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Abstract

In this paper, we generalize some results from Hilbert C*-modules to pro-C*-
algebra case. We also give a new proof of the known result that 12(A) is a
Hilbert module over a pro-C*-algebra A.
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1 Introduction

Hilbert modules over pro-C*-algebras are the generalization of Hilbert
C*-modules by allowing the inner product to take values in a pro-C*-
algebra. A.Mallios in [10] and N.C.Phillips in [11] studied such spaces in-
dependently. The Hilbert modules over pro-C*-algebras are also studied
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in [4] , [5]. Pro-C*-algebras are applied to relativistic quantum mechan-
ics (see [1], [2]). Therefore, it is useful to develop the theory of Hilbert
modules over pro-C*-algebras as well.

In the present paper, the notion of a Hilbert module over a pro-C*-
algebra is discussed and some new results are obtained for these spaces.
We also present a new proof of the known result that (?(A) is a Hilbert
A-module.

We refer the reader to papers [3], [11] for more details on pro-C*-algebras
and [6], [7], [11], [12] for Hilbert modules over pro-C*-algebras.

The paper is organized as follows. In section 2, we recall the basic def-
initions and some results about the inverse limit of an inverse system
of the topological vector spaces. In section 3, we bring some definitions
and basic properties of the pro-C*-algebras and give several examples
of such spaces. In section 4, we deal with the Hilbert modules over pro-
C*-algebras. Also, we generalize the polar decomposition property from
Hilbert C*-modules to pro-C*-algebra case. In section 5, we present some
results about bounded operators on Hilbert pro-C*-modules.

2 Preliminaries

In this section, we recall some facts about the inverse limit of an inverse
directed system of topological vector spaces.

Let {¢o : X — X,} be a family of linear maps from a vector space X to
topological vector spaces X,. The projective topology induced on X by
this family is the weakest topology on X such that each of the maps ¢,
is continuous. It is easy to show that:

Proposition 1 The projective topology induced on X by a family of lin-
ear maps, as above, is the unique t.v.s. topology T on X such that a
linear map 1 from a t.v.s. Y to (X, 1) is continuous iff g0 : Y — X,
s continuous for every .



If {X,} is a family of topological vector spaces, then by the above result,
the cartesian product X = [[ X, is a t.v.s. and the linear maps over X
induced his topology are the projections [[ X, — X,.

Definition 2 A family {X., ¢as} where a and (B belong to a directed set
A, X, is a t.v.s. for each a € A, {¢ap : Xpg = Xo} is a set of continuous
linear maps for each pair o, € A with o < B and Qa0 sy = Gay
whenever a < B < 7, 1s called an inverse directed system of t.v.s.’s. The
projective limit (or inverse limit), lim X,,, of such system is the subspace

of the cartesian product ] X, consisting of elements {x,} which satisfy

bap(xp) =20 for a<p.

Note that the inverse limit, lim X, is a closed subspace of [[ X, and has
the projective topology induced by the family of maps {¢, : lim X, —
X, } where ¢, is the inclusion 1<£n X, — [1 X, followed by the projection

on X,.
If Y is a t.v.s., we say that a system of continuous linear maps {v, :
Y — X,} is compatible with the inverse directed system {X,, ¢as} if

Yo = papop for all a < B.
Note also that the system of maps {¢, : lim X, — X,} is compatible

with {X,, ¢as}t. We have the following result.

Proposition 3 IfY is a t.v.s. and {1} is a system of continuous linear
maps compatible with an inverse directed system {X,, s}, then there is

a unique continuous linear map ¢ 1Y — lim X, such that Yo = ¢po 09
«
for each a.

Proof. The system {t,} determines a continuous linear map of Y into
[I X, by Prop 2.1 . The compatibility condition ensures that the image
of this map lies in lim X,,. O

o

Proposition 4 The inverse limit of a system of complete t.v.s.’s is com-



plete.

Proof. This follows immediately if we can first show that the cartesian
product of a family of complete t.v.s.’s is complete since the projective
limit is a closed subspace of the cartesian product. However, a filter base
in a cartesian product is clearly cauchy iff it is cauchy in each coordi-
nate and is convergent iff it is convergent in each coordinate. Now, the
proposition follows. O

The inverse limit of topologigal algebras is defined as similar, only the
continuous linear maps will be replaced by appropriate continuous ho-
momorphisms. Thus, we note that the results just stated for t.v.s.’s are
also valid in these categories.

