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ABSTRACT

In this paper, we want to solve the Fredholm integral equations of the second type using the

numerical finite differences method. In this method, we use the forward, central and back-

ward operator’s to solve integral equations, and finally we compare these methods with the

help of numerical examples.

1 Introduction
There has been a growing interest in the Fredholm integral equations in recent years. The use of the Fredholm in-
tegral equation has increased inmany physical applications, e.g. potential theory and Dirichlet problems, electro-
static,mathematical problems of radiative equilibrium, the particle transport problems of astrophysics and reactor
theory, and radiative heat problems. Some methods for solving Fredholm integral equation such as quadrature
methods, single-term Walsh series method [11], Lagrange interpolation [10] and mixed interpolation collocation
methods [4], Adomian’s decomposition method [13, 5], etc have been developed. Recently, Mechanical algorithm
method [12] for solving Fredholm integral equation had been developed. For further reading, you can read ref-
erence [9, 2, 7]. In this work, a new method is proposed to estimate the solution of a Fredholm integral equation
of the second kind by using finite differences method. Linear and nonlinear Fredholm integral equations of the
second kind is defined as follow,

F (s) = f(s) + λ

∫ b

a
k(s, t)F (t)dt, a ≤ s, t ≤ b (1.1)

F (s) = f(s) + λ

∫ b

a
k(s, t)G(F (t))dt, a ≤ s, t ≤ b (1.2)

where k(s, t) is an arbitrary crisp kernel function over the square a ≤ s, t ≤ b, λ ≥ 0 and G(F(t)) is nonlinear
function of F(t).
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In section 2, we briefly present the necessary preliminaries. In sections 3, we propose a numerical method.
Some numerical examples are given in section 4. Conclusion is given in section 5.

2 Preliminaries
Definition 2.1. Newton’s divided differences:
The interpolating polynomial Fn(x), at n+ 1 distinct points x0, x1, . . . , xn can be written as,

Fn(x) = F [x0] +

n−1∑
j=0

hj(x)F [x0, x1, . . . , xj+1] (2.1)

where,

hj(x) =

j∏
i=0

(x− xi),

and,

F [x0] = f(x0),

F [x0, x1] =
f(x1)− f(x0)

x1 − x0
,

...

F [x0, . . . , xn] =
f [x0, x1, . . . , xn]− f([x0, x1, . . . , xn−1]

xn − x0

Definition 2.2. Finite Differences Operators:
Let the tabular points x0, x1, . . . , xn be equally spaced, that is, xi = x0 + ih, i = 0, 1, . . . , n. The forward ∆,
backward∇ and central differences δ operators are defined as follows:

∆f(xi) = f(xi + h)− f(xi)

∇f(xi) = f(xi)− f(xi − h)

δf(xi) = f(xi +
h

2
)− f(xi −

h

2
).

The mentioned nth order differences operations are as follows [8],

∆nf(xi) =

n∑
i=0

(−1)k
(
n

k

)
fi+n−k, (2.2)

∇nf(xi) =

n∑
k=0

(−1)k
(
n

k

)
fi−k, (2.3)

δnf(xi) =

n∑
k=0

(−1)k
(
n

k

)
f
i+
n

2
−k

, (2.4)

where
fi = f(xi)
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and (
n

k

)
=

n!

k!(n− k)!
.

The Newton’s divided differences in terms of forward, backward and central differences are as follows, which
can be proved by induction [8].

F [x0, x1, . . . , xn] =
1

n!hn
∆nf0, (2.5)

F [x0, x1, . . . , xn] =
1

n!hn
∇nfn, (2.6)

and

F [x0, x1, . . . , x2m] =
1

(2m)!h2m
δ2mfm, (2.7)

F [x0, x1, . . . , x2m+1] =
1

(2m+ 1)!h2m+1
δ2m+1fm+1. (2.8)

3 Solving the linear Fredholm integral equations of the second kind by
using Finite Differences Method

In this section, we propose a method for solving the linear and nonlinear Fredholm integral equations of the
second kind by using Finite Differences Method. In order to, we first calculate the approximate solutions of F (s),
k(s, t)F (t) by using Finite differences method as follows:

