

An Explicit Midpoint Algorithm for Nonexpansive Semigroup in smooth Banach Spaces

Hamid Reza Sahebi^{*a*,*}, Andreea Fulga ^{*b*}

^a Department of Mathematics, Ashtian Branch, Islamic Azad university, Ashtian, Iran. ^bDepartment of Mathematics and Computer Science, Faculty of Mathematics and Computer Science, Universitatea Transilvania Brasov, Brasov, Romania.

Article Info	Abstract
Keywords	In this paper, we consider "Nearest points" and "Farthest points" in normed linear
Chebyshev centers	spaces. For normed space $(X, \ .\)$, the set $W \subseteq X$, we define P_g, F_g, R_g where $g \in W$.
Remotal centers	We obtion results about on P_g, F_g, R_g . We find new results on Chebyshev centers in normed
Nearest points	spaces. In finally we define remotal center in normed spaces.
Farthest points.	
ARTICLE HISTORY	
Received:2019 August 23	
Accepted:2020 April 17	

1 Introduction

Throughout this paper, let E be Banach space, C be closed convex subset of E. Let J denote the normalized duality mapping from E into 2^{E^*} given by $J(x) = \{x^* \in E^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}$, where E^* denotes the dual space of E and , $\langle ., . \rangle$ denotes the generalized duality pairing. We also denote by B_r the closed ball in E with center 0 and radius r.

The function $\delta_E(\varepsilon) : [0,2] \to [0,1]$ is said to be the modulus of convexity of Banach space E, where $\delta_E(\varepsilon) = \inf\{1 - \frac{\|x-y\|}{2} : \|x\| \le 1, \|y\| \le 1, \|x-y\| \ge \varepsilon\}, 0 \le \varepsilon \le 1$. E is said to be uniformly convex if for each $\delta_E(\varepsilon) > 0$. Let $U = \{x \in E : \|x\| = 1\}$. E is said to be smooth if the limit

$$\lim_{t\to 0^+}\frac{\|x+ty\|-\|x\|}{t}$$

exists for each $x, y \in U$. The norm of E is said to be uniformly Gâteaux differentiable if for each $y \in U$, the limit exists uniformly for $x \in U$. We know that if E is smooth the duality mapping is single-valued and norm to weak star continuous and that if the norm of E is uniformly Gâteaux differentiable, then the duality mapping is norm to weak star uniformly continuous on each bounded subset of E. When J is single-valued, we use instead of J(x), j(x).

A mapping $T : C \to C$ is said to be contraction if there exists a constant $\alpha \in (0,1)$ such that $||T(x) - T(y)|| \le \alpha ||x - y||$, for all $x, y \in C$. If $\alpha = 1$, T is called nonexpansive on C.

The fixed point problem (FPP) for a nonexpansive mapping T is: To find $x \in C$ such that $x \in Fix(T)$, where Fix(T) is the fixed point set of the nonexpansive mapping T.

^{*} Corresponding Author's E-mail: sahebi@aiau.ac.ir(H.R. Sahebi)

The explicit midpoint rule is one of the powerful numerical methods for solving ordinary differential equations and differential algebraic equations. For related works, we refer to [2, 3, 4, 7, 8, 10, 12, 11] and the references cited therein. For instance, consider the initial value problem for the differential equation y'(t) = f(y(t)) with the initial condition $y(0) = y_0$, where f is a continuous function from \mathbb{R}^d to \mathbb{R}^d . The explicit midpoint rule in which generates a sequence $\{y_n\}$ by the following the recurrence relation

$$\frac{1}{h}(y_{n+1} - y_n) = f(\frac{y_{n+1} - y_n}{2}).$$

In 2017, Luo et al. [9] introduced the following iterative method for the explicit midpoint rule of nonexpansive mappings in uniformly smooth Banach space:

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) T(\frac{x_n + x_{n+1}}{2}).$$

In 2018, Aibinu et al. [1] introduced the following iterative method for the explicit midpoint rule of nonexpansive mappings in a uniformly smooth Banach space:

$$x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n T(\frac{x_n + x_{n+1}}{2}).$$

A family $S := \{T(s) : 0 \le s < \infty\}$ of mapping from *C* into itself is called a nonexpansive semigroup on *C* if it satisfies the following conditions:

- 1. T(0)x = x for all $x \in C$
- **2.** T(s+t) = T(s)T(t) for all $s, t \ge 0$
- 3. $||T(s)x T(s)y|| \le ||x y||$ for all $x, y \in C$ and $s \ge 0$
- 4. For all $x \in C, s \to T(s)x$ is continuous.

Chen and Song [6] introduced and studied the following iterative method to prove a strong convergence theorem for FPP in a uniformly convex Banach space:

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) \frac{1}{s_n} \int_0^{s_n} T(s) x_n ds, \qquad \forall n \in \mathbb{N}.$$

where f is a contraction mapping and $\{\alpha_n\}$ is the sequences in (0, 1) and $\{s_n\}$ is a positive real divergent sequence. Motivated and inspired by the results mentioned and related literature in [1, 6], we propose an iterative midpoint algorithm based on the viscosity method for finding a common element of the set of solutions of nonexpansive semigroup in a uniformly smooth Banach space. Then we prove strong convergence theorems that extend and improve the corresponding results of Aibinu et al. [1], Chen and Song [6], Luo et al. [9] and others. Finally, we give a example and numerical result to illustrate our main result.

