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Abstract

This paper is concerned with a technique for solving Fredholm integro-differential
equations in the reproducing kernel Hilbert space. In contrast with the conven-
tional reproducing kernel method, the Gram-Schmidt process is omitted here
and satisfactory results are obtained. The analytical solution is represented in
the form of series. An iterative method is given to obtain the approximate so-
lution. The convergence analysis is established theoretically. The applicability
of the iterative method is demonstrated by testing some various examples.
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1 Introduction

Recently, the reproducing kernel method (RKM) has been a promis-
ing method which applied more and more for solving various prob-
lems such as ordinary differential equations, partial differential equa-
tions, differential-difference equations, integral equations, and so on
(see e.g. [1]-[18] and references there in). Among many literatures
related to RKM for solving various problems and even among a
bunch of extensive works related to RKM for solving integro - differ-
ential and integral equations, we just mention some more interesting
problems. An approximate solution of the Fredholm integral equa-
tion of the first kind in the reproducing kernel space was presented
by Du and Cui [5,6], solution of a system of the linear Volterra
integral equations was discussed by Yang et al. [18], solvability of
a class of Volterra integral equations with weakly singular kernel
using RKM was investigated in [2,3,11], Geng [9] explained how to
solve a Fredholm integral equation of the third kind in the repro-
ducing kernel space, and Ketabchi et al. [12] obtained some error
estimates for solving Volterra integral equations using RKM.

In [1] and some other places, a general technique for solving integro-
differential equations was discussed in the reproducing kernel space.
This general technique is based on the Gram-Schmidt (GS) orthog-
onalization process. In this study, we aim to explain how to con-
struct a reproducing kernel method without using this process. For
this purpose, we consider the following nonlinear Fredholm integro
- differential equation

u'(z) = F(z,u(z)) + Su(z) = T(x,u(z), Su(x)), (1.1)

where ,

Su(zx) = / k(x,s)G(u(s))ds,
subject to the initial condition u(a) = a in which functions G and
k and the nonlinear operator G are considered such that Eq.(1.1)

has a unique solution. Furthermore, we need to assume that )T
are continuous.



The rest of the paper is organized as follows. In the next Section,
some preliminaries are represented. The method implementation is
discussed in Section 3. Section 4 is devoted to convergence analysis
of the method. For confirming the theoretical results, some numer-
ical examples are provided in Section 5. The paper will be closed
by a brief conclusion in the last Section.

2 Preliminaries

In this section, we follow the recent work by Cui et al. [4] and
represent some useful materials.

Definition 2.1 Let H be a Hilbert space of functions f : Q — R.
Denote by < .,. > the inner product and let ||.| = /<.,.> be
the induced norm in H. The function R : 2 x Q@ — R is called a
reproducing kernel of H if the followings are satisfied

(1) R,(z) = R(z,y) € H,Vy € Q,
(2) f(y) =< f(z), Ry(x) >,Vf € H, Vy € Q.

Definition 2.2 A Hilbert space H of functions on a set €2 is called
a reproducing kernel Hilbert space if there exists a reproducing ker-
nel R of H.

Remark 2.1 The existence of the reproducing kernel of a Hilbert
space is due to the Riesz Representation Theorem. It is known that
the reproducing kernel of a Hilbert space is unique.

Theorem 2.1 [16] The reproducing kernel R of reproducing kernel
Hilbert space H is positive definite.

Definition 2.3 The function space Ws[a, b| is defined as follows
Wala, b] = {ulu,u’ € AC[a,b],u,u,u® € L*[a,b],u(a) = 0}.

AC is Absolute Continuous.



The inner product and norm in Wa[a, b] are defined respectively by
b
<u,v>w,= u(a)v(a) + u'(a)v'(a) + / u® (2)v? (z)d,

Vu,v € Wala, bl

and

||u||W2 =V <U,U>W2, vu < WQ[a,b].

