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ABSTRACT

In the current research, a new iterative algorithm is proposed for finding a common fixed

points of multi-valued quasi nonexpansive mappings and the strong convergence of the

scheme is proved in CAT(0) spaces. Moreover, the strong convergence theorem for hemi-

compact map is studied as well.

1 Introduction
The study of CAT(0) spaces was initiated by W.A.Kirk [7]. He show that every nonexpansive single-valued map-
ping defined on a bounded closed convex subset of a complete CAT(0) space always has a fixed point. The fixed
point theorems in CAT(0) spaces has applications in graph theory, biology, and computer science( see [1, 4, 5, 9]).
Dhompongsa et al in [3]obtained some convergence theorems for different iterations for nonexpansive single-
valued mappings in CAT(0) spaces. Many authors introduced and studied kinds of iterative for single and multi-
valued mappings in Hilbert spaces (see [6, 8, 10, 11, 12]).
The purpose of this article is study the iterative scheme define as follow:

Let D be a closed convex subset of a complete CAT(0) space. Let the multi-valued T1, T2 : D → CB(D) be quasi
nonexpansive map with F (T1)

⋂
F (T2) ̸= ∅. Suppose {xn} is generated iteratively by x1 ∈ D,

yn = αnzn ⊕ (1− αn)xn,

xn+1 = βnźn ⊕ (1− βn)xn.
(1.1)

for all n ≥ 1, where {αn}, {βn} ∈ [a, b] are real sequences in a, b ∈ (0, 1) and zn ∈ T1xn, źn ∈ T2yn. We show that
the sequence {xn} is strongly convergence to common fixed point T1 and T2.
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2 CAT(0) Spaces
Let (X,d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or more briefly, a geodesic from x to y) is a
map γ from a closed interval [0, l] ⊂ R toX such that γ(0) = x, γ(l) = y, and d(γ(t), γ(t́) = |t− t́|, for all t, t́ ∈ [0, l].
In particular, γ is an isometry and d(x, y) = l. The image γ is called a geodesic (or metric) segment joining x and
y. When it is unique, this geodesic is denoted by [x, y]. The space (X,d) is said to be a geodesic space if every two
points ofX are joined by a geodesic, andX is said to be uniquely geodesic if there is exactly one geodesic joining
x to y, for each x, y ∈ X. A subset Y ⊂ X is said to be convex if Y includes every geodesic segment joining any
two of its points. A geodesic triangle ∆(x1, x2, x3) in a geodesic metric space (X,d) consists of three points in X

(the vertices of ∆) and a geodesic segment between each pair of vertices (the edges of ∆). A comparison triangle
for geodesic triangle ∆(x1, x2, x3) in (X,d) is a triangle ∆(x1, x2, x3) := ∆(x1, x2, x3) in the Euclidean plane R2

such that dR2(xi, xj) = d(xi, xj), for i, j ∈ {1, 2, 3}. A geodesic metric space is said to be a CAT(0) space [2] if all
geodesic triangles of appropriate size satisfy the following comparison axiom. Let ∆ be a geodesic triangle in X

and let ∆ be a comparison triangle for ∆. Then, ∆ is said to satisfy the CAT(0) inequality if for all x, y ∈ ∆ and
all comparison points x, y ∈ ∆, d(x, y) ≤ dR2(x, y). It is known that in a CAT(0) space, the distance function is
convex [2]. Complete CAT(0) spaces are often called Hadamard spaces. Finally, we observe that if x, y1, y2 are
points of a CAT(0) space and if y0 is the midpoint of the segment [y1, y2], which we will denote by

y1
⊕

y2
2 , then the

CAT(0) inequality implies

d(x,
y1

⊕
y2

2
)2 ≤ 1

2
d(x, y1)

2 +
1

2
d(x, y2)

2 − 1

4
d(y1, y2)

2. (2.1)

A geodesic metric space is a CAT(0) space if and only if it satisfies inequality (2.1)(which is known as the CN
inequality).
LetX be a complete CAT(0) space and {xn} be a bounded sequence inX. For x ∈ X set

r(x, {xn}) = lim sup
n→∞

d(x, xn)

the asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf {r(x, {xn}) : x ∈ X}

and the asymptotic center A({xn}) of {xn} is the

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

Let(X, d) be a geodesic space and D be a nonempty convex subset of complete CAT(0) space X. The set D is
called Proximinal if for each x ∈ X, there exists an element y ∈ D such that d(x, y) = d(x,D), where d(x,D) =

inf {d(x, z) : z ∈ D}.
The families of nonempty closed bounded subsets, and nonempty proximinal bounded subsets of D, is denoted
by CB(D) and P (D), respectively.
The Hausdroff metric on CB(D) is defined by

