induced product map, i.e., ω̃(a⊗ b+ I) = ab+ J .

Let A and A be as above and X be a Banach A-A-module. A bounded
map D : A −→ X is called a module derivation if

D(a± b) = D(a)±D(b), D(ab) = D(a) · b+ a ·D(b) (a, b ∈ A),
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and

D(α · a) = α ·D(a), D(a · α) = D(a) · α (a ∈ A, α ∈ A).

Note thatD : A −→ X is bounded if there exist t > 0 such that ‖D(a)‖ ≤
t‖a‖, for each a ∈ A. Since D preserves subtraction, boundedness of D
implies its norm continuity. When X is commutative, each x ∈ X defines
a module derivation

Dx(a) = a · x− x · a (a ∈ A).

These are called inner module derivations.

Definition 2.1 The Banach algebra A is called module contractible (as
an A-module) if for any commutative Banach A-A-module X , each mod-
ule derivation D : A −→ X is inner.

One should remember that a left Banach A-module X is called a left
essential A-module if the linear span of A · X = {a · x : a ∈ A, x ∈ X}
is dense in X . Right essential A-modules and (two-sided) essential A-
bimodules are defined similarly.

Proposition 2.2 Let A be a Banach A-module with one of the following
conditions:

(i) A has an identity for A;
(ii) A is an essential left or right A-module,

then every A-module derivation is also a derivation. In particular, con-
tractibility of A implies its module contractibility.

Proof. (i) Let e ∈ A be a identity for A, that is e.a = a.e = a, for each
a ∈ A, and X be a commutative A-A-module. Assume that D : A −→ X
is a module derivation, then obviously D(a ·λe) = D(λa), for each a ∈ A
and λ ∈ C. On the other hand,

D(a · λe) = D(a) · λe = λD(a) · e = λD(a · e) = λD(a).
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Thus D is C-linear, and so inner.

(ii) Since A is an essential left A-module, for each a ∈ A, there is a
sequence (En) ⊆ A · A such that limnEn = a. Suppose that En =∑Kn

m=1 αn,m · an,m for some finite sequences (an,m)m=Kn
m=1 ⊆ A and

(αn,m)m=Kn
m=1 ⊆ A. Let λ ∈ C. Then

D(λEn)= D(λ
∑Kn

m=1 αn,m · an,m) =
∑Kn

m=1D((λαn,m) · an,m)

=
∑Kn

m=1(λαn,m) ·D(an,m) =
∑Kn

m=1 λD(αn,m · an,m) = λD(En),

and so, by the continuity of D, D(λa) = λD(a). The right case is simi-
larly. 2

As we will see later in section 3, there are module contractible Banach
algebras that are not contractible, so the converse of the above Proposi-
tion is false. It is known that every contractible Banach algebra has an
identity. We have a similar result for the module case as follows.

Proposition 2.3 Let A be a commutative Banach A-A-module. If A is
module contractible, then it is unital.

Proof. Let’s consider X = A as an A-bimodule, with actions

a · b := ab, b · a := 0 (a ∈ A, b ∈ X ).

Let D : A −→ X be the identity map, it is clear that D is a module
derivation. This means that there is a0 ∈ A such that aa0 = a, for all
a ∈ A. Therefore a0 is a right identity for A. Similarly, A has a left
identity. The left and right identities now have to coincide. 2

The following result is proved in [12, Proposition 3.3] (see [4, Proposition
3.4] for a different proof).

Proposition 2.4 Let A and B be Banach A-modules. If A is A-module
contractible and ϕ : A −→ B is a continuous Banach algebra homo-
morphism which is A-module with dense range, then B is also A-module
contractible.
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Corollary 1 Let A be a Banach A-module and I be a closed ideal in A.
Then module contractibility of A implies module contractibility of A/I.
In particular, if A is module contractible, then so is A/J .

Proposition 2.5 Let A be a Banach A-module and I be a closed ideal
and A-submodule of A. If I and A/I are module contractible, then so is
A.

Proof. Assume that X be a commutative Banach A-A-module with
compatible actions and D : A −→ X be a bounded module derivation.
Since I is module amenable, there exists x1 ∈ X such that D |I= Dx1 .
Thus, the map D̃ = D−Dx1 vanishes on I. This map induces a module
derivation from A/I into X defined by D̃(a+I) = D̃(a). Due to module
amenability of A/I, there is x2 ∈ X such that D̃ = Dx2 . Consequently,
D = Dx1+x2 . 2

A Banach algebra is contractible if and only if it has a diagonal [15].
Recall that a diagonal for A is an element M ∈ A⊗̂A satisfying

a · ω(M) = a, a ·M = M · a (a ∈ A).