The rest of paper is organized as follows. The next section presents some preliminary results. Section 3 is devoted to introduce midpoint algorithm for solving it. The last section presents a numerical example to demonstrate the proposed algorithms.

2 Preliminaries

Lemma 2.1. [5] Let E be Banach space, for each $x, e \in E$, $j(x) \in J(x)$, $j(x + y) \in J(x + y)$, the following inequalities hold:

$$\|x\|^2 + 2\langle y, j(x)\rangle \le \|x+y\|^2 \le \|x\|^2 + 2\langle y, j(x+y)\rangle, \qquad \forall x, y \in E.$$

Let μ be a continuous linear functional on l^{∞} and let $(a_0, a_1, \ldots) \in l^{\infty}$. We write $\mu_n(a_n)$ instead of $\mu((a_0, a_1, \ldots))$. We call μ a Banach limit when μ satisfies $\|\mu\| = \mu_n(1) = 1$ and $\mu_n(a_{n+1}) = \mu_n(a_n)$ for each $(a_0, a_1, \ldots) \in l^{\infty}$. For a Banach limit μ , we know that $\liminf_{n \to \infty} a_n \leq \mu_n(a_n) \leq \limsup_{n \to \infty} a_n$ for all $(a_0, a_1, \ldots) \in l^{\infty}$.

Lemma 2.2. [14] Let *C* be a convex subset of a Banach space *E* whose norm is uniformly Gâteaux differentiable. Let $\{x_n\}$ be a bounded subset of *E*, let *z* be a element of *C* and μ be a Banach limit. Then $\mu_n ||x_n - z||^2 = \min_{y \in C} \mu_n ||x_n - y||^2$ if and only if $\mu_n \langle y - z, j(x_n - z) \rangle \leq 0$, $\forall y \in C$.

Lemma 2.3. [13] Let *E* be a reflexive Banach space and *C* be a closed convex subset of *E*. Let *g* be a proper convex lower semicontinuous function of *C* into $(-\infty, \infty]$ and suppose that $g(x_n) \to \infty$ as $||x_n|| \to \infty$. Then, there exists $x_0 \in C$ such that $g(x_0) = \inf\{g(x) : x \in C\}$.

Definition 2.1. A function $\omega = \mathbb{R}^+ \to \mathbb{R}^+$ is said to belong to \Im if it satisfies the following conditions:

- 1. $\omega(0) = 0;$
- 2. $r > 0 \Rightarrow \omega(r) > 0;$
- 3. $t \leq s \Rightarrow \omega(t) \leq \omega(s)$.

Lemma 2.4. [13] Let *E* be a uniformly convex Banach space. Then, for any r > 0, there exists $\omega_r \in \Im$ such that for each $x, y \in B_r$, $x^* \in j(x)$, $y^* \in j(y)$ have $\langle x - y, x^* - y^* \rangle \ge \omega_r(||x - y||)||x - y||$.

Lemma 2.5. [6] Let C be a nonempty bounded closed convex subset of uniformly convex Banach space E and let $S := \{T(s) : 0 \le s < \infty\}$ be a nonexpansive semigroup on C such that F(S) is nonempty. Then for each h, r > 0,

$$\lim_{t\to\infty}\sup_{x\in C\cap B_r}\|\frac{1}{t}\int_0^t T(s)xds-T(h)(\frac{1}{t}\int_0^t T(s)xds)\|=0.$$

Lemma 2.6. [15] Let $\{a_n\}$ be a sequence of nonnegative real numbers such that $a_{n+1} \leq (1 - \alpha_n)a_n + \delta_n$, $n \geq 0$ where α_n is a sequence in (0, 1) and δ_n is a sequence in \mathbb{R} such that

(i) $\sum_{n=1}^{\infty} \alpha_n = \infty$; (ii) $\limsup_{n \to \infty} \frac{\delta_n}{\alpha_n} \le 0$ or $\sum_{n=1}^{\infty} \delta_n < \infty$. Then $\lim_{n \to \infty} \alpha_n = 0$.

3 Viscosity Nonlinear Midpoint Algorithm

In this section, we prove a strong convergence theorem based on the explicit iterative for fixed point of nonexpansive semigroup. We firstly present the following unified algorithm.

Let C be a nonempty closed convex subset of real Banach space E. Let $S = \{T(s) : s \in [0, +\infty)\}$ be a nonexpansive semigroup on C such that $Fix(S) \neq \emptyset$. Also $f : C \to C$ be a α -contraction mapping.

Algorithm 3.1. For given $x_0 \in C$ arbitrary, let the sequence $\{x_n\}$ be generated by:

$$x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n \frac{1}{s_n} \int_0^{s_n} T(s) (\frac{x_n + x_{n+1}}{2}) ds.$$
(3.1)

where $\{\alpha_n\}$, $\{\gamma_n\}$ are the sequence in (0,1) and $\{\beta_n\}$ is the sequence in [0,1) satisfying $\alpha_n + \beta_n + \gamma_n = 1$ and $\{s_n\} \subset [s,\infty)$ with s > 0.

