

ACCEPTED:2022 OCTOBER 23

Upper Bounds for 2-Restrained Domination Number of $GP(n, 2)$

M. Ghanbari*a,[∗]* and M. Jalinoosi*^b*

^aDepartment of Mathematics, Farahan Branch, Islamic Azad University, Farahan, Iran. ^bDepartment of Mathematics, University of Qom, Qom, Iran.

1 Introduction and Preliminary

Throughout this paper, we consider G as a finite simple graph with vertex set *V* (*G*) and edge set *E*(*G*). We use cf. [5] as a reference for terminology and notation which are not explicitly defined here.

For a graph $G = (V(G), E(G))$, a set $S \subseteq V(G)$ is called a *dominating set* if every vertex not in *S* has a neighbor in *S* cf. [4] .The *domination number γ*(*G*) of *G* is the minimum cardinality among all dominating sets of *G*. Let G be a graph and $v \in V(G)$. The open neighborhood of v is the set $N(v) = \{u \in V(G)|uv \in E(G)\}\$, and its closed neighborhood is the set $N[v] = N(v) \cup v$. Let f be a function that assigns to each vertex a set of colors chosen from the set $\{1,...,k\}$; that is, $f: V(G) \to P(\{1,...,k\})$. If for each vertex $v \in V(G)$ such that $f(v) = \emptyset$ we have $\bigcup_{u \in N(v)} f(u) = \{1, ..., k\}$, then *f* is called a *k-rainbow dominating function* (kRDF) of *G* cf. [1] and [2]. The weight, $\omega(f)$, of a function f is defined as $\omega(f) = \Sigma_{v \in V(G)} |f(v)|$. Given a graph G , the minimum weight of a kRDF is called the *k-rainbow domination number of G*, which we denote by *γrk*(*G*). Ghanbari and Mojdeh [3] initiated the concept of *restrained 2- rainbow domination in graphs*.

Let *f* be a function that assigns to each vertex a set of colors chosen from the set $\{1,2\}$; that is, $f: V(G) \rightarrow$ $P({1,2})$. If for each vertex $v \in V(G)$, such that $f(v) = \emptyset$ we have $\cup_{u \in N(v)} f(u) = {1,2}$, and v is adjacent to a vertex $w \in V(G)$ such that $f(w) = \emptyset$ then *f* is called a *restrained 2-rainbow dominating function* (R2RDF) of *G*. The weight, $\omega(f)$, of a function f is defined as $\omega(f) = \sum_{v \in V(G)} |f(v)|$. Given a graph G , the minimum weight of a R2RDF is called the *restrained 2-rainbow domination number of G*, which we denote by *γrr*2(*G*).

2 Main Result

Let $n \geq 3$ and k be relatively prime natural numbers and $k < n$. The generalized Petersen graph $GP(n, k)$ is defined as follows. Let C_n , C'_n be two disjoint cycles of length n . Let the vertices of C_n be $u_1, ..., u_n$ and edges $u_i u_{i+1}$ for $i = 1, ..., n-1$ and $u_n u_1$.

*∗*Corresponding Author's E-mail: ghanbari543@yahoo.com(M. Ghanbari)

Let the vertices of C'_n be $v_1, ..., v_n$ and edges v_iv_{i+k} for $i=1,...,n$, the sum $i+k$ being taken modulo n (throughout this section). The graph $GP(n, k)$ is obtained from the union of C_n and C'_n by adding the edges $u_i v_i$ for $i = 1, \ldots, n$. Its obvious that $GP(n, k) = GP(n, n - k)$. The graph $GP(5, 2)$ or $GP(5, 3)$ is the well-known Petersen graph.

