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ABSTRACT

This paper reports on a study of the use of super-efficiency approach in data envelopment

analysis (DEA) sensitivity analysis for the case of “exogenously fixed” factors. This issue is im-

portant since in any realistic situation there may exist exogenously fixed or non-discretionary

factors that are beyond the control of aDMU’smanagement, which also need to be considered.

When aDMUunder evaluation is not included in the reference set of the original DEAmodels,

the resulting DEAmodels are called super-efficiency DEAmodels. In this paper, by means of

themodifiedBanker andMorey’s (BMhereafter)model [2], inwhich the testDMU is excluded

from the reference set, we show that super-efficiency score can be decomposed into two data

perturbation components of a particular test frontier decision making unit (DMU) and the

remaining DMUs. As a result, we are able to determine what perturbations of discretionary

data can be tolerated before frontier DMUs become nonfrontier.

1 Introduction
Data envelopment analysis is a non-parametricmathematical programming technique formeasuring and evaluat-
ing the relative efficiencies of a set of entities, called decisionmaking units (DMUs), with common inputs and out-
puts. Examples include agricultural productivity, banks, business firms, courts, hospitals, libraries, schools, uni-
versities, and others, including as well as the performance of countries, regions, etc. [3]. Being a non-parametric
technique, DEA does not require a structural form for the production frontier and can handle multiple outputs
quite easily. These attractive properties of the DEA approach have enabled its widespread use across many dis-
ciplines. See Seiford [13] and Emrouznejad et al. [8] for a survey of the literature on the development of DEA
methodology since its introduction by Charnes et al. [4]. Standard data envelopment analysis implicitly assumes
that all inputs and outputs are discretionary, i.e., can be controlled by themanagement of each DMU and varied at
its discretion. However, there may exist exogenously fixed (or non-discretionary) factors that are beyond the con-
trol of a DMU’s management, which also need to be considered [10,12,15]. On the other hand, data envelopment
analysis identifies an empirical efficient frontier of a set of peer decision making units. In data envelopment anal-
ysis, extreme efficient units are of primary importance as they define the efficient frontier. The efficient frontier is
characterized by the DMUs with an efficiency score of unity. An important problem in the DEA literature is that
of ranking those DMUs called efficient by the DEA model, all of which have a score of unity. The super efficiency
model involves executing the standard DEA models, but under the assumption that the DMU being evaluated is
excluded from the reference set [1,5,6,14,16,18]. For the DEA sensitivity analysis based on the inverse of basis
matrix, the reader is referred to [7,11]. Specifically, the super efficiency score in, say, the input-oriented model
provides a measure of the proportional increase in the inputs for a DMU that could take place without destroying
the “efficient” status of that DMU relative to the frontier created by the remaining DMUs.

∗Corresponding Author’s E-mail: mhrbesmaeili@gmail.com(M. Esmaeili) © 2022. All rights reserved. Hosting by IA University of Arak Press



Super-efficiency and sensitivity analysis in DEA for the case of exogenously fixed inputs M. Esmaeili

The current research dedicated to apply the super-efficiency approach in data envelopment analysis (DEA)
sensitivity analyses, when some inputs are non-discretionary. For this task, we first introduce the BM model
[2], then by means of the modified BM model, in which the test DMU is excluded from the reference set, we
determine what perturbations of data can be tolerated before frontier DMUs become nonfrontier. The sensitivity
analysis approach developed in this paper can be applied to all DMUs on the entire frontier. This study attempts
to generalize the results in [9] to a situation where variable percentage data changes are assumed for a test DMU
and for the remaining DMUs. We consider the same worst-case analysis as in [9]. It is shown that a particular
super-efficiency score can be decomposed into two data perturbation components of a particular test DMU and
the remaining DMUs. Necessary and sufficient conditions for preserving a DMU’s BM-efficiency classification are
developed when variable percentage data changes are applied to all DMUs. Note that in this paper we assume that
the factors are either fully discretionary or fully non-discretionary. Also we assume that none of the models have
non-discretionary outputs.
The layout of this article is as follows. In Section 2, basic definitions, that will be used in the succeeding sections,
are given. In Section 3 we will discuss super-efficiency and sensitivity analysis in the BM model. Section 4 is
the main part of this study where we will discuss simultaneous changes in all the discretionary data. Section 5
provides a numerical example from DEA, where some of the ideas of the paper are illustrated. The last section
provides a summary and some future research directions.