- $(C1) \lim_{n \to \infty} \alpha_n = 0, \ \Sigma_{n=1}^{\infty} \alpha_n = \infty;$
- $(C2)\sum_{n=1}^{\infty} |\beta_{n+1} \beta_n| < \infty \quad or \quad \lim_{n \to \infty} \frac{\beta_{n+1}}{\beta_n} = 1;$
- $(C3) \lim_{n \to \infty} s_n = \infty, \ \sup_{n \in \mathbb{N}} |s_{n+1} s_n| \text{ is bounded.}$

Lemma 3.1. Let *E* be a uniformly smooth Banach space and *C* be a nonempty closed convex subset of *E* and $p \in Fix(S)$. Then the sequence $\{x_n\}$ generated by Algorithm 3.1 is bounded.

Proof. Let $p \in Fix(S)$, we obtain

$$\begin{aligned} \|x_{n+1} - p\| \\ &= \|\alpha_n f(x_n) + \beta_n x_n + \gamma_n \frac{1}{s_n} \int_0^{s_n} T(s) (\frac{x_n + x_{n+1}}{2}) ds - p\| \\ &\leq \alpha_n \|\gamma f(x_n) - p\| + \beta_n \|x_n - p\| + \gamma_n \|\frac{1}{s_n} \int_0^{s_n} T(s) (\frac{x_n + x_{n+1}}{2}) - T(s) p\| ds \\ &\leq \alpha_n (\|f(x_n) - f(p)\| + \|f(p) - p\|) + \beta_n \|x_n - p\| + \gamma_n \|\frac{x_n + x_{n+1}}{2} - p\| \\ &\leq \alpha_n \alpha \|x_n - p\| + \alpha_n \|f(p) - Bp\| + \beta_n \|x_n - p\| + \frac{\gamma_n}{2} (\|x_n - p\| + \|x_{n+1} - p\|). \end{aligned}$$

which implies that

$$(1 - \frac{\gamma_n}{2}) \|x_{n+1} - p\| \le (\alpha_n \alpha + \beta_n + \frac{\gamma_n}{2}) \|x_n - p\| + \alpha_n \|f(p) - p\|.$$

Then

$$\begin{aligned} \|x_{n+1} - p\| &\leq (1 - \frac{2(1-\alpha)\alpha_n}{1+\beta_n + \alpha_n}) \|x_n - p\| + \frac{2\alpha_n(1-\alpha)}{1+\beta_n + \alpha_n} \frac{\|f(p) - p\|}{1-\alpha} \\ &\leq \max\{\|x_n - p\|, \frac{\|f(p) - p\|}{1-\alpha}\} \\ &\vdots \\ &\leq \max\{\|x_0 - p\|, \frac{\|f(p) - p\|}{1-\alpha}\}. \end{aligned}$$
(3.2)

Hence $\{x_n\}$ is bounded.

Now, set
$$t_n := \frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2}) ds$$
. Then $\{t_n\}$ and $\{f(x_n)\}$ are bounded.

Lemma 3.2. The following properties are satisfying for the Algorithm 3.1

2021, Volume 15, No.1

- P1. $\lim_{n \to \infty} ||x_{n+1} x_n|| = 0.$
- $P2. \quad \lim_{n \to \infty} \|x_n t_n\| = 0.$
- P3. $\lim_{n \to \infty} ||T(s)t_n t_n|| = 0.$

Proof. P1:We have

$$\begin{aligned} \|t_{n+1} - t_n\| \\ &= \|\frac{1}{s_{n+1}} \int_0^{s_{n+1}} T(s) (\frac{x_{n+1} + x_{n+2}}{2}) ds - \frac{1}{s_n} \int_0^{s_n} T(s) (\frac{x_n + x_{n+1}}{2}) ds \| \\ &= \frac{1}{2} \|\frac{1}{s_{n+1}} \int_0^{s_{n+1}} T(s) x_{n+1} ds + \frac{1}{s_{n+1}} \int_0^{s_{n+1}} T(s) x_{n+2} ds \\ &- \frac{1}{s_n} \int_0^{s_n} T(s) x_n ds - \frac{1}{s_n} \int_0^{s_n} T(s) x_{n+1} ds \| \\ &= \frac{1}{2} \|\frac{1}{s_{n+1}} \int_0^{s_{n+1}} (T(s) x_{n+1} - T(s) x_n) ds + (\frac{1}{s_{n+1}} - \frac{1}{s_n}) \int_0^{s_n} (T(s) x_n - T(s) p) ds \\ &+ \frac{1}{s_{n+1}} \int_{s_n}^{s_{n+1}} (T(s) x_n - T(s) p) ds + \frac{1}{s_{n+1}} \int_0^{s_{n+1}} (T(s) x_{n+2} - T(s) x_{n+1}) ds \\ &+ (\frac{1}{s_{n+1}} - \frac{1}{s_n}) \int_0^{s_n} (T(s) x_{n+1} - T(s) p) ds + \frac{1}{s_{n+1}} \int_{s_n}^{s_{n+1}} (T(s) x_{n+1} - T(s) p) ds \| \\ &\leq \frac{1}{2} \|x_{n+1} - x_n\| + \frac{|s_{n+1} - s_n|}{s_{n+1}} \|x_n - p\| + \frac{1}{2} \|x_{n+2} - x_{n+1}\| + \frac{|s_{n+1} - s_n|}{s_{n+1}} \|x_{n+1} - p\| \\ &= \frac{1}{2} (\|x_{n+1} - x_n\| + \|x_{n+2} - x_{n+1}\|) + \frac{|s_{n+1} - s_n|}{s_{n+1}} (\|x_n - p\| + \|x_{n+1} - p\|). \end{aligned}$$