Theorem 2.1. *For* $n \geq 5$

(a) If $n \equiv 0 (mod 5)$ *, the inequality* $\gamma_{rr2}(GP(n,2)) = \gamma_{rr2}(GP(n,n-2)) \leq \frac{4n}{5} + 2$ *is satisfied. (b) If* $n \equiv 1(mod5$ *, the inequality* $\gamma_{rr2}(GP(n, 2)) = \gamma_{rr2}(GP(n, n-2)) \leq 4\left\lfloor \frac{n}{5} \right\rfloor$ $\frac{n}{5}\rfloor+2$ is satisfied. *(c) If* $n \equiv 2(mod5)$ *, the inequality* $\gamma_{rr2}(GP(n,2)) = \gamma_{rr2}(GP(n, n-2)) \leq 4(\frac{n}{5})$ $\frac{n}{5}\rfloor+1)$ is satisfied. (d) *If* $n \equiv 3(mod5)$ *, the inequality* $\gamma_{rr2}(GP(n,2)) = \gamma_{rr2}(GP(n, n-2)) \leq 4(\frac{n}{5})$ $\frac{n}{5}$ | + $\frac{3}{2}$ $\frac{3}{2}$) is satisfied. $P(F)$ *If* $n \equiv 4(mod5)$ *, the inequality* $\gamma_{rr2}(GP(n, 2)) = \gamma_{rr2}(GP(n, n-2)) \leq 4(\frac{n}{5})$ $\frac{n}{5}$ | + $\frac{3}{2}$ $\frac{3}{2}$) is satisfied.

Proof. We use the following partition of $V(GP(n, 2))$:

$$
V(GP(n,2))=\{U_{5k},U_{5k-1},U_{5k-2},U_{5k-3},U_{5k-4},V_{5k},V_{5k-1},V_{5k-2},V_{5k-3},V_{5k-4}\}
$$

such that

 $U_{5k} = \{u_{5k}, k = 1, 2, \dots\}, U_{5k-1} = \{u_{5k-1}, k = 1, 2, \dots\}, U_{5k-2} = \{u_{5k-2}, k = 1, 2, \dots\}, U_{5k-3} = \{u_{5k-3}, k = 1, 2, \dots\}$ $\{1,2,\dots\}, U_{5k-4} = \{u_{5k-4}, k = 1,2,\dots\}, V_{5k} = \{u_{5k}, k = 1,2,\dots\}, V_{5k-1} = \{u_{5k-1}, k = 1,2,\dots\}, V_{5k-2} = \{u_{5k-1}, k = 1,2,\dots\}$ ${u_{5k-2}, k = 1, 2, \dots}$, $V_{5k-3} = {u_{5k-3}, k = 1, 2, \dots}$, $V_{5k-4} = {u_{5k-4}, k = 1, 2, \dots}$ and all of indices are taken modulo n.

(a) If $n \equiv 0(mod5$, we use the following algorithm and define the function f on $GP(n, 2)$:

 step 1) $f(u_{5k}) = f(u_{5k-1}) = f(u_{5k-3}) = \emptyset, k = 1, 2, \cdots$.

step 2) $f(v_{5k-2}) = f(v_{5k-3}) = f(v_{5k-4}) = \emptyset, k = 1, 2, \cdots$.

step 3) If k ia an odd number, then $f(u_{5k-4}) = \{1\}$, $k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{2\}$, $k = 1, 2, \cdots$ but $f(u_1) = \{1, 2\}$. step 4) If k ia an even number, then $f(u_{5k-4}) = \{2\}$, $k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{1\}$, $k = 1, 2, \cdots$.

step 5) If k ia an odd number, then $f(v_{5k-1}) = f(v_{5k}) = \{1\}$, $k = 1, 2, \cdots$ but $f(u_n) = \{1, 2\}$.

step 6) If *k* ia an even number, then $f(v_{5k-1}) = f(v_{5k}) = \{2\}, k = 1, 2, \cdots$.

Now we claim that *f* is a R2RDF on $GP(n, 2)$ and $\gamma_{rr2}(GP(n, 2)) = \gamma_{rr2}(GP(n, n-2)) \le \frac{4n}{5} + 2$.

Firstly if there exists the vertex *w* of $GP(n, 2)$, such that $f(w) = \emptyset$, in according definition of *f* (steps 1 and 2), w is a member of $U_{5k} \bigcup U_{5k-1} \bigcup U_{5k-3} \bigcup V_{5k-2} \bigcup V_{5k-3} \bigcup V_{5k-4}$. In other hand u_{5k} is adjacent to u_{5k-1} , u_{5k-3} is adjacent to v_{5k-3} and v_{5k-2} is adjacent to v_{5k-4} . Therefore *w* is adjacent to a vertex *z* and $f(z) = \emptyset$. Now if *w* is a vertex of $GP(n, 2)$ and $f(w) = \emptyset$, then the following cases has happened.