F (s) ≃ Fn(s) = F (s0) +

n−1∑
j=0

hj(s)F [s0, ..., sj+1] (3.1)

and

k(s, t)F (t) ≃ k(s, t)Fn(t) = k(s, s0)F (s0) +
n−1∑
j=0

k(s, sj+1)F [s0, ..., sj+1]hj(t) (3.2)

where, sj , 0 ≤ j ≤ n, are distinct node points. By integration of Eq. (3.2) from a to b we have,

∫ b

a
k(s, t)Fn(t)dt =

∫ b

a
k(s, s0)F (s0)dt+

n−1∑
j=0

k(s, sj+1)F [s0, ..., sj+1]Bj (3.3)

where,

Bj =

∫ b

a
hj(t)dt, hj(t) =

j∏
i=0

(t− ti).

At last, the (n+1)×(n+1) systemof linear equation is obtained. By solving this systemof equations,F [s0], ..., F [s0, ..., sn]

are given. We also obtain Fn(s) which is the interpolation polynomial for F (s). Then, the iterative procedure

Fn,0(s) = Fn(s),
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Fn,k+1(s) = f(s) + λ

∫ b

a
k(s, t)Fn,k(t)dt, (3.4)

converges to the solution of Eq.(1.1).
Nonlinear Fredholm integral equations is solved such as the linear Fredholm integral equations by the pro-

posed method. But in solving nonlinear equations, the last system of nonlinear equations (14) is replaced ny
nonlinear system and can be solved by Newton’s method or other methods. In the sequel, the distance between
approximate and exact solutions is considered as follows:

D(Fexact(s), Fn,k(s)) = |Fexact(s)− Fn,k(s)|, (3.5)

where Fn,k is the approximation of F .
In next subsections, we propose four methods for approach F . In order to, consider a uniform partition of the

closed interval [a, b] given by sia+H , i = 1, . . . , n of step lengthH =
b− a

n
, n ∈ N , then we get

3.1 Numerical solution by Gregory-Newton’s forward difference interpolation

By applying, (2.5) in (3.1), (3.3) and by replacing them in (1.1) we get,

n∑
j=0

hj(ui)∆
jF (u0) = f(si) +

n∑
j=0

∆jF (u0)λk(si, sj)Bj i = 0(1)n, (3.6)

where

hj(ui) =

(
ui
j

)
, u =

s− s0
h

, ui =
si − s0

h
, i ≥ 0

and

Bj =

∫ b

a
hj(ui)du.

3.2 Numerical solution by Gregory-Newton’s backward difference interpolation

By applying, (2.5) in (3.1), (3.3) and by replacing them in (1) we get,

n∑
j=0

hj(ui)∇jF (un) = f(si) +
n∑

j=0

∇jF (un)λk(si, sj)Bi i = 0(1)n, (3.7)

where,

hj(ui) = (−1)j

(
−ui
j

)
, u =

s− sn
h

, ui =
si − sn

h
= (i− n)

and

Bj =

∫ b

a
hj(ui)du.

3.3 Numerical solution by Stirling’s interpolation

For n even, we assume that the node points are s−p, s−(p−1), ..., s−1, s0, s1, .

..,sp−1, sp and by applying, (2.7) in (3.1), (3.3) and by replacing them in (1.1) we get,
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F (u0) +

p−1∑
j=0

hj(ui)δ
2jF (u0) +

p−1∑
j=1

ĥj(ui)
1

2
[δ2j−1F 1

2
+ δ2j−1F− 1

2
] =

f(si) + λk(si, s0)B0F (u0) +

p−1∑
j=0

δ2jF (u0)λk(si, sj)Bj

+

p−1∑
j=1

1

2
[δ2j−1F 1

2
+ δ2j−1F− 1

2
]λk(si, s0)B̂j i = 0(1)n, (3.8)

where

hj(ui) =
1

2(j + 1)!