Next, we show that the sequence $\{x_n\}$ is asymptotically regular, i.e., $\lim_{n\to\infty} ||x_{n+2} - x_{n+1}|| = 0$. By (3.3) we estimate that

$$\begin{split} \|x_{n+2} - x_{n+1}\| \\ &= \|(\alpha_{n+1}f(x_{n+1}) + \beta_{n+1}x_{n+1} + \gamma_{n+1}\frac{1}{s_{n+1}}\int_{0}^{s_{n+1}}T(s)(\frac{x_{n+1}+x_{n+2}}{2})ds) \\ &-(\alpha_{n}f(x_{n}) + \beta_{n}x_{n} + \gamma_{n}\frac{1}{s_{n}}\int_{0}^{s_{n}}T(s)(\frac{x_{n}+x_{n+1}}{2})ds)\| \\ &= \|\gamma_{n+1}(\frac{1}{s_{n+1}}\int_{0}^{s_{n+1}}T(s)(\frac{x_{n+1}+x_{n+2}}{2})ds - \frac{1}{s_{n}}\int_{0}^{s_{n}}T(s)(\frac{x_{n}+x_{n+1}}{2})ds) \\ &+(\gamma_{n} - \gamma_{n+1})\frac{1}{s_{n}}\int_{0}^{s_{n}}T(s)(\frac{x_{n}+x_{n+1}}{2})ds + (\alpha_{n+1} - \alpha_{n})f(x_{n}) \\ &+\alpha_{n+1}(f(x_{n+1}) - f(x_{n})) + (\beta_{n+1} - \beta_{n})x_{n} + \beta_{n+1}(x_{n+1} - x_{n})\| \\ &\leq (1 - \alpha_{n+1} - \beta_{n+1})\|t_{n+1} - t_{n}\| + |\alpha_{n+1} - \alpha_{n}|M + \alpha_{n+1}\|f(x_{n+1}) - f(x_{n})\| \\ &+ |\beta_{n+1} - \beta_{n}|N + \beta_{n+1}\|x_{n+1} - x_{n}\| \\ &\leq \frac{1 - \alpha_{n+1} - \beta_{n+1}}{2}(\|x_{n+1} - x_{n}\| + \|x_{n+2} - x_{n+1}\|) \\ &+ (1 - \alpha_{n+1} - \beta_{n+1})\frac{|s_{n+1} - s_{n}|}{s_{n+1}}(\|x_{n} - p\| + \|x_{n+1} - p\|) + |\alpha_{n+1} - \alpha_{n}|M + \alpha_{n+1}\alpha\| \|x_{n+1} - \alpha_{n}\|M + \alpha_{n+1}\alpha\| \|x_{n+1} - x_{n}\|, \end{split}$$

where

 $M := \sup\{\|\frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2}) ds\| + \|f(x_n)\|\},\$ $N := \sup\{\|\frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2}) ds\| + \|x_n\|\}.$

Then

$$(1 + \alpha_{n+1} + \beta_{n+1}) \|x_{n+2} - x_{n+1}\| \leq (1 + \beta_{n+1} + (2\alpha - 1)\alpha_{n+1}) \|x_{n+1} - x_n\| + (1 - \alpha_{n+1} - \beta_{n+1}) \frac{2|s_{n+1} - s_n|}{s_{n+1}} (\|x_n - p\| + \|x_{n+1} - p\|) + 2|\alpha_n - \alpha_{n+1}|M + 2|\beta_n - \beta_{n+1}|N.$$

Therefore

$$\begin{aligned} \|x_{n+2} - x_{n+1}\| &\leq \left(1 - \frac{2(1-\alpha)\alpha_{n+1}}{1+\alpha_{n+1}+\beta_{n+1}}\right) \|x_{n+1} - x_n\| \\ &+ \left(\frac{1-\beta_{n+1}-\alpha_{n+1}}{1+\alpha_{n+1}+\beta_{n+1}}\right) \left(\frac{2|s_{n+1}-s_n|}{s_{n+1}}\right) \left(\|x_n - p\| + \|x_{n+1} - p\|\right) \\ &+ \frac{2M}{1+\alpha_{n+1}+\beta_{n+1}} |\alpha_n - \alpha_{n+1}| + \frac{2N}{1+\alpha_{n+1}+\beta_{n+1}} |\beta_n - \beta_{n+1}|. \end{aligned}$$

Hence, it follows by Lemma 2.6 and (C1)-(C3) that

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.$$
(3.4)

And similarly, we have

$$\lim_{n \to \infty} \|x_{n+2} - x_{n+1}\| = 0.$$
(3.5)

Also by (3.3), (3.4),(3.5) and (C3) we have $\lim_{n\to\infty} ||t_{n+1} - t_n|| = 0$.