Definition 2.6 An element M ∈ A⊗̂AA is called a module diagonal if
a ·M = M · a and a · ω̃(M) = a+ J , for all a ∈ A.

We have the following theorem which is proved in [12, Theorem 3.5].

Theorem 2.7 Let A be a commutative Banach A-module. Then A is
module contractible if and only if A has a module diagonal.

Assume that A is a unital and module contractible Banach algebra such
that A⊗̂AA is commutative A-module. We wish to show that A has
module diagonal M such that ω̃(M) = e + J , where e is an identity for
A. Put T = e ⊗ e + I, we have ω̃(a · T − T · a) = J . Hence ω̃ vanishes
on the range of DT , and DT could be regarded as a module derivation
into K=ker ω̃. Since A⊗̂AA is commutative A-module, so is K, hence by
module contractibility of A, there is N ∈ K such that DT = DN . Now it
is easy to see that M = N − T is a module diagonal and ω̃(M) = e+ J .
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The next result is a characterization of the closed ideals of a module
contractible Banach algebra which are module contractible themselves.

Proposition 2.8 Let A be a commutative module contractible Banach
A-module and I be a closed ideal and A-submodule of A. Then I is
module contractible if and only if I has an identity.

Proof. Assume that e is the identity of I. For each a, b ∈ A and α ∈ A
we have

((a · α)⊗ b− a⊗ (α · b))(e⊗ e) = (a · α)e⊗ be− ae⊗ (α · b)e
= (ae · α)⊗ be− ae⊗ α · (be) ∈ II ,

where II is corresponding ideal of I⊗̂I . If M =
∑

j aj⊗bj+I is a module
diagonal for A, by using the above equalities, it is not hard to check that
M =

∑
j aje⊗ bje+ II is a module diagonal for I. Now, It follows from

Theorem 2.7 that I is module contractible. By Proposition 2.3, module
contractibility of I implies that it has an identity. 2

Lemma 2.9 Let A and B be Banach A-modules. If B is a right essential
A-module, then so is A⊗̂B.

Proof. Suppose that f = Σn
i=1ai ⊗ bi ∈ A⊗̂B, where ai ∈ A and bi ∈ B

for all i. Since B is an essential right A-module, we may assume that
bi = limj(Σjb

j
i · αj) in which bji ∈ B and αj ∈ A. We have

f = Σn
i=1ai ⊗ (lim

j
(Σjb

j
i · αj)) = lim

j
(Σn

i=1ai ⊗ (Σjb
j
i · αj))

= lim
j

(ΣjΣ
n
i=1ai ⊗ b

j
i · αj).

The above equalities show that f belongs to closed linear span (A⊗̂B)·A,
i.e., A⊗̂B is a right essential A-module. 2

It follows from the above Lemma that if A and B are amenable such
that B is an essential right A-module, then every A-module derivation
on A⊗̂B is also a derivation. Therefore the contractibility of A⊗̂B implies
its module contractibility.
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Theorem 2.10 Let A and B be Banach A-modules. Then A⊕B is mod-
ule contractible if and only if A and B are module contractible.

Proof. Let A and B be module contractible. Since A, the closed ideal of
A⊕B and the quotient algebra (A⊕B)/A ∼= B are module contractible,
A⊕ B is module contractible by Proposition 2.5.

For the converse, assume that A⊕B is module contractible. By Corollary
1, the Banach algebras (A⊕B)/A ∼= B and (A⊕B)/B ∼= A are module
contractible. 2

Let A be a non-unital Banach algebra. Then the unitization of A which is
A# = A⊕C is a unital Banach algebra which contains A as a closed ideal.
Let A be a Banach algebra and a Banach A-bimodule with compatible
actions. Then A is a Banach algebra and a Banach A#-bimodule with
compatible actions in the obvious way, i.e., the action of A# on A is as
follows:

(α, λ) · a = α · a+ λa, a · (α, λ) = a · α+ λa (λ ∈ C, α ∈ A, a ∈ A).

Let A be a Banach algebra and a Banach A-bimodule with compatible
actions and let A] = (A ⊕ A#, •), where the multiplication • is defined
via

(a, u) • (b, v) = (ab+ av + ub, uv) (a, b ∈ A, u, v ∈ A#).

Then with the actions defined by

α · (a, v) = (α · a, αv), (a, v) ·α = (a ·α, vα) (a ∈ A, α ∈ A v ∈ A#),

we see that A] is a unital Banach algebra with identity 1A and a Banach
A-bimodule with compatible actions.

It follows from [15, Exercise 4.1.3 (iii)] that contactibility of a Banach
algebra A is equivalent to contractibility of A# = A⊕ C. We generalize
this for the module version.