The function space Ws[a,b] is a reproducing kernel space and its
reproducing kernel Ry has the following reproducing property

u(.) =<u(z), Ro(z,.) >wy, Yu € Wala, b].

The function space W[a, b] is a reproducing kernel space and its
reproducing kernel is [1]

Ro(a.y) = (x—a)(2a® — 2?4+ 3y(2+2) —a(6+ 3y +2)) z < y,

D~ D

(y—a)(2a* —y* +32(2+y) —a(6+ 3z +y)) =z > vy.

Similarity the function space is a reproducing kernel space and its
reproducing kernel is [5]

Wila,b] = {u|lu € AC[a,b], v’ € L*[a,b],u(a) = 0}

Rl(xa y) =

l—a+z <y,
l—a+vy, x>y.

3 The method implementation

We rewrite Eq. (1.1) as follows

Lu(z) = u'(z) = T(x,u(z), Su(x)) = F(:U,u(x))—i—/ab k(x,s)G(u(s))ds,



where L : Wla,b] — Wila,b] is an invertible bounded linear op-
erator [1], G is a nonlinear and continuous operator , and F', is an
arbitrary continuous function in Wjla, b]. Wsla, b] is a reproducing
kernel space defined according to the highest derivatives involved
in (1.1).

We choose a countable set of points {z;}:°, in the interval [a,b],
and define

¢i(z) = Ry (x, 23), Vi(w) = L ¢i(),
where L* is the adjoint operator of L. Obviously,
Vi(x) = L*¢i(x) =<L*¢i(2), Ra(z,y) >wp =< ¢i(x), Ly Ra(,y) >w,

= LyRo(2, y)|y=s,
where L, indicates that the operator L applies to the function of y.

Theorem 3.1 Let {z;}5°, be dense in the interval [a,b]. If Eq. (1.1)
has a unique solution, then it can be represented as

o0

u(r) =3 ajy(x), (3.1)

J=1

where the coefficients a; are determined by solving the following
semi-infinite system of linear equations

Ba =T, (3.2)
in which
B = [Ly;(z;)], i,j=1,2,..., a=[ay,as,...",
and

T = [T (21, u(x1), Su(zy)), T(z2, u(xs), Su(zy)), .. ] .

Proof. Since {z;}$°, is dense in the interval [a, b], then v;(z) is a
complete system in Wy[a, b], see e.g.[4]. So the analytical solution



can be represented as Eq. (3.1). Since
< wz(fﬁ)’%(l‘) >w2:< L*sz(x)ﬂ/}g(ﬂf) >w2:< ¢1(x)7 L%(x) >w1

= Lp; ()] o=z
and

<u(x), Yj(x) >p,=< u(x), L*¢;(x) >u,=< Lu(x), ¢j(x) >4,

= T(l‘jv u(xj)> Su(m])),

according to the best approximation in Hilbert spaces [16], the co-
efficients a; are determined by (3.2). O

The approximate solution of the problem is the m-term intercept
of the analytical solution which can be determined by solving a
m X m system of linear equations. We need to construct an iter-
ative method for solving (3.2). For this purpose, we choose the
number of points m, the number of iterations n and put the initial

function wu, () = 0. Then, the approximate solution of Eq. (1.1)
is defined by

f:la?L(% (:)) = T(@i, Up—1,m (%), Sthp—1,m (7). (3.3)

Remark 3.1 There exists a unique solution for equations (3.3) due
to the strictly positive definiteness property of the reproducing ker-
nel.

Theorem 3.2 [12] The approzimate solution u,, and its deriva-

tive u,, ., are both uniformly convergent.

The results of this section can be summarized in the following al-

gorithm.

ALGORITHM1

(1) Choose m collocation points in the interval [a, b].
(2) Set B = [Lp;(z;)], i,j=1,2,....,m.

(3) Choose the number of iterations n.

(4) Set i =0.



5) Set the initial function wu,m,(x) = 0.