(

P2: We can write

$$\begin{aligned} \|x_n - t_n\| &\leq \|x_{n+1} - x_n\| + \|\alpha_n f(x_n) + \beta_n x_n + \gamma_n t_n - t_n\| \\ &= \|x_{n+1} - x_n\| + \|\alpha_n f(x_n) + \beta_n x_n + (1 - \alpha_n - \beta_n) t_n - t_n\| \\ &\leq \|x_n - x_{n+1}\| + \alpha_n \|f(x_n) - t_n\| + \beta_n \|x_n - t_n\|, \end{aligned}$$

then

$$1 - \beta_n \|x_n - t_n\| \le \|x_n - x_{n+1}\| + \alpha_n \|f(x_n) - t_n\|.$$

By (C_1) and (3.4), we obtain

$$\lim_{n \to \infty} \|x_n - t_n\| = 0.$$
(3.6)

P3: Let $K := \{w \in C : \|w - p\| \le \|x_0 - p\|, \frac{1}{1-\alpha}\|f(p) - p\|\}$. Then K is a nonempty bounded closed convex subset of C which is T(s)-invariant for each $s \in [0, +\infty)$ and contains $\{x_n\}$. So, without loss of generality, we may assume that $S := \{T(s) : s \in [0, +\infty)\}$ is a nonexpansive semigroup on K. Since $\{x_n\} \subset K$ and K is bounded, there exists r > 0 such that $K \subset B_r$.

$$\begin{split} \|T(s)x_n - x_n\| &= \|T(s)x_n - T(s)\frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds + T(s)\frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds \\ &- \frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds + \frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - x_n\| \\ &\leq \|T(s)x_n - T(s)\frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds\| \\ &+ \|T(s)\frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - \frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds\| \\ &+ \|\frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - x_n\| \\ &\leq \|x_n - \frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - \frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds\| \\ &+ \|T(s)\frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - \frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds\| \\ &+ \|\frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - x_n\| \\ &= 2\|\frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - x_n\| \\ &= 2\|\frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - x_n\| \\ &+ \|T(s)\frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - \frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds\| \\ \end{array}$$
Since $\frac{x_n + x_{n+1}}{s_n} \in C$, from (3.6) and Lemma 2.5, we obtain $\lim_{n \to \infty} \|T(s)x_n - x_n\| = 0$. There

0. Therefore Lemma 2.5, obtain $\lim_{n\to\infty} ||I(s)x_n|$ $x_n \parallel$ 2

$$||T(s)t_n - t_n|| \le ||T(s)t_n - T(s)x_n|| + ||T(s)x_n - x_n|| + ||x_n - t_n||$$

$$\leq ||t_n - x_n|| + ||T(s)x_n - x_n|| + ||x_n - t_n||.$$

Then we have

$$\lim_{n \to \infty} \|T(s)t_n - t_n\| = 0.$$
(3.7)

4 Convergence Algorithm

Theorem 4.1. Let *E* The Algorithm defined by (4.4) convergence strongly to $z \in Fix(S)$, which is a unique solution in of the variational inequality $\langle (I - f)z, j(x - z) \rangle \leq 0$, $\forall x \in Fix(S)$.

Proof. Set $t_{n_i} := t_n$ and let $\hat{K} = \{q \in C : \mu_i ||t_{n_i} - q||^2 = \min_{x \in C} \mu_i ||t_{n_i} - x||^2\}$ such that μ be a Banach limit. we claim that \hat{K} consists of one point. Indeed, let $g(x) = \mu_i ||t_{n_i} - x||^2$ for each $x \in C$ and $r_0 = \inf\{g(x) : x \in C\}$. Since the function g on C is convex and continuous and $g(t_n) \to \infty$ as $||t_n|| \to \infty$, from Lemma 2.3, there exists $z \in C$ with $g(z) = r_0$, i.e., \hat{K} is nonempty. From Lemma 2.2, we know that $z \in \hat{K}$ if and only if

$$\mu_i \langle x - z, j(t_{n_i} - z) \rangle \le 0, \qquad \forall x \in C$$
(4.1)

Suppose $\dot{z} \in \dot{K}$ and $z \neq \dot{z}$. By Lemma 2.4, there exists a positive number k such that $\langle t_{n_i} - z - (t_{n_i} - \dot{z}), j(t_{n_i} - z) - j(t_{n_i} - \dot{z}) \rangle \geq k$ for each $i \in \mathbb{N}$. Therefore, $\mu_i \langle \dot{z} - z, j(t_{n_i} - z) - j(t_{n_i} - \dot{z}) \rangle \geq k > 0$. On the other hand, since $z, \dot{z} \in \dot{K}$, we have $\mu_i \langle \dot{z} - z, j(t_{n_i} - z) \rangle \leq 0$ and $\mu_i \langle z - \dot{z}, j(t_{n_i} - \dot{z}) \rangle \leq 0$. Then we have

$$\mu_i \langle \dot{z} - z, j(t_{n_i} - z) - j(t_{n_i} - \dot{z}) \rangle \le 0$$

This is a contradiction. Therefore $z = \dot{z}$, that is, \dot{K} consists of one point. Noting (3.7), we have for each $s \ge 0$,

$$g(T(s)z) = \mu_i ||t_{n_i} - T(s)z||^2 = \mu_i ||T(s)t_{n_i} - T(s)z||^2 \le \mu_i ||t_{n_i} - z||^2 = g(z).$$

Since K consists of a point, T(s)z = z, $\forall s \ge 0$, i.e., $z \in Fix(S)$. We show that $\limsup_{n\to\infty} \langle f(z) - z, j(x_{n+1} - z) \rangle \le 0$.