2 Definitions
The following standard notations and definitions are used in the paper. Consider a set of n DMUs, where each
DMUj (j = 1, 2, . . . , n) usesmdifferent discretionary inputs, xij , (i = 1, 2, . . . ,m), andpdifferent non-discretionary
inputs zij , (i = 1, 2, . . . , p), to produce s different outputs, yrj , (r = 1, 2, . . . , s). We assume that the data set are
positive.

Assuming constant returns to scale, the BM model to evaluate the efficiency of any DMU – in the input-oriented
case – is given by the following modification of the CCR model:

BMCCR

θCCR∗
ND = min θ (1)

s.t.
n∑

j=1

xijλj ≤ θxio, i ∈ D

n∑
j=1

zijλj ≤ zio i ∈ ND

n∑
j=1

yrjλj ≥ yro, r = 1, 2, . . . , s

λj ≥ 0, j = 1, 2, . . . , n.

Here the symbolsD andND refer toDiscretionary andNon-Discretionary, respectively. Note that the variable θ
is not applied to the non-discretionary input constraints, because these values are exogenously fixed and it is there-
fore not possible to vary them at the discretion of management. This is recognized by entering all zio, i ∈ ND,
at their fixed (observed) values. If we add an additional convex constraint of

∑n
j=1 λj = 1 to (1), we obtain an

input-oriented VRSmodel. Based on the optimal solution of Model (1), we define a DMU as being BMCCR-efficient
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as follows:

Definition 1. (BMCCR-efficiency) A DMUo is BMCCR-efficient if and only if it satisfies the following two condi-
tions:
i. θCCR∗

ND =1,
ii. In all alternative optimal solutions, all discretionary slacks are zero.
Furthermore, if in all alternative optima, all non-discretionary slacks are zero, then DMUo is called Full-BMCCR-
efficient.

Definition 2.(Extreme BMCCR-efficient) A BMCCR-efficient DMUo is extreme BMCCR-efficient if and only if it
has a unique optimal solution in Model (1).

3 Super-efficiency and sensitivity analysis in the BMmodel
As in Charnes et al. [5], the DMUs can be partitioned into two groups: frontier DMUs and non-frontier DMUs.
Furthermore, by Definition 1 the frontier DMUs consist of DMUs in set E (extreme Full-BMCCR-efficient), set
E′ (Full-BMCCR-efficient but not an extreme point), set E′′ (BMCCR-efficient but with non-zero non-discretionary
slacks) and set F (weakly BMCCR-efficient or frontier point but with non-zero discretionary slacks).

We may use a super-efficiency non-discretionary DEA model to identify the classification of DMUo. That is,

BMSuper

θsup∗ND = min θ (2)

s.t.
n∑

j=1,j ̸=o

λjxij ≤ θxio, i ∈ D

n∑
j=1,j ̸=o

λjzij ≤ zio, i ∈ ND

n∑
j=1,j ̸=o

λjyrj ≥ yro, r = 1, 2, . . . , s

λj ≥ 0, j = 1, 2, . . . , n; j ̸= o

Suppose θsup∗ND is the optimal value to (2). Based on Hosseinzadeh et al. ([9], Theorem 4), we have:

i. θsup∗ND > 1 or the [BMSuper]model is infeasible, if and only if DMUo ∈ E,
ii. θsup∗ND = 1 if and only if DMUo ∈ E′ ∪ E′′ ∪ F , and
iii. θsup∗ND < 1 if and only if DMUo is a non-frontier point or DMUo belongs to the inefficient frontier.