3 Pro-C*-algebras

Recall that a pro-C*-algebra is a complete Hausdorff topological *- com-
plex algebra A whose topology is determined by its continuous C*-seminorms
in the sense that a net {a,} converges to 0 iff p(a)) — 0 for any contin-
uous C*-seminorm p on A.

A o-C*-algebra is a pro-C*-algebra if its topology is determined by only
countably many C*-seminorms.

Let A be a unital pro-C*-algebra and let a € A. Then the spectrum sp(a)
of a € Aistheset {A € C : Al4 —a is not invertible}. If A is not
unital, then the spectrum is taken with respect to its unitization A .

If A* denotes the set of all positive elements of A, then AT is a closed
convex cone such that A*™ N (—A") = 0. We denote by S(A), the set
of all continuous C*-seminorms on A. For p € S(A), we put ker(p) =
{a € A : p(a) = 0}; which is a closed ideal in A. For each p € S(A),
A, = A/ ker(p) is a C*-algebra in the norm induced by p which defined
as ;

la +ker(p)lla, = pla)  peS(A),



—

and we have A = lim A,,. (see [11])
p

The canonical map from A onto A, for p € S(A) will be denoted by ,,
and the image of a € A under 7, will be denoted by a,. Hence [*(4,) is
a Hilbert A,-module (see [4]) with the norm defined as ;

I(mp(ai))ienlly = [ P(Cienaiai) ' p € S(A) , (mp(as))iers € 1*(A4p)

The connecting maps of the inverse system {A,},cs(4) Will be denoted
by m,q, whenever p,q € S(A), p < ¢ and we have :

Tpg o Ag = A4p qu(aq) =ap .

Example 3.1 Every C*-algebra is a pro-C*-algebra.

Example 3.2 A closed #-subalgebra of a pro-C*-algebra is a pro-C*-
algebra.

Example 3.3 ([11]) Let X be a locally compact Hausdorff space and let
A = C(X) denotes all continuous complex-valued functions on X with
the topology of uniform convergence on compact subsets of X, then A is
a pro-C*-algebra.

Example 3.4 ([11]) A product of C*-algebras with the product topology
is a pro-C*-algebra.

Proposition 5 If >°, a; is a convergent series in a pro-C*-algebra A
and a; > 0 for v € N, then it converges unconditionally.

Proof. For n € N, let S, = > a; . Then for any ¢ > 0 and p € S(A),
there is a positive integer N, such that for m,n > N, ;

p<z?:m ai) <e.

For a permutation o of N, we define S;, = >2i" | as;) - Let k € N such
that

(1,2,..,N,} C {o(1),0(2),....0(k)} .



Then S], — S, for n > k, do not have any a; for 1 < i < N,,. Hence for
n >k,

Thus for S = >, a; and n > k, we have ,
p(S, —8) < p(Sl, — S,) +p(S, — 5) <2 .
This means that lim ) =5 . O

Recall that an approximate identity of a pro-C*-algebra A is an increasing
net {ey}aea of positive elements such that

(i) p(en) <1 forallpe S(A), A e A

(ii) li/I\Il((l —aey) = li{n(a —eya)=0 foranyae€ A.

It is shown in [3] that every pro-C*-algebra has an approximate identity.

4 Hilbert pro-C*-modules

We begin with some facts about Hilbert modules over pro-C*-algebra
from [11].

Definition 6 A pre-Hilbert module over pro-C*-algebra A is a complex
vector space E which is also a left A-module compatible with the com-
plex algebra structure, equipped with an A-valued inner product (.,.) :
E x E — A which is C-and A-linear in its first variable and satisfies the
following conditions:

(i) (x.y)" = (y, )

(i) (x,x) >0

(iti) (x,x) =0 iff x=0

for every x,y € E. We say that E is a Hilbert A-module (or Hilbert
pro-C*-module over A) if E is complete with respect to the topology de-
termined by the family of seminorms



pp(r) = \/p((z,z)) zeE,peSA).

If £ is a Hilbert A-module and p € S(A), then ker(pg) = {z € E
p({xz,z)) = 0} is a closed submodule of E and E, = E/ker(pg) is a
Hilbert A,-module with the scalar product

ap.(r + ker(pg)) = ar + ker(pg) , a€A , x€E
and the following inner product:

<l’ +ker<pE') ) y_'_ker(pE) > = <way>p €,y ck.