From $x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n \frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2}) ds$, we have

$$(I-f)x_n = \frac{1}{\alpha_n}((\beta_n + \alpha_n)x_n + (1 - \beta_n - \alpha_n)\frac{1}{s_n}\int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - x_{n+1}),$$

then

$$\begin{split} \langle (I-f)x_{n}, j(x_{n+1}-z) \rangle \\ &= \frac{1}{\alpha_{n}} \langle (\beta_{n}+\alpha_{n})x_{n} + (1-\beta_{n}-\alpha_{n})\frac{1}{s_{n}} \int_{0}^{s_{n}} T(s)(\frac{x_{n}+x_{n+1}}{2})ds - x_{n+1}, j(x_{n+1}-z) \rangle \\ &= \frac{1}{\alpha_{n}} (\frac{1-\beta_{n}-\alpha_{n}}{2} \langle \frac{1}{s_{n}} \int_{0}^{s_{n}} T(s)x_{n}ds - x_{n}, j(x_{n+1}-z) \rangle \\ &+ \frac{1-\beta_{n}-\alpha_{n}}{2} \langle \frac{1}{s_{n}} \int_{0}^{s_{n}} T(s)x_{n+1}ds - x_{n+1}, j(x_{n+1}-z) \rangle \\ &- \frac{1+\beta_{n}+\alpha_{n}}{2} \langle x_{n+1}-x_{n}, j(x_{n+1}-z) \rangle) \\ &\leq \frac{1-\beta_{n}-\alpha_{n}}{2\alpha_{n}} (\|t_{n}-x_{n}\| + \|t_{n+1}-x_{n+1}\|) \|x_{n+1}-z\| - \frac{1+\beta_{n}+\alpha_{n}}{2\alpha_{n}} \|x_{n+1}-x_{n}\| \|x_{n+1}-z\| \end{split}$$

By (3.4)and (3.6), we obtain

$$\limsup_{n \to \infty} \langle f(z) - z, j(x_{n+1} - z) \rangle \le 0.$$
(4.2)

Now we prove that x_n is strongly convergence to z.