j∏
k=0

(u2i − k2), ui =
si − s0

h
,

and

ĥj(ui) =
1

ui(2j + 1)!

j∏
k=0

(u2i − k2), j = 0, 1, ..., p− 1

and
Bj =

∫ b
a hj(ui)du and B̂j =

∫ b
a ĥj(ui)du, u = s−s0

h j = 0, 1, 2, ..., p− 1

3.4 Numerical solution by the Bessel’s interpolation

For n odd, we take the node points as s−p, s−(p−1), ..., s−1, s0, s1, ..., sp−1, sp and by applying, (2.7) in (3.1), (3.3) by
replacing them in (1.1) we get,

1

2
[F (v0) + F (v1)] +

p∑
j=0

hj(vi)
1

2
[δ2jF (v0) + δ2jF (v1)]

+

p∑
j=0

ĥj(vi)δ
2j+1F (

v0 + v1
2

) = f(si) + λk(si, s0)B0
1

2
[F (v0) + F (vi)]

+

p∑
j=0

1

2
[δ2jF (v0) + δ2jF (v1)]λk(si, sj)Bj + λk(si, s0)B̂0δF (

vi + v0
2

)

+

p∑
j=0

δ2j+1F (
v1 + v0

2
)λk(si, sj)B̂j i = 0(1)n, (3.9)

where

hj(vi) =
1

(2j)!

j∏
k=1

(v2i − (2k − 1)2/4) , ĥj(vi) =
vi

(2j + 1)!

j∏
k=1

(v2i − (2k − 1)2/4),

v = u− 1

2
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Bj =

∫ b

a
hj(vi)dv , B̂j =

∫ b

a
ĥj(vi)dv j = 1, 2, ..., p, i = 0, 1, 2, ..., n.

4 The Numerical example
Example 1. Consider the following Fredholm integral equation

F (s) = 2sin(
s

2
) +

∫ 2π

0
0.1sin(t)sin(

s

2
)F (t)dt,

The exact solution in this case is given
F (s) = 2sin(

s

2
).

Table 1.1: Comparison between the exact solution and the approximate solutions in n = 3 and 1, 3, 5 iterations

s D(Fexact, F3,1) D(Fexact, F3,3 ) D(Fexact, F3,5)

π/6 1.734940555×10−1 2.586908441×10−10 2.586908441×10−10

Forward π/4 2.565277841×10−1 3.824994973×10−10 3.824994973×10−10

π/3 3.351766941×10−1 4.997701026×10−10 4.997701026×10−10

π − π/6 2.375431808×10−1 9.657538600×10−10 9.657538600×10−10

Central π 2.459665090×10−1 9.999996829×10−10 9.999996829×10−10

π + π/6 2.376445203×10−1 9.661658649×10−10 9.661658649×10−10

2π − π/6 1.105189430×10−1 2.602289546×10−10 2.602289546×10−10

Backward 2π − π/4 1.630718599×10−1 3.839705529×10−10 3.839705529×1010

2π − π/3 2.128373964×10−1 5.011489586×10−10 5.011489586×10−10

Example 2. [5] Consider the following Fredholm integral equation .

F (s) = e3s − 1

9
(2e3 + 1)s+

∫ 1

0
stF (t)dt, 0 ≤ x ≤ 1

with the exact solution of
F (s) = e3s.

Table 2.1: Comparison between the exact solution and the approximate solutions in n = 3 and 5, 10, 15, 20 iterations

s D(Fexact, F3,5) D(Fexact, F3,10 ) D(Fexact, F3,15) D(Fexact, F3,20)
Forward 0.25 1.0100×10−2 4.1717×10−5 1.7200×10−6 1.000×10−9

Central 0.50 6.8400×10−2 2.8155×10−4 1.1595×10−6 5.500×10−9

Backward 0.75 1.0260×10−1 4.2233×10−4 1.7393×10−6 5.500×10−9

Table 2.2: Comparison between the exact solution and the approximate solutions in n = 5 and 5, 10, 15, 20 iterations

s D(Fexact, F5,5) D(Fexact, F5,10 ) D(Fexact, F5,15) D(Fexact, F5,20)
Forward 0.25 2.3427×10−4 9.6450×10−7 4.2500×10−9 5.000×10−10