Case 1) There exist a positive integer k such that $w = u_{5k}$. If $w = u_n$, its obvious that w is adjacent to u_1 and $f(u_1) = \{1,2\}$ otherwise w is adjacent to u_{5k-1} , $u_{5k+1} = u_{5(k+1)-4}$ and v_{5k} . If k is an odd number, according to step 1, step 4 and step 5, $f(u_{5k-1}) = \emptyset$, $f(u_{5k+1}) = \{2\}$ and $f(v_{5k}) = \{1\}$ respectively. If *k* is an even number, according to step 1, step 3 and step 6, $f(u_{5k-1}) = \emptyset$, $f(u_{5k+1}) = \{1\}$ and $f(v_{5k}) = \{2\}$ respectively. Note that $f(v_n) = \{1, 2\}.$

Case 2) There exist a positive integer *k* such that $w = u_{5k-1}$. Then *w* is adjacent to u_{5k-2} , v_{5k-1} and u_{5k} . If *k* is an odd number, according to step 1, step 3 and step 5, $f(u_{5k}) = \emptyset$, $f(u_{5k-2}) = \{2\}$ and $f(v_{5k-1}) = \{1\}$ respectively. If k is an even number, according to step 1, step 4 and step 6, $f(u_{5k}) = \emptyset$, $f(u_{5k-2}) = \{1\}$ and $f(v_{5k-1}) = \{2\}$ respectively.

Case 3) There exist a positive integer k such that $w = u_{5k-3}$. Then w is adjacent to u_{5k-4}, u_{5k-2} and v_{5k-3} . If k is an odd number, according to step 2 and step 3, $f(v_{5k-3}) = \emptyset$ and $f(u_{5k-2}) = \{2\}$ and $f(u_{5k-4}) = \{1\}$. If k is an even number, according to step 2 and step 4, $f(v_{5k-3}) = \emptyset$, $f(u_{5k-2}) = \{1\}$ and $f(u_{5k-4}) = \{2\}$.

Case 4) There exist a positive integer *k* such that $w = v_{5k-2}$. Then *w* is adjacent to v_{5k-4} , u_{5k-2} and u_{5k} . If *k* is an odd number, according to step 2, step 3 and step 5, $f(v_{5k-4}) = \emptyset$ and $f(u_{5k-2}) = \{2\}$ and $f(v_{5k}) = \{1\}$ respectively. If k is an even number, according to step 2, step 4 and step 6, $f(v_{5k-4}) = \emptyset$ and $f(u_{5k-2}) = \{1\}$ and $f(v_{5k}) = \{2\}$ respectively.

Case 5) There exist a positive integer k such that $w = v_{5k-3}$. If $w = v_2$, its obvious that w is adjacent to v_n and $f(v_n) = \{1,2\}$ otherwise w is adjacent to u_{5k-3} , v_{5k-1} and $v_{5(k-1)}$. If $k > 1$ is an odd number, according to step 1, step 5 and step 6, $f(u_{5k-3}) = \emptyset$ and $f(v_{5(k-1)}) = \{2\}$ and $f(v_{5k-1}) = \{1\}$ respectively. If k is an even number, according to step 1, step 5 and step 6, $f(u_{5k-3}) = \emptyset$ and $f(v_{5(k-1)}) = \{1\}$ and $f(v_{5k-1}) = \{2\}$ respectively.

Case 6) There exist a positive integer *k* such that $w = v_{5k-4}$. If $w = v_1$, its obvious that *w* is adjacent to u_1 and $f(u_1) = \{1,2\}$ otherwise w is adjacent to v_{5k-2} , $v_{5(k-1)-1}$ and u_{5k-4} . If $k > 1$ is an odd number, according to step 2, step 6 and step 3, $f(v_{5k-2}) = \emptyset$ and $f(v_{5(k-1)-1}) = \{2\}$ and $f(u_{5k-4}) = \{1\}$ respectively. If k is an even number, according to step 2, step 5 and step 4, $f(v_{5k-2}) = \emptyset$ and $f(v_{5(k-1)-1}) = \{1\}$ and $f(u_{5k-4}) = \{2\}$ respectively. Secondly since $n \equiv 0 \pmod{5}$, then

$$
|U_{5k}| = |U_{5k-1}| = |U_{5k-2}| = |U_{5k-3}| = |U_{5k-4}| = |V_{5k}| = |V_{5k-1}| = |V_{5k-2}| = |V_{5k-3}| = |V_{5k-4}| = \lfloor \frac{n}{5} \rfloor
$$