$$\begin{split} \|x_{n+1} - z\|^2 &= \alpha_n \langle f(x_n) - z, j(x_{n+1} - z) \rangle + \beta_n \langle x_n - z, j(x_{n+1} - z) \rangle \\ &+ \langle (1 - \beta_n - \alpha_n)(t_n - z), j(x_{n+1} - z) \rangle \\ &\leq \alpha_n (\langle f(x_n) - f(z), j(x_{n+1} - z) \rangle + \langle f(z) - z, j(x_{n+1} - z) \rangle) \\ &+ \beta_n \|x_n - z\| \|x_{n+1} - z\| + (1 - \beta_n - \alpha_n) \|t_n - z\| \|x_{n+1} - z\| \\ &\leq \alpha_n \alpha \|x_n - z\| \|x_{n+1} - z\| + \alpha_n \langle f(z) - z, j(x_{n+1} - z) \rangle \\ &+ \beta_n \|x_n - z\| \|x_{n+1} - z\| + (1 - \beta_n - \alpha_n) \|\frac{x_n + x_{n+1}}{2} - z\| \|x_{n+1} - z\| \\ &\leq \alpha_n \alpha \|x_n - z\| \|x_{n+1} - z\| + \alpha_n \langle f(z) - z, j(x_{n+1} - z) \rangle \\ &+ \beta_n \|x_n - z\| \|x_{n+1} - z\| + \frac{1 - \beta_n - \alpha_n}{2} (\|x_n - z\| + \|x_{n+1} - z\|) \|x_{n+1} - z\| \\ &= \frac{1 + \beta_n - \alpha_n (1 - 2\alpha)}{2} \|x_n - z\| \|x_{n+1} - z\| + \alpha_n \langle f(z) - z, j(x_{n+1} - z) \rangle \\ &+ \frac{1 - \beta_n - \alpha_n}{4} \|x_{n+1} - z\|^2 \\ &\leq \frac{1 + \beta_n - \alpha_n (1 - 2\alpha)}{4} \|x_n - z\|^2 + \|x_{n+1} - z\|^2) + \alpha_n \langle f(z) - z, j(x_{n+1} - z) \rangle \\ &+ \frac{1 - \beta_n - \alpha_n}{4} \|x_n - z\|^2 \\ &\leq \frac{1 + \beta_n - \alpha_n (1 - 2\alpha)}{4} \|x_n - z\|^2 + \frac{3 - \beta_n - \alpha_n (3 - 2\alpha)}{4} \|x_{n+1} - z\|^2 \\ &\leq \frac{1 + \beta_n - \alpha_n (1 - 2\alpha)}{4} \|x_n - z\|^2 + \frac{3 - \beta_n - \alpha_n (3 - 2\alpha)}{4} \|x_{n+1} - z\|^2 \\ &\leq \frac{1 + \beta_n - \alpha_n (1 - 2\alpha)}{4} \|x_n - z\|^2 + \frac{3 - \beta_n - \alpha_n (3 - 2\alpha)}{4} \|x_{n+1} - z\|^2 \\ &\leq \frac{1 + \beta_n - \alpha_n (1 - 2\alpha)}{4} \|x_n - z\|^2 + \frac{3 - \beta_n - \alpha_n (3 - 2\alpha)}{4} \|x_{n+1} - z\|^2 \\ &\leq \frac{1 + \beta_n - \alpha_n (1 - 2\alpha)}{4} \|x_n - z\|^2 + \frac{3 - \beta_n - \alpha_n (3 - 2\alpha)}{4} \|x_{n+1} - z\|^2 \\ &\leq \frac{1 + \beta_n - \alpha_n (1 - 2\alpha)}{4} \|x_n - z\|^2 + \frac{3 - \beta_n - \alpha_n (3 - 2\alpha)}{4} \|x_n - z\|^2 \\ &\leq \frac{1 + \beta_n - \alpha_n (1 - 2\alpha)}{4} \|x_n - z\|^2 + \frac{3 - \beta_n - \alpha_n (3 - 2\alpha)}{4} \|x_n - z\|^2 \\ &\leq \frac{1 + \beta_n - \alpha_n (1 - 2\alpha)}{4} \|x_n - z\|^2 + \frac{3 - \beta_n - \alpha_n (3 - 2\alpha)}{4} \|x_n - z\|^2 \\ &\leq \frac{1 + \beta_n - \alpha_n (1 - 2\alpha)}{4} \|x_n - z\|^2 + \frac{3 - \beta_n - \alpha_n (3 - 2\alpha)}{4} \|x_n - z\|^2 \\ &\leq \frac{1 + \beta_n - \alpha_n (1 - 2\alpha)}{4} \|x_n - z\|^2 + \frac{3 - \beta_n - \alpha_n (3 - 2\alpha)}{4} \|x_n - z\|^2 \\ &\leq \frac{1 + \beta_n - \alpha_n (1 - 2\alpha)}{4} \|x_n - z\|^2 \\ &\leq \frac{1 + \beta_n - \alpha_n (1 - 2\alpha)}{4} \|x_n - z\|^2 + \frac{1 - \beta_n - \alpha_n (3 - 2\alpha)}{4} \|x_n - z\|^2 \\ &\leq \frac{1 + \beta_n - \alpha_n (1 - 2\alpha)}{4} \|x_n - z\|^2 \\ &\leq \frac{1 + \beta_n - \alpha_n (1 - 2\alpha)}{4} \|x_n - z\|^2 + \frac{1 - \beta_n - \alpha_$$

This implies that

$$\begin{aligned} \|x_{n+1} - z\|^2 &\leq \frac{1+\beta_n - \alpha_n(1-2\alpha)}{1+\beta_n + \alpha_n(3-2\alpha)} \|x_n - z\|^2 + \frac{4\alpha_n}{1+\beta_n + \alpha_n(3-2\alpha)} \langle f(z) - z, j(x_{n+1} - z) \rangle \\ &\leq (1 - \frac{4(1-\alpha)\alpha_n}{1+\beta_n + \alpha_n(3-2\alpha)}) \|x_n - z\|^2 + \frac{4\alpha_n}{1+\beta_n + \alpha_n(3-2\alpha)} \langle f(z) - z, j(x_{n+1} - z) \rangle \end{aligned}$$

$$\begin{aligned} &= (1 - k_n) \|x_n - z\|^2 + 4\alpha_n l_n, \end{aligned}$$
(4.3)

where $k_n = \frac{4(1-\alpha)\alpha_n}{1+\beta_n+\alpha_n(3-2\alpha)}$ and $l_n = \langle f(z) - z, j(x_{n+1}-z) \rangle$. Since $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=0}^{\infty} \alpha_n = \infty$, it is easy to see that $\lim_{n\to\infty} k_n = 0$, $\sum_{n=0}^{\infty} k_n = \infty$ and $\limsup_{n\to\infty} l_n \leq 0$. Hence, from (4.2) and (4.3) and Lemma 2.6, we deduce that $x_n \to z$.

Corollary 4.1. Let *E* be a uniformly smooth Banach space and *C* be a nonempty closed convex subset of *E*. Let $S = \{T(s) : s \in [0, +\infty)\}$ be a nonexpansive semigroup on *C* such that $Fix(S) \neq \emptyset$. Also $f : C \to C$ be a

 α -contraction mapping. For given $x_0 \in C$ arbitrary, let the sequence $\{x_n\}$ be generated by:

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) \frac{1}{s_n} \int_0^{s_n} T(s) (\frac{x_n + x_{n+1}}{2}) ds.$$
(4.4)

where $\{\alpha_n\}$ is a sequence in (0,1) and $\{s_n\} \subset [s,\infty)$ with s > 0.