6) Set i =i+ 1.

7) Set T = [T(zj, ui—1.m(z;), Swi—1m(z))|*, j=1,...,m.
8) Solve Ba=T.

9) Set ujm(z) = ] 1 J%( ).

0) If i < n, then go to step 6, else stop .

(
(
(
(
(
(1

The conventional reproducing kernel method which used the GS
orthogonalization process is represented in the following algorithm

[1].
ALGORITHM2

Choose m collocation points in the domain set [a, b].

Set ¢;(z) = Ry(z, x;), t=1,...,m

Set ¢Z($) = Lsz(l‘, {L'l)

Set ¥y(x) = St Batr(x), i=1,...,m, (B which obtained
by the GS process).

Choose an initial function u(z).

Set n = 1.

Set B, = 321ty BT (21, un—1(21), Sup_1(21)).

Set un(z) = X7y Bjwj().

If n < m, then set n =n + 1 and go to step 7, else stop.

N N N
= W N =
—_— —— — —
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Remark 3.2 In comparison with Algorithm 2, Algorithm 1 needs
not to use the GS orthogonalization process but in step 8 of it,
we must to solve a linear system. The coefficient matriz of this
system is positive definite because of the positive definiteness of the
kernel. Therefore, it needs to decompose matrix B once using the
QR decomposition and to solve a triangular system in step 8.

4 Convergence analysis

In this section, we show that the approximate solution u,, ., is con-
verged to the analytical solution u uniformly. At first, the following



lemma is given.

Lemma 4.1 For a positive constant M, A = {u| ||u|lw, < M}
is a compact set in the space C|a,b] provided that

[/, <,
where ¢ 1s a constant.

Proof. It is enough to show that A is a bounded and equicontinuous
set [16]. Since

||R2(x7y)||121]2 =< RQ(ZE,y), RQ(I>y) Zwy= RQ(x7$) < Cop,
where cg is a positive constant, there exists a constant ¢; such that
u(x)] = | <u(y), Rz, y) >uw, | < [[t(y) s [ Ro(@,y) |,

< crfu(®) .-

For any u € A , we have
lu(z)| < et M
Hence A is a bounded set in the space C[a, b]. On the other hand,

aRZ(xa y)

@) = | < u), DY o) < fugy) | 2

ax ||w2

< allu®)llun < M
Then for any u € A and € > 0, we have

[u(z +h) —u(@)] < [u'(n)]|h] < c2M]h|

where 7 € [z, z + h]. So, there exists § = _9; such that for |h| <,
we get
lu(x 4+ h) —u(z)| <e

Hence A is an equicontinuous set in the space Cla,b].H



Theorem 4.1 If L s an invertible bounded linear operator and
T(z,u(x),Su(x)) is a nonlinear bounded operator, it can be deduced
that {wym(x)}22, is the bounded sequence of functions in ws|a, b).

proof. We can write

[, (2) 15y, =< Unn (), nn (T) >,
=< Xty ajv;(x), Sty anbi(T) >,
= a; < (@), X2 arhi (@) >,
=Y ay < ¢i(x), XLy alLy(z) >,

=YL a; (02 Ly (z;))
= a’ Ba,
where
a = [aj], j=1,2,...,m.
Now, since
B:[Lzb](xl)], i,j:1,2,...,m,
a=B"'T

the assumptions imply that
[, m () [y < M,
where M is a constant. O

Theorem 4.2 Assume that {x;}32, is dense in [a,b] and the as-
sumptions of Theorem (4.1) and Lemma (4.1) hold. Then the ap-
prozimate solution w, ., is converged to the analytical solution w.

proof. For j =1,2,... mand n=1,2,..., we have

Lty () = T(j, Un—1,m (), Stn_1,m(z;)).