So

$$
\omega(f) = |U_{5k-2}| + |U_{5k-4}| + |V_{5k}| + |V_{5k-1}| + 2 = \frac{4n}{5} + 2
$$

(b) If $n \equiv 1(mod 5)$, we use the following algorithm and define the function f on $GP(n, 2)$: step 1) $f(u_{5k}) = f(u_{5k-1}) = f(u_{5k-3}) = \emptyset, k = 1, 2, \cdots$. step 2) $f(v_{5k-2}) = f(v_{5k-3}) = f(v_{5k-4}) = \emptyset, k = 1, 2, \cdots$ step 3) If k ia an odd number, then $f(u_{5k-4}) = \{1\}$, $k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{2\}$, $k = 1, 2, \cdots$. step 4) If k ia an even number, then $f(u_{5k-4}) = \{2\}$, $k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{1\}$, $k = 1, 2, \cdots$. step 5) If k ia an odd number, then $f(v_{5k-1}) = f(v_{5k}) = \{1\}$, $k = 1, 2, \cdots$ but $f(v_4) = \{1, 2\}$. step 6) If *k* ia an even number, then $f(v_{5k-1}) = f(v_{5k}) = \{2\}, k = 1, 2, \cdots$.

Now similarly to proof of part (a) and a little changes, *f* is a R2RDF on $GP(n, 2)$ and since $n \equiv 1(mod5)$, then

$$
|U_{5k}| = |U_{5k-1}| = |U_{5k-2}| = |U_{5k-3}| = |V_{5k}| = |V_{5k-1}| = |V_{5k-2}| = |V_{5k-3}| = \lfloor \frac{n}{5} \rfloor
$$

and $|U_{5k-4}| = |V_{5k-4}| = \lfloor \frac{n}{5} \rfloor$ $\frac{n}{5}$ | + 1. So

$$
\omega(f) = |U_{5k-2}| + |U_{5k-4}| + |V_{5k}| + |V_{5k-1}| + 1 = 4\lfloor \frac{n}{5} \rfloor + 2
$$

(c) If $n \equiv 2(mod5$, we use the following algorithm and define the function f on $GP(n, 2)$: step 1) $f(u_{5k}) = f(u_{5k-1}) = f(u_{5k-3}) = \emptyset, k = 1, 2, \cdots$. step 2) $f(v_{5k-2}) = f(v_{5k-3}) = f(v_{5k-4}) = \emptyset, k = 1, 2, \cdots$ step 3) If k ia an odd number, then $f(u_{5k-4}) = \{1\}$, $k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{2\}$, $k = 1, 2, \cdots$ but $f(u_1) = \{1, 2\}$. step 4) If k ia an even number, then $f(u_{5k-4}) = \{2\}$, $k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{1\}$, $k = 1, 2, \cdots$.

step 5) If k ia an odd number, then $f(v_{5k-1}) = f(v_{5k}) = \{1\}$, $k = 1, 2, \cdots$ but $f(v_4) = \{1, 2\}$ and $f(v_{n-2}) = \{1, 2\}$. step 6) If *k* ia an even number, then $f(v_{5k-1}) = f(v_{5k}) = \{2\}, k = 1, 2, \cdots$.

Now similarly to proof of part (a) and a little changes, *f* is a R2RDF on $GP(n, 2)$ and since $n \equiv 2(mod5)$, then

$$
|U_{5k}| = |U_{5k-1}| = |U_{5k-2}| = |V_{5k}| = |V_{5k-1}| = |V_{5k-2}| = \lfloor \frac{n}{5} \rfloor
$$

 $|U_{5k-3}| = |U_{5k-4}| = |V_{5k-4}| = |V_{5k-3}| = \lfloor \frac{n}{5} \rfloor$ $\frac{n}{5}$ | + 1. So

$$
\omega(f) = |U_{5k-2}| + |U_{5k-4}| + |V_{5k}| + |V_{5k-1}| + 3 = 4\lfloor \frac{n}{5} \rfloor + 4
$$

(d) If $n \equiv 3(mod 5)$, we use the following algorithm and define the function f on $GP(n, 2)$: step 1) $f(u_{5k}) = f(u_{5k-1}) = f(u_{5k-3}) = \emptyset, k = 1, 2, \cdots$. **step 2)** $f(v_{5k-2}) = f(v_{5k-3}) = f(v_{5k-4}) = \emptyset, k = 1, 2, \cdots$.