Theorem 2.11 Let A be a Banach algebra and a Banach A-bimodule
with compatible actions. Then A is A-module contractible if and only if
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A] is A-module contractible.

Proof. . Let X be a commutative Banach A]-A-module and D : A] → X
be an A-module derivation. SinceD(1A) = 0, we haveD(α) = α·D(1A) =
0 for all α ∈ A, and thus D reduces to a module derivation D : A → X .
Since X is also a commutative Banach A-A-module, D is inner.

Conversely, suppose that X is a commutative Banach A-A-module. Then
X is a commutative Banach A]-A-module in the usual way. Now every
A-module derivation D : A → X extends to an A-module derivation
D̃ : A] → X defined by D̃(a, u) = D(a) for all a ∈ A, u ∈ A#. By
the hypothesis, D̃ is inner and thus D is inner. Therefore A is A-module
amenable. 2

3 Module contractibility for semigroup algebras

We start this section with the definition of an inverse semigroup.

Definition 3.1 A discrete semigroup S is called an inverse semigroup if
for each s ∈ S there is a unique element s∗ ∈ S such that ss∗s = s and
s∗ss∗ = s∗. An element e ∈ S is called an idempotent if e = e∗ = e2. The
set of idempotents of S is denoted by E.

There is a natural order on E, defined by

e ≤ d⇐⇒ ed = e (e, d ∈ E).

It is easy to see that E is indeed a commutative subsemigroup of S. In
particular `1(E) could be regarded as a subalgebra of `1(S), and thereby
`1(S) is a Banach algebra and a Banach `1(E)-module with compatible
canonical actions [1]. However, for technical reasons, here we let `1(E)
act on `1(S) by multiplication from right and trivially from left, that is

δe · δs = δs, δs · δe = δse = δs ∗ δe (s ∈ S, e ∈ E). (3.1)
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We say that the Banach algebra A acts trivially on A from left (right) if
for each α ∈ A and a ∈ A, α · a = ψ(α)a (a · α = ψ(α)a), where ψ is a
bounded linear functional on A.

If ψ is the augmentation character on `1(E), then for each e ∈ E we have
ψ(δe) = 1. So for each f =

∑
e∈E f(e)δe ∈ `1(E) and g =

∑
s∈S g(s)δs ∈

`1(S), we have

f · g = (
∑
e∈E

f(e)δe) · (
∑
s∈S

g(s)δs) =
∑

s∈S,e∈E
f(e)g(s)δe · δs

=
∑

s∈S,e∈E
f(e)g(s)δs = (

∑
e∈E

f(e))(
∑
s∈S

g(s)δs) = ψ(f)g.

Therefore the left action is trivial. In this case, the ideal J (see section
2) is the closed linear span of {δset − δst s, t ∈ S, e ∈ E}. We consider
an equivalence relation on S as follows:

s ≈ t⇐⇒ δs − δt ∈ J (s, t ∈ S).

For an inverse semigroup S, the quotient S/≈ is a discrete group (see
[2] and [12]). Indeed, S/≈ is homomorphic to the maximal group homo-
morphic image GS [11] of S [13]. In particular, S is amenable if and only
if GS is amenable [7,?]. As in [14, Theorem 3.3], we may observe that
`1(S)/J ∼= `1(GS). With the notations of the previous section, `1(S)/J
is a commutative `1(E)-bimodule with the following actions:

δe · (δs + J) = δs + J, (δs + J) · δe = δse + J (s ∈ S, e ∈ E).

The following theorem is a semigroup analog of the Selivanov’s theorem
[16] for groups, characterizing module contractibility of the semigroup
algebra of an inverse semigroup with the set of idempotents which has
been proven for the first time in [12] by using this fact that every module
diagonal for `1(GS) is a diagonal. We bring another proof for it.

Theorem 3.2 Let S be an inverse semigroup with the set of idempotents
E. Then `1(S) is module contractible, as an `1(E)-module with trivial left
action and canonical right action, if and only if GS is finite.
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Proof. Suppose that `1(S) is module contractible, then `1(GS) is con-
tractible by [12, Theorem 3.7]. Since GS is a (discrete) group, it has to be
finite by Selivanov’s theorem [16]. Conversely, if GS is finite, then `1(GS)
is contractible [16]. By a similar method of [2, Proposition 3.3], we can
prove that `1(S) is contractible. With the actions (3.1) of `1(E) on `1(S),
the semigroup algebra `1(S) is always a right essential `1(E)-module.
Indeed, if f ∈ `1(S), we have

f =
∑
s∈S

f(s)δs =
∑
s∈S

f(s)δs ∗ δs∗s =
∑
s∈S

f(s)δs · δs∗s.