H(A,B) = Max {sup x∈Ad(x,B), supy∈Bd(y,A)}
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for A,B ∈ CB(D).
An element p ∈ D is called a fixed point of multi-valued T : D → CB(D) if p ∈ Tp. The set of fixed points of T is
denoted by F (T ).
Also, The multi-valued mapping T : D → CB(D) is called

(1): Quasi nonexpansive, if F (T ) ̸= andH(Tx, Tp) ≤ d(x, p) for all x ∈ D and p ∈ F (T ).

(2): L-Lipschitzian, if there exists a constant L > 0 such that

H(Tx, Ty) ≤ L d(x, y)

for all x, y ∈ D.

(3): Hemicompact, if for any sequence {xn} inD such that d(xn, Txn) → 0 as n → ∞, there exists a subsequence
{xnk

} of {xn} such that xnk
→ p ∈ D.

(4): Two multi-valued maps T1, T2 : D → CB(D) are satisfied condition II if there is a non decreasing function
f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for r ∈ (0,∞) such that

2∑
i=1

d(x, Tix) ≥ f(d(x,
2⋂

i=1

F (Ti)))

The following Lemma will be useful for proving the main results in this paper:

Lemma 2.1. ([3]) Let (X,d) be a CAT(0) space. For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y]

such that
d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y),

we use the notation (1− t)x⊕ ty for the unique z.

Lemma 2.2. ([3]) Let (X,d) be a CAT(0) space. Then

d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2,

for all t ∈ [0, 1] and x, y, z ∈ X.

3 Strong convergence theorems
Here our main result is presented.

Theorem 3.1. Let X be a complete CAT(0) space and D a nonempty closed convex subset X and T1, T2 : D →
CB(D) be a quasi nonexpansive multi-valued maps with F (T1)

⋂
F (T2) ̸= ∅ such that T1p = {p} and T2p = {p}

for each p ∈ F (T1)
⋂
F (T2). Suppose x1 ∈ D and {xn} is defined by (1.1). Then lim

n→∞
d(xn, p) exists.
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Proof. Let p ∈ F (T1)
⋂

F (T2), we have

d(yn, p) = d(αnzn ⊕ (1− αn)xn, p)

≤ αnd(zn, p) + (1− αn)d(xn, p)

= αnd(zn, T1p) + (1− αn)d(xn, p)

≤ αnH(T1xn, T1p) + (1− αn)d(xn, p).

Since T1 is quasi nonexpansive

d(yn, p) ≤ αnd(xn, p) + (1− αn)d(xn, p) = d(xn, p). (3.1)

So

d(xn+1, p) = d(βnźn)⊕ (1− βn)xn, p)

≤ βnd(źn, p) + (1− βn)d(xn, p)

= βnd(źn, T2p) + (1− βn)d(xn, p)

≤ βnH(T2yn, T2p) + (1− βn)d(xn, p).

T2 is quasi nonexpansive
d(xn+1, p) ≤ βnd(yn, p) + (1− βn)d(xn, p).

Now, by (3.1) we have
d(xn+1, p) ≤ βnd(xn, p) + (1− βn)d(xn, p) = d(xn, p)

this implies that the sequence {d(xn, p)} is decreasing and bounded. Then lim
n→∞

d(xn, p).

Theorem 3.2. Let X be a complete CAT(0) space and D a nonempty closed convex subset X and T1 : D →
CB(D)beaquasi nonexpansivemulti-valuedmapandT2 : D → CB(D)beaquasi nonexpansive andL−Lipchitzian
multi-valued map. Moreover, F (T1)

⋂
F (T2) ̸= ∅ and T1p = {p}, T2p = {p} for each p ∈ F (T1)

⋂
F (T2). If

{T1, T2} satisfies condition II, then the sequence {xn} generated by (1.1) convergence strongly to common fixed
point T1 and T2.