According to Lemma (4.1), there exists a convergent subsequence
{tn,m(x)}72; of {tnm(x)}o2, such that up, () — Upm(z), uni-

formly as | — oo, m — oo. Then for j = 1,2,...,m and n =
1,2,..., we derive
Lty () = T(35, Uny—1,m(25); Sty —1,m (). (4.1)

Since the operators L and 1" are both continuous (according to the
structure of L and assumption on 7'), after taking limit from both
sides of (4.1), it can be inferred that u is the analytical solution of
Eq. (1.1). So wp, m(x) is the approximate solution of Eq. (1.1). O

5 Numerical results

In this section, we compare results of both Algorithms in solving
four various problems using the following norms

HU - un,m”oo =~ En,m = MaXi<i<m ‘u($z> - un,m(mi”a

[t =t lloe > B,y = maxycicm U/ (@) — g, (23]

| = tUmle =~ En =maxicicm [u(T;) — tm ()]

where u,,,,, and u,, are approximate solutions obtained by Algo-
rithms 1 and 2, respectively and u is the exact solution and w, ,
is the derivative approximate solution obtained by Algorithm 1 ,u’
is the derivative exact solution. The results of Table 1 and Table 2
(for n = 5) confirm the superiority of Algorithm 1.

Example 5.1 If F(z,u(z)) = 1 — 2, Su(z) = [y zu®(s)ds and
u(0) = 0, then the Fredholm integro-differential equation (1.1) has
the following exact solution u(zr) = x.

Example 5.2 If F(z,u(z)) = —u(z) + 3 (exp(—2) — 1), Su(z) =
Jy u*(s)ds and u(0) = 1 , then the Fredholm integro-differential
equation (1.1) has the following exact solution u(zr) = exp(—x).
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Table 1

Results of Algorithms 1 and 2

Example 1 Example 2
m Em E5’m Em E5,m
2 1.00000 5.953285F — 4 0.63212  0.05508
4 0.09259 5.953282F — 4 0.59122  0.00591
8 0.01170 5.953279F — 4 0.57410 0.00093
16 0.00262 5.953267F — 4 0.57339  0.00005
32 0.00060  5.953252F — 4 0.57128  0.00001

Example 3 Example 4
m E, E5,m Ep E5,m
2 1.00000 0.16437 0.54308  0.04361
4 0.56677 0.01709 0.25554  0.00494
8 0.06062 0.00302 0.05140  0.00090
16 0.02109 0.00050 0.01096  0.00019
32 0.01776 0.00024 0.00176  0.00004

Example 5.3 If F(z,u(x)) = cos(z)—1z, Su(x)
and u(0) = 0 ,then the Fredholm integro - differential equation (1.1)

has the following exact solution u(x) = sin(x).

Example 5.4 If F(z,u(z)) = sinh(z)+ (1 —exp(—1))z, Su(x)
= i zsu(s)ds and u(0) = 1 ,then the Fredholm integro - differential
equation (1.1) has the following exact solution u(z) = cosh(z).

11
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Table 2
Results of Algorithms 1 for Ey,,

m Example 1 Example 2 Example 3 Example 4

2 1.1906570E —4  0.027062 0.06395 0.001815
4 1.1906556FE —4  0.002455 0.00797 0.000156
8 1.1906549FE — 4  0.000561 0.00189 0.000027
16 1.1906528FE — 4  0.000067 0.00081 0.000006
32 1.1906516E —4  0.000042 0.00058 0.000001

6 Conclusion

In this work, we proposed an iterative algorithm for solving non-
linear Fredholm integro - differential equations on the basis of the
reproducing kernel Hilbert space without using the Gram-Schmidt
orthogonalization process. The results of some numerical examples
show that the present method could be an accurate and reliable
analytical-numerical technique. Examples presented here belong to
different categories such as linear or nonlinear problem .Neverthe-
less, our results only apply to the given examples; this, of course,
does not mean that it holds in general. The advantage of the ap-
proach is that the method can be easily implemented. It seems that
the method can be also applied for solving other nonlinear integro-
differential equations.
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