The above inequalities show that f belongs to the closed linear span of
`1(S) · `1(E) = {δs · δe : e ∈ E, s ∈ S}. Now the result follows from
Proposition 2.2. 2

The author in [3] has proven that if GS = S/ ≈ is finite and E is an
upward direct set, then `1(S)⊗̂`1(S) is module contractible. The upward
directed condition for E is strong and in fact in the next theorem we
show that is redundant. Therefore, the hypothesis on E being upward
directed can be eliminated and `1(S)⊗̂`1(S) is module contractible when
GS is finite.

Theorem 3.3 Let S be an inverse semigroup with the set of idempotents
E. Consider the following assertions:

(i) `1(S)⊗̂`1(S) is module contractible;
(ii) `1(GS)⊗̂`1(GS) is module contractible;

(iii) `1(GS)⊗̂`1(GS) is contractible;
(iv) `1(S)⊗̂`1(S) is contractible.

Then (iv) =⇒ (i)⇐⇒ (ii)⇐⇒ (iii).

Proof. Similare to the proof of [5, Theorem 5], we can show that the
parts (i), (ii) and (iii) are equivalent. Now, assume that `1(S)⊗̂`1(S)
is contractible. Then `1(S) is a right essential `1(E)-module, and so
`1(S)⊗̂`1(S) is a right essential `1(E)-module by Lemma 2.9. Therefore
`1(S)⊗̂`1(S) is module contractible. 2

It has been shown in [1, Lemma 3.1] that if `1(E) act on `1(S) by mul-
tiplication from right and trivially from left, then `1(S)⊗̂`1(E)`

1(S) ∼=
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`1(S×S)/I, where I is the closed ideal of `1(S×S) generated by the set
of elements of the form δ(set,u) − δ(st,u), where s, t, u ∈ S and e ∈ E.

Corollary 2 If GS is finite, then `1(S)⊗̂`1(E)`
1(S) is module contractible.

Proof. Since GS finite, `1(GS) is contractible by Selivanov’s theorem. It
follows from the Johnson’s theorem that `1(GS)⊗̂`1(GS) is contractible
(see also [15, Exercise 4.1.3 (iv)]). Now, the result is a consequence of
Theorem 3.3 and Corollary 1. 2

We close this paper by some examples of module contractible Banach
algebras. Let G be a commutative unital Banach algebra with unit ele-
ment e. Consider A = Mn(G), the Banach algebra of n×n matrices with
entries from G. Then A is a unital commutative G-bimodule with the
following natural actions

α · [βij] = [αβij], [βij] · α = [βijα] (α ∈ G, [βij] ∈ A).

Consider the set of matrix units {Eij; i, j = 1, ..., n}, where Eij is the
matrix having e at the ith row and jth column, and zero elsewhere. The
identity matrix E, which is the unit element of A, is the matrix whose
diagonal entries are e and has zero entries elsewhere. Let I, J be the
corresponding closed ideals, as in section 2. If we put M =

∑n
i,j=1

1
n
Eij ⊗

Eji + I, then we have ω̃(M) =
∑n

i=1Eii + J = E + J . Also

Elk·M =
n∑

i,j=1

Elk
1

n
Eij⊗Eji+I =

n∑
i=1

1

n
Eli⊗Eik+I =

n∑
i,j=1

1

n
Eij⊗EjiElk+I

= M · Elk,

for each 1 ≤ l, k ≤ n. Hence for each A ∈ A, we have A · M = M ·
A. It follow that M is a module diagonal for A, therefore A is module
contractible by Theorem 2.7. Observe that in this case, J = {0}, but yet
A is not necessarily contractible. This shows that the assumption that
the action is trivial from one side could not be dropped from Theorem
3.2. As a concrete example, consider G = `1(S), where S = [0, 1] is a
unital commutative semigroup with multiplication st = min{s + t, 1},
for s, t ∈ S, then G = `1(S) and A = Mn(G) are not even weakly
amenable [9], but still A is G-module contractible with J = {0}.
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The last example shows that there is an inverse semigroup S for which
`1(S) is module contractible but not contractible. Let (N,∨) be the
commutative semigroup of positive integers with maximum operation
m ∨ n = max(m,n), then each element of N is an idempotent, that is
EN = N. Hence N/≈ is the trivial group with one element. Therefore
`1(N) is module contractible, as an `1(N)-module. If `1(N) has a diag-
onal M =

∑∞
n=1 fn ⊗ gn, it should be M = δ1 ⊗ δ1. In this case, we

have δp · M = M · δp (p ∈ N), but this equality holds if and only if,
δp ⊗ δ1 = δ1 ⊗ δp, for each p ∈ N, which is absurd. Therefore `1(N) is
not contractible by [15, Exercise 4.1.3]. Note that however, in this case,
`1(N) has an identity.
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