step 3) If k ia an odd number, then $f(u_{5k-4}) = \{1\}$, $k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{2\}$, $k = 1, 2, \cdots$ but $f(u_1) = \{1, 2\}$ and $f(u_n) = \{1, 2\}$.

step 4) If k ia an even number, then $f(u_{5k-4}) = \{2\}$, $k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{1\}$, $k = 1, 2, \cdots$. step 5) If k ia an odd number, then $f(v_{5k-1}) = f(v_{5k}) = \{1\}$, $k = 1, 2, \cdots$ but $f(v_4) = \{1, 2\}$ and $f(v_{n-3}) = \{1, 2\}$. step 6) If *k* ia an even number, then $f(v_{5k-1}) = f(v_{5k}) = \{2\}, k = 1, 2, \cdots$.

Now similarly to proof of part (a) and a little changes, *f* is a R2RDF on $GP(n, 2)$ and since $n \equiv 3(mod5)$, then

$$
|U_{5k}| = |U_{5k-1}| = |V_{5k}| = |V_{5k-1}| = \lfloor \frac{n}{5} \rfloor
$$

and $|U_{5k-4}| = |U_{5k-3}| = |U_{5k-2}| = |V_{5k-4}| = |V_{5k-3}| = |V_{5k-2}| = \lfloor \frac{n}{5} \rfloor$ $\frac{n}{5}$ | + 1. So

$$
\omega(f) = |U_{5k-2}| + |U_{5k-4}| + |V_{5k}| + |V_{5k-1}| + 4 = 4\lfloor \frac{n}{5} \rfloor + 6
$$

(e) If $n \equiv 4 \pmod{5}$, we use the following algorithm and define the function f on $GP(n, 2)$: $f(u_{5k}) = f(u_{5k-1}) = f(u_{5k-3}) = \emptyset, k = 1, 2, \cdots$ but $f(u_n) = \{1\}.$ **step 2)** $f(v_{5k-2}) = f(v_{5k-3}) = f(v_{5k-4}) = ∅, k = 1, 2, \cdots$.

step 3) If k ia an odd number, then $f(u_{5k-4}) = \{1\}$, $k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{2\}$, $k = 1, 2, \cdots$ but $f(u_1) = \{1, 2\}$. step 4) If k ia an even number, then $f(u_{5k-4}) = \{2\}$, $k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{1\}$, $k = 1, 2, \cdots$ but $f(u_{n-1}) =$ *{*1*,* 2*}*.

step 5) If *k* ia an odd number, then $f(v_{5k-1}) = f(v_{5k}) = \{1\}, k = 1, 2, \cdots$.

step 6) If *k* ia an even number, then $f(v_{5k-1}) = f(v_{5k}) = \{2\}, k = 1, 2, \cdots$.

Now similarly to proof of part (a) and a little changes, *f* is a R2RDF on $GP(n, 2)$ and since $n \equiv 4 \pmod{5}$, then $|U_{5k}| = |V_{5k}| = \frac{n}{5}$ $\frac{n}{5}$] and

$$
|U_{5k-4}| = |U_{5k-3}| = |U_{5k-2}| = |U_{5k-1}| = |V_{5k-4}| = |V_{5k-3}| = |V_{5k-2}| = |V_{5k-1}| = \lfloor \frac{n}{5} \rfloor + 1.
$$

So

$$
\omega(f) = |U_{5k-2}| + |U_{5k-4}| + |V_{5k}| + |V_{5k-1}| + 3 = 4\left\lfloor \frac{n}{5} \right\rfloor + 6.
$$

 \Box

References

- [1] B. Bresar, M.A. Henning, D.F. Rall, *Rainbow domination in graphs*, Taiwanese J. Math., to appear (March, 2008).
- [2] B. Bresar, T. K. Sumenjak, *Note On the 2-rainbow domination in graphs*, Discrete Applied Mathematics 155 , Elsevier (2007), 2394–2400.
- [3] M.ghanbari, D. A. Mojdeh, *Restrained 2-rainbow domination of a graph*, Submitted (2022).
- [4] T.W. Haynes, S.T. Hedetniemi, M. A. Henning, *Fundamentals of Domination in Graphs*, Speringer, (2021).
- [5] D.B. West, Introduction to Graph Theory (Second Edition), Prentice Hall, USA, 2001.