The caconical map from E onto E, is denoted by o, and the image of
in £ under o, is denoted by x, for p € S(A).

Example 4.1 If A is a pro-C*-algebra, then it is a Hilbert A-module
with respect to the inner product defined by

(a,b)y =ab* |, a,beA.

For each p,q € S(A) with p < ¢, there is a canonical surjective linear
map o, : B, = E, such that o, ,(z,) = =, for v € E. Then

{Ey; Apiopq . pgeS(A), p<q},

is an inverse system of Hilbert C*-modules in the following sense:

(1) opglagry) = mpqlag)opq(T,)

(i) ( opg(29)s 0pa(Yq) ) = Tpa((T45 Yg))

(iil) 0,40 Ogr = Opg

(IV) O'p7p = 'idEp

for every z,y € E,a € A and p,q,r € S(A) with p < ¢ <r .([11])

By Proposition 4.4 of [11], we have £ = lim E, and lim E, is a Hilbert
e —
p p
(lim A, )-module with the following product:
P

(ap)pes(a)-(Tp)pesia) = ((az)p)pes(a)



and the inner product:

(@) Wp)p ) = (T, 9)p)p

for all @ € A and z,y € E. Moreover, lim £, has a topology determined

P
by the family of seminorms

ﬁ((xq)qu(A)> = ||xp||Ep = pr(T) .

We recall that an element a in A (z in F) is bounded if
lallee = sup{p(a) ; p € S(A)} < oo
(2]l = sup{pp(z) ; p € S(A)} < o0 )

The set of all bounded elements in A (in E) will be denoted by b(A)
(b(E)). We know that b(A) is a C*-algebra in the C*-norm ||.||o , and
b(E) is a Hilbert b(A)-module.( see Proposition 1.11 of [11] and Theorem
2.1 of [12])

Let M C E be a closed submodule of a Hilbert A-module E, and let
Mt={yeFE : (z,y)=0 forallze M} .

Note that the inner product in a Hilbert modules is separately continuous,
hence M+ is a closed submodule of the Hilbert A-module E. Also a
closed submodule M in a Hilbert A-module E is called orthogonally
complementable if £ = M @ M*. A closed submodule M in a Hilbert A-
module F is called topologically complementable if there exists a closed
submodule N in E such that M @ N = E , NN M = {0}.

Let [2(A) be the set of all sequences (a,)nen of elements of a pro-C*-
algebra A such that the series > 72, a;a;* is convergent in A.

Proposition 7 Let A be a pro-C*-algebra. Then 1*(A) is a pre-Hilbert
module over A with respect to the pointwise operations and the following
ner product



((a5)ien , (bi)ien ) = 2052, aib;™ .

Proof. It is not difficult to check that [*(A) is a left A-module. We
show that the inner product on [?(A) is well defined. Since >, a;a;*
and Y72, b;b;" are convergent in A, so for ¢ > 0 and p € S(A), there is a
positive integer N such that for m,n > N,

(i, wat) <e ,  p(Xil,, bib") <ce.

By Cauchy-Bunyakovskii inequality in Hilbert module over pro-C*-algebra
A (Lemma 2.1 of [12]), we can write

P )iny, 5 (b)) <
P(C@) s (@) )Y p((0)i s (B)i ).

Therefore, if m,n > N, we have

PO, aibi®) < Ve Je=¢.

Hence, >°7°, a;b;" converges in A and clearly (.,.) is an inner product on

I?(A). O

Now, we show that [2(A) is complete with respect to the topology deter-
mined by the family of seminorms

p{ai}i) = p(32, aza;7)'? {a;}i € P(A) , pe S(A) .

Lemma 8 {a;}ieny € I*(A) if and only if {mp(a;)}ien € 1*(A,) for each
peSA) .

Proof. Let m < n. Then for each p € S(A) we have
1525 (mp(ai), mp(ai)) 4, = lImp (i (@i ai))lla, = (i {ai; ai)) -

Thus, the sequence of partial sums of series ;e (m,(a;), mp(a;)) is cauchy
in [*(A,), for each p € S(A) iff the sequence of partial sums of series
S ien{as, a;) is cauchy in [?(A) and so the proof is complete . O

Lemma 9 Suppose that for any p € S(A), ¢, : I*(A) — [*(A,) be such



that ¢,({a;}ien) = {my(a;)tien. Then, the sequence { fi}tren is cauchy
(convergent) in I>(A) if and only if {¢,(fi)tken is cauchy (convergent)
in 12(A,) for each p € S(A) .