Proof. Let p ∈ F (T1)
⋂

F (T2), we have

d(yn, p)
2 = d(αnzn ⊕ (1− αn)xn, p)

2

≤ αnd(zn, p)
2 + (1− αn)d(xn, p)

2 − αn(1− αn)d(zn, xn)
2

= αnd(zn, T1p)
2 + (1− αn)d(xn, p)

2 − αn(1− αn)d(zn, xn)
2

≤ αnH(T1xn, T1p)
2 + (1− αn)d(xn, p)

2 − αn(1− αn)d(zn, xn)
2

since T1 is quasi nonexpansive

d(yn, p)
2 ≤ d(xn, p)

2 − αn(1− αn)d(zn, xn)
2. (3.2)
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It follows that

d(xn+1, p)
2 = d(βnźn ⊕ (1− βn)xn, p)

2

≤ βnd(źn, p)
2 + (1− βn)d(xn, p)

2 − βn(1− βn)d(źn, xn)
2

= βnd(źn, T2p)
2 + (1− βn)d(xn, p)

2 − βn(1− βn)d(źn, xn)
2

≤ βnH(T2yn, T2p)
2 + (1− βn)d(xn, p)

2 − βn(1− βn)d(źn, xn)
2

since T2 is quasi nonexpansive

d(xn+1, p)
2 ≤ βnd(yn, p)

2 + (1− βn)d(xn, p)
2 − βn(1− βn)d(źn, xn)

2.

The inequality (3.2) implies that

d(xn+1, p)
2 ≤ d(xn, p)

2 − βnαn(1− αn)d(zn, xn)
2 − βn(1− βn)d(źn, xn)

2. (3.3)

Therefore

a2(1− b)d(zn, xn)
2 + a(1− b)d(źn, xn)

2 ≤ βnαn(1− αn)d(zn, xn)
2 + βn(1− βn)d(źn, xn)

2

≤ d(xn, p)
2 − d(xn+1, p)

2.

But, we have
∞∑
n=1

a2(1− b)d(zn, xn) < ∞ and
∞∑
n=1

a(1− b)d(źn, xn) < ∞.

This implies that

lim
n→∞

d(zn, xn) = 0, lim
n→∞

d(źn, xn) = 0. (3.4)

Additionally, since
d(xn, T1xn) ≤ d(xn, zn) → 0 as n → ∞

hence

lim
n→∞

d(xn, T1xn) = 0. (3.5)

Moreover,

d(yn, zn) = d(αnzn ⊕ (1− αn)xn, zn)

≤ αnd(zn, zn) + (1− αn)d(xn, zn) = (1− αn)d(xn, zn)
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then

lim
n→∞

d(yn, zn) = 0. (3.6)

It follows from (3.4) and (3.6)

d(xn, yn) ≤ d(yn, zn) + d(zn, xn) → 0, as n → ∞.

We have

d(xn, T2xn) ≤ d(xn, T2yn) + d(T2yn, T2xn)

≤ d(xn, T2yn) +H(T2yn, T2xn)

since T2 is L−Lipschitzian

d(xn, T2xn) ≤ d(xn, źn) + L d(yn, xn) → 0as n → ∞.

This implies that

lim
n→∞

d(xn, T2xn) = 0. (3.7)

By condition (II) we conclude lim
n→∞

d(xn, F (T1)
⋂

F (T2)) = 0, i.e., there exists a subsequence {xnk
} of {xn} and

sequence pk in F (T1)
⋂

F (T2) such that

d(xnk
, pk) ≤

1

2k
for all k.

From
d(xnk+1

, pk) ≤ d(xnk
, pk) <

1

2k

it follows that
d(pk+1, pk) ≤ d(xnk+1

, pk+1) + d(xnk+1
, pk) <

1

2k+1
+

1

2k
<

1

2k−1
.

This show that the sequence pk is cauchy inD and then is convergence to x∗ ∈ D. On the other hand,

d(pk, Tix
∗) ≤ H(Tipk, Tix

∗) ≤ d(pk, x
∗) for i ∈ {1, 2}

then d(x∗, Tix
∗) = 0 for i ∈ {1, 2} and so x∗ ∈ F (T1)

⋂
F (T2), i.e., {xnk

} convergence strongly to x∗. Theorem 3.1
implies that the sequence {xn} convergence strongly to x∗ common fixed point T1 and T2.

Theorem 3.3. LetX be a complete CAT(0) space andD a nonempty closed convex subsetX. Let T1, T2 : D →
CB(D) be a quasi nonexpansive multi-valued map with F (T1)

⋂
F (T2) ̸= ∅ and T1p = {p} and T2p = {p} for

each p ∈ F (T1)
⋂
F (T2). Assume that T1, T2 be hemicompact continuous maps. Suppose x1 ∈ D and {xn} is

defined by (1.1). Then lim
n→∞

d(xn, p) exists.