Central 0.50 3.46×10−2 1.4232×10−4 5.865×10−7 3.0000×10−9

Backward 0.75 5.94×10−2 2.4434×10−4 1.0065×10−6 5.250×10−9

Example 3. Consider the following nonlinear Fredholm integral equation

F (s) = cos(s)− π

8
+

1

2

∫ π
2

0
F 2(t)dt
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with the exact solution of
F (s) = cos(s)

Table 3.1: Comparison between the exact solution and the approximate solutions in n = 2 and 5, 10, 15, 20 iterations

s D(Fexact, F2,5) D(Fexact, F2,10 ) D(Fexact, F2,15) D(Fexact, F2,20)
Forward π/8 0.0816610442 0.0641778920 0.0507725599 0.0420680048
Central π/4 0.1486126275 0.0903591924 0.0655588336 0.0516225578
Backward 3π/8 0.1024923128 0.0715514996 0.0552159496 0.0393802415

5 Conclusion
In this work, we proposed a numerical method for solving linear Fredholm integral equations of the second kind
by using finite differences method. The solution of the integral equation is approximated by an iterative method
that the start point of this method is the achieved interpolation polynomial by solving the system of equation. The
advantage of this method in relation to other methods is that the solution is approximated by having supported
points.

References
[1] Abbasbandy S., Numerical solutions of integral equations: Homotopy perturbation method and Adomian’s

decomposition method, Applied Mathematics and Computation, 173 (2005) pp. 493-500.

[2] Ahmed A. Khidir, A New Numerical Technique for Solving Volterra Integral Equations Using Chebyshev
Spectral Method, Mathematical Problems in Engineering, (2021), pp. 1-11.

[3] Aslam Noor M. and Waseem M., Some iterative methods for solving a system of nonlinear equations, Com-
puters and Mathematics with Applications, 57 (2009) 101-106.

[4] Brunner H., Makroglou A. and Miller R. K., Mixed interpolation collocation methods for first and second
Voltrra integro-differential equations with periodic solution, Appl. Num. Math., 23 (1997) pp. 381-402.

[5] Deeba E., Khuri S. A. and Xie S., An algoritm for solving a nonlinear integro-differential equation, Applied
Mathematics and Computation, 115 (2000) pp. 123-131.

[6] Golbabai, A. and S. Seifollahi, Numerical solution of the second kind integral equations using radial basis
function networks, Applied Mathematics and Computation, (2005).

[7] Muhsen Jaabar. S, Ahmed Hadi. H., Solving Volterra integral equation by using a new transformation, Jour-
nal of Interdisciplinary Mathematics 24: 3 (2021) pp. 1-7.

[8] M.K. Jain, S.R.K. Iyengar and R.K.Jain, Numerical method for scientific and engineering computation, New
Age International (P) Ltd,(1993).

[9] Okai J.O, Manjak N.H and Swem S.T. A Numerical Method for Solving Linear Integral Equations, GSJ , 6
(2018), pp. 44-52.

[10] RashedM. T., Numerical solution of functional differential, integral and integro-differential equations, Appl.
Num. Math., 156 (2004) pp. 485-492.

2022, Volume 16, No.1 57 Theory of Approximation and Applications



Using the Finite Differences Method for the Fredholm Integral Equations of the Second type Pashmakian et al.

[11] Sepehrian B. and Razzaghi M., Single-term Walsh series method for the Volterra integro differential equa-
tions, Eng.anal.Bound.Elem., 28 (2004) pp. 1315-1319.

[12] WangW., Mechanical algoritm for solving the second kind of Volterra integral equation, AppliedMathemat-
ics and Computation, 173 (2005) pp. 300-313.

[13] Wazwaz A. M., Two methods for solving integral equations, Applied Mathematics and Computation, 77
(1996) pp. 79-89.

2022, Volume 16, No.1 58 Theory of Approximation and Applications