Proof. Let fr = (api)ien , k € N, p € S(A) , m <n . Then

p<fn — fm, fn - fm> - p<(am' — ami)iGN; (am' - ami)i€N>

= p( Zi€N<am‘ — Qmgy Qpg — ami) ) .

On the other hand, if ||.||, is the induced norm by the inner product
on [?(A), then for each p € S(A) and m < n , we have :

16p(fn) = Ep(fm)ll; = lEp(fn = fin) 17
= H(bp(anl — ami)iENH?)
- H7Tp(am - ami)iGNHIQ)

= p(ZieN<ani — Ami y Qpg — amz)) .

Hence, if {p : p € S(A)} denotes the set of all continuous seminorms
on [?(A), then :

P(fr = fim) = ll0p(fn) = Gu(fin)llp -
Therefore, the sequence {fi}reny in (2(A) is cauchy iff {¢,(fi) ren is
cauchy in [?(A,) for each p € S(A) .

On the other hand, we can write :

1En(fi)ll7 = I (mp(ani)ienlly = p(Cienlani , ari)) = p({fr, fi) = [P(fi)]?

This means that the sequence { f; }ren is convergent in [2(A) if and only
if the sequence {¢,(fi)}ren is convergent in [*(A,) for each p € S(A) .0

10



Corollary 4.1 [*>(A) is complete and so is a Hilbert A-module .

Proof. It is enough to prove the completeness of (*(A). Since, A, is a
C*-algebra for each p € S(A), we conclude that [?(A,) is complete (see
[9]), for each p € S(A). So the proof follows from Lemmas 4.1 and 4.2 . O

Let E; for © € N be a Hilbert A-module with the topology induced by
the family of continuous seminorms {p; }pes(a) defined as :

pi(x) = /p({z,2)) (v € E).
Direct sum of {F;};en is defined as follows :
Dien Bi = {(Ti)ien :© 1 € By, X2 (w4, %) is convergent in A}

It has been shown (see [8 , Example 3.2.3]) that the direct sum P,y E;
is a Hilbert A-module with A-valued inner product (z,y) = >2°, (s, i)
, where = (2;);eny and y = (¥;)ien are in @,y E£; with pointwise opera-
tions and the topology determined by the familly of seminormes

plx) = \/p(({z, 7)) =€ @ienEi , peS(A).

The direct sum of a countable copies of a Hilbert module F is denoted
by Hg . If F is a Hilbert A-module, then we denote by A.FE the closure
in E of the linear span of all the elements of the form a.x , for x € E
and a € A .

Proposition 10 We have A.E =FE .
Proof. Let {e)}, be an approximate identity of A. Then for any = € F
and p € S(A)
pe(r —exx)? = p((x — exw, x — e\x))
= p((l’, .Z') - e)\<x7 :U> - <$7 l‘>€)\ + 6,\<l’, Q?>6)\)

= p([{z, 2) —ex(z, 2)] = [{z, 2) — ex(z, v)]ex)

11



S p[<(lf7$> - 6)\<$7l’>] —|—p[<CL’,LU> - 6)\<Jf7$>]p(€)\)
= (1 +plex)p({z,z) — ex(z,z)) = 0.
Hence the elements of the form ey.x are dense in E . O

Proposition 11 Let A be a unital pro-C*-algebra and E is a Hilbert
A-module. Then for any v € E ,

x = ll_r}l(l) (z,7)({z,x) +e)

Proof. Let a = (x,z). Then, by the spectral theorem (see [11, Proposi-
tion 1.9]), for any p € S(A)

pe((z,2)((z,2) + €) "Lz — 2)* = pr([(z, 2)({z, ) + &)~ — 1].2)*
=p(([(z, 2)((z,2) + &)™ = L.z, [{z,2)((z,2) + £)7" = 1].2))
=p({[a(a+¢e)"t = 1]z, [a(a+¢e)t —1].2))
= p(la(a+e)~" = Lala(a + )~ —1])
= pla.[a(a + )7 = 1)
=pla®(a+¢)72 —2d*(a+ )7t +a
=sup{|t?(t +e) 2 —2L2(t +e) " +t| : tespla,)}

<

N~

€,

since the following inequalities hold under the condition ¢ > 0 :

B3t +e)2 =202t +e) L+t < |[B(t+e) 2 —t| + 2|2t +e) ' -],

2 et et + 22 1 5
e Y = < (2 )= 2
it el =5 D =252

(3t +e)72 —t| = [t(

12



|t2(t+€)’1—t]:|—€\<5. O

The following statment is a polar decomposition for Hilbert pro-C*-
modules.