Example 1. Consider a system with 6 units, each unit with two inputs and one output, where the first input is
non-controllable. Table 1 exhibits the data and displays the BM-efficiency and the BM-super-efficiency of each
unit.
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Table 1: Results of the BMmodel for super efficiency.
DMU Input 1 Input 2 Output θCCR∗

ND s−∗
1 s−∗

2 s+∗ θsup∗ND
A 2 3 1 1 0 0 0 1.5
B 4 1 1 1 0 0 0 1.4
C 6 1 1 1 2 0 0 1
D 6 3 1 0.3333 2 0 0 0.3333
E 2 4.5 1 0.6667 0 0 0 0.6667
F 3.5 1.5 1 1 0 0 0 1

Input 1

Input 2

Figure1: The diagram for Example 1.

▲

▶
O 1 2 3 4 5 6 7

1

2

3

4

5

sD
sE

s
C

s
B

s
A

s
F

@
@

@
@

The results presented in Table 1 indicate that A and B belong to set E, F belongs to set E′, C belongs to set E′′,
andD, E are BMCCR-inefficient.

4 Super-efficiency and non-discretionary data
The extreme DMUs in DEA are of primary importance as they define the DEA frontier. In this section we will dis-
cuss the stability of efficiency classification for such units. We consider the general case. That is, we are interested
in whether DMUo will still be a frontier point after data perturbations in all the DMUs. Our discussion is based
on a worst-case scenario in which the BMCCR-efficiency of DMUo declines and the BMCCR-efficiencies of all other
DMUj , j ̸= o, improve.
Let DI ⊆ D and O denote, respectively, the discretionary input and output subsets in which we are interested.
That is, we consider the data changes in set DI and set O. Then the simultaneous data perturbations in discre-
tionary inputs/outputs of DMUo and all DMUj , j ̸= o, can be written as percentage data perturbation (variation):

for DMUo forDMUj(j ̸= o):

x̂io = αixio, αi ≥ 1, i ∈ DI

x̂io = xio, i /∈ DI

ẑio = zio, i ∈ ND

ŷro = βryro, 0 < βr ≤ 1, r ∈ O

ŷro = yro, r /∈ O



x̂ij =
xij
α̃i

, α̃i ≥ 1, i ∈ DI

x̂ij = xij , i /∈ DI

ẑij = zij , i ∈ ND
ŷrj =

yrj

β̃r
, 0 < β̃r ≤ 1, r ∈ O

ŷrj = yrj , r /∈ O

where ( .̂ ) represents adjusted data. Note that the data perturbations represented by αi and α̃i (or βr and β̃r) can
be different for each i ∈ DI (or r ∈ O).
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Now we modify Model (2) to the following super-efficiency DEA model, when the same percentage changes of
DMUo and DMUj , j ̸= o, are assumed:

θI
∗

ND = min θIND (3)

s.t.
n∑

j=1,j ̸=o

λjxij ≤ θINDxio, i ∈ DI

n∑
j=1,j ̸=o

λjxij ≤ xio, i /∈ DI

n∑
j=1,j ̸=o

λjzij ≤ zio, i ∈ ND

n∑
j=1,j ̸=o

λjyrj ≥ yro, r = 1, 2, . . . , s

λj ≥ 0, j = 1, 2, . . . , n; j ̸= o

By the optimal values of Models (2) and (3), we have:

Lemma 1. If Model (3) is feasible and θ
Sup∗
ND > 1, then θI

∗
ND > 1.

Proof. See Hosseinzadeh et al. [9] for a proof. ■

Theorem 1. LetModel (3) be feasible and θSup∗
ND > 1. If 1 ≤ αiα̃i < θI

∗
ND, i ∈ DI, then DMUo remains as an extreme

BMCCR-efficient point. Furthermore, if equality holds for αiα̃i = θI
∗

ND, that is, 1 ≤ αiα̃i ≤ θI
∗

ND, then DMUo remains
on the frontier, where θI

∗
ND is the optimal value to (3). In other words, any values of αi and α̃i within this range of

variation for both xio and xij will not affect the BMCCR-efficiency status of DMUo.