Proof. By Theorem 3.1 along with the proof and by equation (3.4) and (3.6), we obtain lim
n→∞

d(xn, Tixn) = 0 for
i = 1, 2. Since T1, T2 are hemicompact, there is a subsequence {xnk

} of {xn} such that xnk
→ p for some p ∈ D.
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Also, T1, T2 are continuous, we obtain
d(xnk

, Tixnk
) → d(p, Tip).

Since lim
n→∞

d(xnk
, Tixnk

) = 0, hence lim
n→∞

d(p, Tip) = 0 and so p ∈ F (T1)
⋂
F (T2).

Theorem 3.1 implies that {xn} strongly convergence to p.

Theorem 3.4. Let X be a complete CAT(0) space and D a nonempty closed convex subset X and T1, T2 :

D → CB(D) be multi-valued map and {PT1 , PT2} be a quasi nonexpansive and PT2 be L−Lipchitzian. Also,
F (T1)

⋂
F (T2) ̸= ∅ and T1p = {p} and T2p = {p} for each p ∈ F (T1)

⋂
F (T2). If {T1, T2} satisfies condition (II),

then the sequence {xn} generated by (1.1) convergence strongly to common fixed point T1 and T2.

Proof. Let p ∈ F (T1)
⋂

F (T2), we have p ∈ PTi = {p},

d(zn, p) ≤ d(zn, PT1p) ≤ H(PT1xn, PT1p) ≤ d(xn, p), (3.8)

d(źn, p) ≤ d(źn, PT2p) ≤ H(PT2yn, PT2p) ≤ d(yn, p) (3.9)

By assumption, we obtain

d(yn, p) = d(αnzn ⊕ (1− αn)xn, p) ≤ αnd(zn, p) + (1− αn)d(xn, p).

It follows that

d(xn+1, p) = d(βnźn ⊕ (1− βn)xn, p)

≤ βnd(źn, p) + (1− βn)d(xn, p).

(3.8) together (3.9) implies that

d(xn+1, p) ≤ d(xn, p). (3.10)

By similar proof argument in Theorem 3.1, one can easy obtain that

lim
n→∞

d(xn, źn) = 0, lim
n→∞

d(xn, zn) = 0.

It follows that
d(xn, T1xn) ≤ d(xn, zn) → 0 as n → ∞

then
lim
n→∞

d(xn, T1xn) = 0.

Hausdruff metric space definition implies that for each positive n ≥ 1 there exist x̃n ∈ PT2 such that

d(x̃n, źn) ≤ H(PT2xn, PT2yn) +
1

n
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hence

d(x̃n, xn) ≤ d(x̃n, źn) + d(źn, xn)

≤ H(PT2xn, PT2yn) +
1

n
+ d(źn, xn).

Since PT2 is L−Lipchitzian, we have

d(x̃n, xn) ≤ L d(xn, yn) + d(źn, xn) +
1

n

≤ L d(xn, zn) + L d(yn, zn) + d(źn, xn) +
1

n

= L d(xn, zn) + L d(αnzn ⊕ (1− αn)xn, zn) + d(źn, xn) +
1

n

≤ L (1 + αn)d(xn, zn) + d(źn, xn) +
1

n
.

Then

lim
n→∞

d(x̃n, xn) = 0.

From inequality
d(xn, T2xn) ≤ d(x̃n, xn) → 0

we conclude

lim
n→∞

d(xn, T2xn) = 0.

Condition (II) implies that lim
n→∞

d(xn, F (T1)
⋂

F (T2)) = 0, then there exist sequence {xnk
} of {xn} and sequence

{pk} in F (T1)
⋂
F (T2) such that

d(xnk
, pk) ≤

1

2k
for all k.

On the other hand

d(pk+1, pk) ≤ d(xnk+1
, pk+1) + d(xnk+1

, pk)

<
1

2k+1
+

1

2k
<

1

2k−1
.

This show that the sequence pk is cauchy inD and then is convergence to x∗ ∈ D.
Also,

d(pk, Tix
∗) ≤ H(PTipk, PTix

∗) ≤ d(pk, x
∗) for i ∈ {1, 2}

then d(x∗, Tix
∗) = 0 for i ∈ {1, 2} and so x∗ ∈ F (T1)

⋂
F (T2).

It implies that {xnk
} convergence strongly to x∗. Theorem 3.1 implies that {xn} strongly convergence to x∗ com-

mon fixed point T1 and T2.
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