

Mathematics Scientific Journal Vol. 7, No. 2, (2012), 1-3

Some notes on the existence of an inequality in Banach algebra

M. Asadi $^{\mathrm{a},*}$

^aDepartment of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran.

Received 12 March 2011; accepted 1 June 2011

Abstract

We shall prove an existence inequality for two maps on Banach algebra, with an example and in sequel we have some results on \mathbb{R} and \mathbb{R}^n spaces. This way can be applied for generalization of some subjects of mathematics in teaching which how we can extend a math problem to higher level.

Key words: Banach algebra; Norm inequality. 2010 AMS Mathematics Subject Classification : 32A65; 47A30.

* Corresponding Author. Tel: (+98-241-4221001-7); Fax: (+98-241-4220030); Email address: masadi@azu.ac.ir (M. Asadi).

1 Introduction

We generalize a problem which was a simple existence inequality in [1, page 229] to Banach algebra ([2]) and in continue we obtain some results on \mathbb{R} and \mathbb{R}^n spaces.

2 Main results

Theorem 2.1 Let E be a nonempty Banach algebra over \mathbb{C} , f and g two self-maps on E. If there exists $a \in E$ such that $||a^2|| \ge 1$, then

$$||xy - f(x) - g(y)|| \ge \frac{1}{4},$$

for some $x, y \in E$.

Proof. Let $||xy - f(x) - g(y)|| < \frac{1}{4}$ for all $x, y \in E$. So we have $||f(0) + g(0)|| < \frac{1}{4}$, $||f(a) + g(0)|| < \frac{1}{4}$, $||f(0) + g(a)|| < \frac{1}{4}$. But

$$\begin{aligned} \|a^{2} - f(a) - g(a)\| &\geq \|a^{2}\| - \|f(a) + g(a)\| \\ &> 1 - \|f(a) + g(0)\| - \|g(0) + f(0)\| \\ &- \|f(0) + g(a)\| \\ &> \frac{1}{4}. \end{aligned}$$

Corollary 1 If E be a nonempty unital Banach algebra over \mathbb{C} , f and g two self-maps on E, then

$$||xy - f(x) - g(y)|| \ge \frac{1}{4},$$

for some $x, y \in E$.

Proof. If **1** denotes the unit in the Banach algebra E, then $||\mathbf{1}|| = 1$. \Box

2

Example 2.2 ([1]) Let f and g be real valued functions of a real variable. Therefore there exist $x, y \in [0, 1]$ such that $|xy - f(x) - g(y)| \ge \frac{1}{4}$.

In sequel, fixed $n \in \mathbb{N}$.

Corollary 2 If $f_1, \dots, f_n : \mathbb{R} \to \mathbb{R}$ be maps, then

$$\forall a_i \ge 0 \quad \exists x_i \in [0, a_i] \quad \left| x_1 \cdots x_n - \sum_{i=1}^n f_i(x_i) \right| \ge \frac{a_1 \cdots a_n}{2^n},$$

for all $i = 1, 2, \dots, n$.

Lemma 2.3 If $f, g : \mathbb{R}^n \to \mathbb{R}$, $I = [0, a_1] \times \cdots \times [0, a_n]$, $J = [0, b_1] \times \cdots \times [0, b_n]$, $a = (a_1, \cdots, a_n)$ and $b = (b_1, \cdots, b_n)$, then

$$\exists x \in I, y \in J \quad |x.y - f(x) - g(y)| \ge \frac{a.b}{4},$$

where x.y is inner product x and y.

Acknowledgments

The author is grateful to a referee for his/her careful reading and valuable comments and suggestions which led to the present form of the paper. The author would also like to thank *Professor S. Mansour Vaezpour* for his helpful advise to present this paper. This research has been supported by the Zanjan Branch, Islamic Azad University, Zanjan, Iran.

References

- G. Klambauer, Mathematical Analysis, Marcel Dekker, Inc., New York, 1975.
- [2] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Springer-Verlag, New York, 1998.