Proof. By Lemma 1, we have θI
∗

ND > 1. Now suppose 1 ≤ αiα̃i < θI
∗

ND, but DMUô is not extreme BMCCR-
efficient, when x̂io = αixio, x̂ij =

xij
α̃i

; i ∈ DI. Then Model (2) for evaluating DMUô has an optimal solution

(θ̂Sup∗
ND , λ̂∗

j ; j = 1, 2, . . . , n, j ̸= o) such that θ̂Sup∗
ND ≤ 1. In the optimal solution, the constraints of Model (2) for

evaluating DMUô are as follows

n∑
j=1,j ̸=o

λ̂∗
j x̂ij ≤ θ̂

Sup∗
ND x̂io, i ∈ D

n∑
j=1,j ̸=o

λ̂∗
j ẑij ≤ ẑio, i ∈ ND

n∑
j=1,j ̸=o

λ̂∗
j ŷrj ≥ ŷro, r = 1, 2, . . . , s

Or equivalently
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n∑
j=1,j ̸=o

λ̂∗
jxij ≤ θ̂

Sup∗
ND αiα̃ixio ≤ θ̂

Sup∗
ND αkα̃kxio, i ∈ DI

n∑
j=1,j ̸=o

λ̂∗
jxij ≤ θ̂

Sup∗
ND xio ≤ xio, i /∈ DI

n∑
j=1,j ̸=o

λ̂∗
jzij ≤ zio, i ∈ ND

n∑
j=1,j ̸=o

λ̂∗
jyrj ≥ yro, r = 1, 2, . . . , s,

where αkα̃k = max
i∈DI

{αiα̃i}.

This means that (αkα̃kθ̂
Sup∗
ND , λ̂∗

j ; j = 1, 2, . . . , n, j ̸= o) is feasible to (3) for evaluating DMUo.
Moreover αkα̃kθ̂

Sup∗
ND < θI

∗
NDθ̂

Sup∗
ND ≤ θI

∗
ND, violating the optimality of θI

∗
ND.

Next suppose 1 ≤ αiα̃i ≤ θI
∗

ND, but DMUô is not a frontier point, when x̂io = αixio and x̂ij =
xij
α̃i

; i ∈ DI. Then

Model (2) for evaluatingDMUô has an optimal solution (θ̂
Sup∗
ND , λ̂∗

j ; j = 1, 2, . . . , n, j ̸= o) such that θ̂Sup∗
ND < 1.As can

be seen above, (αkα̃kθ̂
Sup∗
ND , λ̂∗

j ; j = 1, 2, . . . , n, j ̸= o) is a feasible solution to (3). Nowwe getαkα̃kθ̂
Sup∗
ND ≤ θI

∗
NDθ̂

Sup∗
ND <

θI
∗

ND, which is in contradiction to θI
∗

ND being the optimal value ofModel (3). ■
In fact, Theorem 1 gives sufficient conditions for preserving BMCCR-efficiency. The following theorem implies nec-
essary conditions for preserving BMCCR-efficiency of an extreme BMCCR-efficient DMUo.
Theorem 2. Suppose Model (3) is feasible and θ

Sup∗
ND > 1. If αiα̃i > θI

∗
ND for i ∈ DI, then DMUô is not extreme

BMCCR-efficient, where θI
∗

ND is the optimal value of Model (3). (DMUô represents DMUo after the perturbations).

Proof. By contradiction we assume that DMUô is an extreme-BMCCR-efficient point after the changes in the dis-
cretionary inputs of all units with αiα̃i > θI

∗
ND, i ∈ DI. Then θ̂

Sup∗
ND > 1, where θ̂Sup∗

ND is the optimal value to (2) for
evaluating DMUô. Now suppose (θ̂I

∗
ND, λ̂

∗
j ; j = 1, 2, . . . , n, j ̸= o) is an optimal solution to (3) for evaluating DMUô.