Proposition 12 Let E be a Hilbert A-module ,x € E , and 0 < o < 1/2
. Then there exists an element z € E such that ,

x=(x,z)*z
Proof. For n € N, put

n*ift A<1/n
gn()‘>{ _/

AT A > 1/n

Then, by the spectral theorem, for each p € S(A) ,

pe([9n((z, 7)) = g ({2, 2))].2) = p({z, 2)[9u ({2, 2)) — g ({2, 2))]*)"/?
= (Sup{|A(gn(A) — gm(N))?| = X € sp((z,z),)})"/%.

Therefore, the sequence {g,({z,x)).z} is a cauchy sequence, so converges
to some z € E. Then ,

Pe(w, 7).z — ) = lim pp((z, 2)°ga((z, 7). — 2)
= 1im pe(((z.2)°g.({r. 7)) — 1].2)

= lim sup{|(\",(\)~1)2A] : A € sp((a.),)}

=0.
This completes the proof . O

13



5 Operators on Hilbert modules

Let A be a pro-C*-algebra and let E and F' be two Hilbert A-modules.
An A-module map T : E — F is said to bounded if for each p € S(A),
there is C}, > 0 such that :

ﬁF(TZL’> S OpﬁE(I) (ZE € E) s

where pg, respectively pg, are continuous seminormes on E, respectively
F. A bounded A-module map from E to F'is called an operator from F
to F. We denote the set of all operators from E to F' by Homa(E, F)
and we set Enda(E) = Homa(E, E) .

Let T € Homu(E, F). We say T is adjointable if there exists an operator
T* € Homu(F, E) such that :

(Tx,y) = (x,T"y)

for all z € E |, y € F . We denote by Hom*(E, F'), the set of all
adjointable operators from E to F and End%(E) = Hom*(E, E) .

By a little modification in the proof of Lemma 3.2 of [12], we have the
following result :

Proposition 13 LetT : E — F and T : F — E be two maps such that
the equality

(z,T*y) = (Tz,y)

holds for allz € E, y € F. Then T € Hom*(E, F) .

It is easy to see that for any p € S(A), the map defined by
p(T) =sup{ pr(Tz) : z€E, prp(xr) <1} , T € Homus(E,F)

is a seminorm on Hom4(FE, F'). Moreover Hom 4(F, F') with the topology
determined by the family of seminorms {p},cs(4) is a complete locally
convex space ([7 , Proposition 3.1]).

14



By Proposition 4.7 of [11], we have the canonical isomorphism |,

Homu(E, F) = lim Homa, (Ep, F,) .

P —
p

Consequently, End*(F) is a pro-C*-algebra for any Hilbert A-module E
and its topology is obtained by {p},cs(4)-

Let T' € End’(E) and p € S(A). Define :

T,: E, — E, , T, : E, — E,

Ty(z +ker(pg)) = Tv + ker(pg) T, (z + ker(pg)) = Tz + ker(pg)

for all x € £ . Then we have :

(z +ker(pg) , Ty(y +ker(pp))) = (T, (z + ker(pg)) , y + ker(pg))

for all z,y € E' . By Proposition 5.1, we have T, € End} (Ej) and the

map T' — T, for each p € S(A) is a *-homomorphism from the pro-C*-
algebra End}(E) to the C*-algebra End} (E,). Moreover,

I Tp|l = B(T) -
Note that, End}y (E) = lim End}y (E)), (see [11 , Proposition 4.7]). Hence

P
T is a positive element of End’(F) if and only if 7}, is a positive element
of End} (E,) for any p € S(A). Note also that 7" is a positive element
of End(FE) if and only if (T'z,z) > 0 for any element z € E. ([12 ,
Proposition 3.2])

Lemma 14 Let X be a Hilbert module over C*-algebra B, S € Endy(X)
and S be a positive element of Endy(X). Then for each x € X,

(Sz,2) <[|S|(z,z) .