Then, by Lemma 1 we have θ̂I
∗

ND > 1. Also, in the optimal solution we have

n∑
j=1,j ̸=o

λ̂∗
j x̂ij ≤ θ̂I

∗

NDx̂io, i ∈ DI

n∑
j=1,j ̸=o

λ̂∗
jxij ≤ xio, i /∈ DI

n∑
j=1,j ̸=o

λ̂∗
jzij ≤ zio, i ∈ ND

n∑
j=1,j ̸=o

λ̂∗
jyrj ≥ yro, r = 1, 2, . . . , s

Or equivalently
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n∑
j=1,j ̸=o

λ̂∗
jxij ≤ αiα̃iθ̂

I∗
NDxio ≤ αkα̃kθ̂

I∗
NDxio, i ∈ DI

n∑
j=1,j ̸=o

λ̂∗
jxij ≤ xio, i /∈ DI

n∑
j=1,j ̸=o

λ̂∗
jzij ≤ zio, i ∈ ND

n∑
j=1,j ̸=o

λ̂∗
jyrj ≥ yro, r = 1, 2, . . . , s

It can be easily verified that αkα̃kθ̂
I∗
ND = θI

∗
ND, where αkα̃k = max

i∈DI
{αiα̃i}.

Thus, θ̂I
∗

ND =
θI

∗
ND

αkα̃k
< 1, violating θ̂I

∗
ND > 1. ■

The data perturbation can be expressed in a quadratic function, αiα̃i = θI
∗

ND. This function gives an upper bound for
discretionary input changes. Any data variations fall below this function and above lines αi ≥ 1 and α̃i ≥ 1, i ∈ DI

will preserve the frontier status of DMUo.
The above developments consider the input changes in all DMUs. Next, we consider the following modified DEA
measure for simultaneous variations of inputs and outputs.
Ω∗

ND = min ΩND (4)

s.t.
n∑

j=1,j ̸=o

µjxij ≤ (1 + ΩND)xio, i ∈ DI

n∑
j=1,j ̸=o

µjxij ≤ xio, i /∈ DI

n∑
j=1,j ̸=o

µjzij ≤ zio, i ∈ ND

n∑
j=1,j ̸=o

µjyrj ≥ (1− ΩND)yro, r ∈ O

n∑
j=1,j ̸=o

µjyrj ≥ yro, r /∈ O

µj ≥ 0, j = 1, 2, . . . , n; j ̸= o

Note that if DMUo is a frontier point, then ΩND ≥ 0.

Theorem 3. Let DMUo be a frontier point, and let Ω∗
ND be the optimal value to (4). If 1 ≤ αiα̃i ≤ 1 + Ω∗

ND, i ∈ DI,
and 1− Ω∗

ND ≤ βrβ̃r ≤ 1, r ∈ O, then DMUo remains as a frontier point .

Proof. By contradiction we assume that DMUô is not a frontier point. Suppose that Ω̂∗
ND is the optimal value

to (4) for evaluatingDMUô , then we have Ω̂∗
ND < 0.

Consider the constraints of Model (4) in the optimal solution as follows:
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n∑
j=1,j ̸=o

µ̂∗
j x̂ij ≤ (1 + Ω̂∗

ND)x̂io, i ∈ DI

n∑
j=1,j ̸=o

µ̂∗
j x̂ij ≤ x̂io, i /∈ DI

n∑
j=1,j ̸=o

µ̂∗
j ẑij ≤ ẑio, i ∈ ND

n∑
j=1,j ̸=o

µ̂∗
j ŷrj ≥ (1− Ω̂∗

ND)ŷro, r ∈ O

n∑
j=1,j ̸=o

µ̂∗
j ŷrj ≥ ŷro, r /∈ O

Or equivalently

n∑
j=1,j ̸=o

µ̂∗
jxij ≤ αiα̃i(1 + Ω̂∗

ND)xio ≤ [1 + (αkα̃k(1 + Ω̂∗
ND)− 1)]xio, i ∈ DI

n∑
j=1,j ̸=o

µ̂∗
jxij ≤ xio, i /∈ DI

n∑
j=1,j ̸=o

µ̂∗
jzij ≤ zio, i ∈ ND

n∑
j=1,j ̸=o

µ̂∗
jyrj ≥ βrβ̃r(1− Ω̂∗

ND)yro ≥ [1− (1− βtβ̃t(1− Ω̂∗
ND))]yro, r ∈ O

n∑
j=1,j ̸=o

µ̂∗
jyrj ≥ yro, r /∈ O

where αkα̃k = max
i∈DI

{αiα̃i} and βtβ̃t = min
r∈O

{βrβ̃r}.

Set Ω̃= max {(αkα̃k(1 + Ω̂∗
ND)− 1), (1− βtβ̃t(1− Ω̂∗

ND))}.
Obviously (Ω̃, µ̂∗

j ; j = 1, 2, . . . , n, j ̸= o) is a feasible solution of (4) for DMUo. Therefore, Ω∗
ND ≤ Ω̃. Now consider

the following two cases:

Case 1: If Ω̃ = (αkα̃k(1 + Ω̂∗
ND) − 1), then from the assumptions we get 1 ≤ αkα̃k ≤ 1 + Ω∗

ND. Since Ω̂∗
ND < 0,

we have 0 < 1 + Ω̂∗
ND < 1. Thus, (1 + Ω̂∗

ND)αkα̃k ≤ (1 + Ω̂∗
ND)(1 + Ω∗

ND) < 1 + Ω∗
ND.

This means that Ω̃ = (1 + Ω̂∗
ND)αkα̃k − 1 < Ω∗

ND, which is a contradiction.

Case 2: If Ω̃ = (1−βtβ̃t(1−Ω̂∗
ND)), then from the assumptions we have 1− Ω∗

ND ≤ βtβ̃t ≤ 1. Since Ω̂∗
ND < 0, we have

(1− Ω̂∗
ND) > 1. So, (1− Ω̂∗

ND)βtβ̃t ≥ (1− Ω̂∗
ND)(1− Ω∗

ND) > 1− Ω∗
ND. This means that Ω̃ = (1− βtβ̃t(1− Ω̂∗

ND)) < Ω∗
ND,

which is in conflict with Ω∗
ND ≤ Ω̃. ■

Theorem 4. Suppose DMUo is an extreme BMCCR-efficient point, and Ω∗
ND is the optimal value to (4). If αiα̃i >

1 + Ω∗
ND, i ∈ DI and 1− Ω∗

ND > βrβ̃r, r ∈ O, then DMUo will not remain extreme-BMCCR-efficient.
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Proof. This is similar to the proof of Theorem2onlywith someminormodifications and, hence, omitted. ■

In fact, Theorem 3 gives sufficient conditions for preserving BMCCR-efficiency, and Theorem 4 implies necessary
conditions for preserving BMCCR-efficiency of an extreme-BMCCR-efficient DMUo.

5 An application
To further clarify, we apply the above approach to the data set obtained from 16 hospitals: H1 to H16 (see Table
2). The data is taken from Tone [17]. Each hospital uses four inputs to produce two outputs. Table 2 shows the
types of these inputs and outputs.

Table 2: The types of inputs and outputs for hospitals

Input
Doctor Total hours worked by doctors in the survey period
Nurse Total hours worked by nurses
Tech. Worker Total hours worked by technical workers
Office Total hours worked by office staff

Output
Outpatient Total medical insurance points for outpatients
Inpatient Total medical insurance points for inpatients

Table 3: Hospitals
Input Output

Hospital Doctor Nurse Tech. Worker Office Outpatient Inpatient
H1 995 6205 1375 2629 4127 1678
H2 917 5898 1379 2047 3721 1277
H3 3178 10049 3615 3511 2706 2051
H4 813 5833 1124 1730 2176 1538
H5 1236 8639 2486 4990 5220 20426
H6 1146 7610 1600 3589 3517 1856
H7 705 5600 1557 3623 2352 20606
H8 2871 11524 2880 2452 1755 1664
H9 1089 8998 1730 2823 4412 2334
H10 2032 9383 2421 4454 5386 2080
H11 1414 10468 2140 3649 5735 2691
H12 1967 11260 2759 3178 6079 2804
H13 1851 9880 2335 4570 5893 2495
H14 3100 15649 5487 2940 5248 3692
H15 5016 18010 4008 3567 7800 4582
H16 1924 12682 2490 2975 6040 3396