15



Proof. Since S is a positive element in Endy(X), we have, S < ||S||1,
where [ is the identity element in Endy(X). Hence S — ||S|| > 0, and
then

(IS = S)z, ) >0, VreX.
Therefore, we have :
(Sz,z) < ||S|[(z, z),
for all x € X. O

Remark 5.1. Note that if T € Endj(X), then T*T is a positive el-
ement in End}(X). Thus, we can write :

(Ta,Tax) = (T"Tx,z) < |[|[T*T|(z,z) = |T|*(z, z),
for all z € X.

Definition 15 Let E and F be two Hilbert modules over pro-C*-algebra
A. Then the operator T : E — F is called uniformly bounded, if there
exists C' > 0 such that for each p € S(A),

pr(Tx) < Cpp(z) , VxeEFE. (5.1)
The number C' in (5.1) is called an upper bound for T and we set:

|T||o = inf{C : C is an upper bound for T}.

Clearly, in this case we have:

pT) < [Tl VpeS(A).

Proposition 16 Let E be a Hilbert module over pro-C*-algebra A and
T be an invertible element in End%(E) such that both are uniformly
bounded. Then for each x € F,

T2, ) < (T, Ta)y < | T (x, 2).

16



Proof. Recall that for each p € S(A), the space End} (E,) is a C*-
algebra and T}, belong to this space with the norm defined by:

||Tp||p :ﬁE(T)-

Therefore by Remark 5.1, for each p € S(A) and z € E,

(Tx,Tx), (Tz)p, (T'x)p)

{
(T (p), Ty ()
|

< N Tllp{zp, )

By Remark 2.2 of [3], we have:
(Tx,Tx) < ||T|%(x,2) , VacE. (5.2)

On the other hand, by replacing 7! and y instead of T" and x in (5.2),
we obtain:

(T7hy, T™hy) < T 5%y, v)-
Let x € E such that T'vr = y. Then, we can conclude:
(z,2) < |T7H%(T, Ta).

because T is an invertible operator, it can be concluded that: |77 > 0
and hence:

1T~ 2w, 2) < (T, Tx) , Vo€ E.O

Let N C M be a closed submodule of a Hilbert module M. Then, in gen-
eral, the equality M = N 4+ N+ dose not hold, as the following example
shows.

Example 5.1. ([8]) Let A = Cla, b] be the pro-c*-algebra of all contin-
uous fanctions on the segment [a,b]. consider in the Hilbert A-module
M = A, the submodule N = Cy(a, b) of functions that vanish at the end
points of the sigment. Then obviously, Nt = {0} .

17



Let N and M be two closed submodules in a Hilbert module E such that
E =M & N. We denote by Py, the projection onto M along N .

Proposition 17 Let M be an orthogonally complemented submodule of
a Hilbert A-module E. Then Py € End(E) .

Proof. Let z,y € E. Then, there exist unique elements a,b € M and
a’,b' € M+ such that, v =a+a’ , y= b+ . Therefore

(Pu(z), y) =(a, b+ ) =(a,b).
On the other hand,

<$’PM(y)>:<a+a/’b>:<a7b>'

By Lemma 3.2 of [12], we have Py, = P),/* . Using Proposition 5.1, we
conclude Py € End}y(E) . O

Proposition 18 Let M be an orthogonally complemented submodule of
a Hilbert A-module E and let T € End(F) be an iwvertible operator such
that T*T'M C M. Then we have:

T(M*) = (TM)* | Pryy=TPyT™" .

Proof. Let u € M and v € M*. Since T*Tu € M, then we have
(Tu, Tv) = (T*Tu,v) = 0. Thus T(M*) C (TM)*. On the other hand
if y € (TM)*, then there exists x € E such that y = Tz. Let t =m +n
for some m € M and n € M+, then we have

(y,Tm) = (Tx,Tm) = (T'm+ Tn,Tm) = (T'm,Tm) + (T'n, Tm) = 0.
Since (T'n, Tm) = 0, we have (I'm,Tm) = 0 and then T'm = 0. Thus
y = Tn, and we have (TM)+ C T(M*). Let z € E. Since E = M + M+,
sowe have x =u+v , we€ M, ve M+ . Hence, Tx = Tu+ Tv

. On the other hand, we have, TM+ = (T'M)*. Thus Tu € TM and
Tv € (TM)*. Therefore :

Pry(Tz)=Tu , TPy(z)=Tu.

18



This completes the proof . O
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