In evaluating the efficiency of a hospital, the total hoursworked by doctors in the survey period is an important (in-
put) factor. But,“Doctor” is non-controllable and so we apply the BMmodel in order to evaluate the BM-efficiency
and super-BMCCR-efficieny of the hospitals. The results obtained by applying [BMCCR], [BMSuper], and Model (3)
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are given in Table 4. As can be seen, 10 of the hospitals are BMCCR-efficient (see column 2 in Table 4). The 3rd
Column of Table 4 reports the optimal value to Model (2), θsup∗ND . It can be seen that Model (2) is infeasible when
hospitalsH5,H7, andH9 are under evaluation.
Table 4: BM-efficiency and BM-super-efficiency scores.

Stability Regions
Hospital θCCR∗

ND θsup∗ND θ
I={2,4}∗

ND i ∈ DI = {2, 4}
H1 1.0000 1.2911 Infeasible
H2 1.0000 1.1399 1.1399 1 ≤ αiα̃i < 1.3399

H3 0.6904 0.6904 0.6904
H4 1.0000 1.0076 Infeasible
H5 1.0000 Infeasible Infeasible
H6 0.8809 0.8809 0.8126
H7 1.0000 Infeasible Infeasible
H8 0.5558 0.5558 0.5558
H9 1.0000 infeasible Infeasible
H10 0.8630 0.8630 0.8630
H11 0.9898 0.9898 0.9898
H12 1.0000 1.0006 1.0006 1 ≤ αiα̃i < 1.0006

H13 0.9155 0.9155 0.9155
H14 1.0000 1.0368 1.0368 1 ≤ αiα̃i < 1.0368

H15 1.0000 1.1034 1.1061 1 ≤ αiα̃i < 1.1061

H16 1.0000 1.2622 Infeasible

Now, we apply our sensitivity analysis to some hospitals. Assume that H2 is under evaluation. From column 4
in Table 4, if DI = {2, 4} then θI

∗
ND = 1.1339. Using Theorem 2, if 1 ≤ αiα̃i < 1.1339, i ∈ {2, 4}, thenH2 remains

as an extreme BMCCR-efficient point when the discretionary inputs i ∈ {2, 4} of H2 change from xDI
2 to αixDI

2 and

the discretionary inputs i ∈ {2, 4} of other units change from xDI
j to

xDI
j

α̃i
. Now consider H5 as the test DMU. It

can be seen that both Models (2) and (3) are infeasible whenH5 is under evaluation. This means that any values
αi ≥ 1 and α̃i ≥ 1 of variation will not affect the BM-efficiency status of H5 when Models (2) and (3) are applied,
respectively.

6 Conclusions
The current paper develops a new super-efficiency DEA sensitivity analysis approach when some data are non-
controllable. This development is important since in any realistic situation there may exist “exogenously fixed” or
non-discretionary factors that are beyond the control of a DMU’s management, which also need to be considered.
The new sensitivity analysis approach simultaneously considers the data perturbations in all DMUs. The data
perturbation in the test DMU can be different from that in the remaining DMUs, where the BMCCR-efficiency of
the test DMU is deteriorating while the BMCCR-efficiencies of other DMUs are improving. Necessary and sufficient
conditions for preserving a DMU’s BMCCR-efficiency classification are developed when various data changes are
applied to all DMUs. Because certain super-efficiency DEA models may be infeasible for some extreme-BMCCR-
efficient DMUs, some direction for future research includes the study of super-efficiency and DEA sensitivity
analysis for such DMUs with non-controllable factors.
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