- $(C1) \lim_{n \to \infty} \alpha_n = 0, \ \Sigma_{n=1}^{\infty} \alpha_n = \infty;$
- $(C2)\sum_{n=1}^{\infty} |\alpha_n \alpha_{n-1}| < \infty \quad or \quad \lim_{n \to \infty} \frac{\alpha_{n+1}}{\alpha_n} = 1;$
- (C2) $\lim_{n\to\infty} s_n = \infty$, $\sup_{n\in\mathbb{N}} |s_{n+1} s_n|$ is bounded.

Then the sequence $\{x_n\}$ converges strongly to $z \in Fix(S)$, which is a unique solution in of the variational inequality $\langle (I - f)z, j(x - z) \rangle \leq 0$, $\forall x \in Fix(S)$.

5 Numerical example

In this section, we give some examples and numerical results for supporting our main theorem. All the numerical results have been produced in Matlab 2017 on a Linux workstation with a 3.8 GHZ Intel annex processor and 8 Gb of memory

Example 5.1. Let $H = \mathbb{R}$, the set of all real numbers, with the inner product defined by $\langle x, y \rangle = xy$, $\forall x, y \in \mathbb{R}$, and induced usual norm | . |. Let C = [-2, 1]; Let $f(x) = \frac{1}{10}(x - 3)$ and let, for each $x \in C$, $T(s)x = \frac{1}{1+2s}x$. Then there exist unique sequences $\{x_n\} \subset \mathbb{R}$ generated by the iterative scheme

$$x_{n+1} = \frac{1}{30n+20}(x_n-3) + \frac{2n+1}{3n+2}x_n + \frac{n}{3n+2}\frac{1}{s_n}\int_0^{s_n}\frac{1}{1+2s}(\frac{x_n+x_{n+1}}{2})ds$$
(5.1)

where $\alpha_n = \frac{1}{3n+2}$, $\beta_n = \frac{2n+1}{3n+2}$, $\gamma_n = \frac{n}{3n+2}$ and $s_n = 2n$. Then $\{x_n\}$ converges to $\{0\} \in \text{Fix}(S)$. f is contraction mapping with constant $\alpha = \frac{1}{9}$. It is easy to observe that $\text{Fix}(S) = \{0\} \neq \emptyset$. After simplification, scheme (5.1) reduce to

$$x_{n+1} = \frac{\left(\frac{20n+11}{30n+20} + \frac{n}{24n^2+16n}\ln(1+4n)\right)x_n - \frac{3}{30n+20}}{1 - \frac{n}{24n^2+16n}\ln(1+4n)}$$

Following the proof of Theorem 4.1, we obtain that $\{x_n\}$ converges strongly to $w = \{0\} \in Fix(S)$.

Example 5.2. Let $H = \mathbb{R}^2$, the set of all real numbers, with the inner product defined by $\langle (x, y), (z, t) \rangle = xz + yt$, $\forall (x, y), (z, t) \in \mathbb{R}^2$, and induced usual norm $||(x, y)|| = (x^2 + y^2)^{\frac{1}{2}}$. Let $C = [0, 4] \times [-2, 1]$; Let for each $(x, y) \in \mathbb{R}^2$, we define $f(x, y) = (\frac{1}{5}x, \frac{1}{6}y)$ and let, for each $(x, y) \in C$, $T(s)(x, y) = e^{-2s}(x, y)$. Then there exist unique sequences $\{(x_n, y_n)\} \subset \mathbb{R}^2$ generated by the iterative scheme

$$(x_{n+1}, y_{n+1}) = \frac{3}{6n+2} \left(\frac{1}{5} x_n, \frac{1}{6} y_n\right) + \left(\frac{2}{3} - \frac{n+1}{6n+2}\right) (x_n, y_n) + \frac{15n-2}{18n+6} \frac{1}{s_n} \int_0^{s_n} e^{-2s} \left(\frac{(x_{n+1}, y_{n+1}) + (x_n, y_n)}{2}\right) ds$$
(5.2)

where $\alpha_n = \frac{3}{6n+2}$, $\beta_n = \frac{2}{3} - \frac{n+1}{6n+2}$, $\gamma_n = \frac{15n-2}{18n+6}$ and $s_n = n$. Then $\{(x_{n+1}, y_{n+1})\}$ converges to $\{(0,0)\} \in \text{Fix}(S)$. f is contraction mapping with constant $\alpha = \frac{1}{7}$. It is easy to observe that $\text{Fix}(S) = \{(0,0)\} \neq \emptyset$. After simplification, scheme (5.2) reduce to

$$x_{n+1} = \frac{\frac{45n+14}{90n+30} - \frac{15n-2}{72n^2+24n}e^{-2n}}{1 + \frac{15n-2}{72n^2+24n}e^{-2n}}x_n,$$

$$y_{n+1} = \frac{\frac{18n+5}{36n+12} - \frac{15n-2}{72n^2+24n}e^{-2n}}{1 + \frac{15n-2}{72n^2+24n}e^{-2n}}y_n,$$

Following the proof of Theorem 4.1, we obtain that $\{(x_n, y_n)\}$ converges strongly to $w = \{(0, 0)\} \in Fix(S)$.

References

- [1] Aibinu MO, Pillay P, Olaleru JO, Mewomo OT. The implicit midpoint rule of nonexpansive mappings and applications in uniformly smooth Banach spaces.2019; 11:1374–1391.
- [2] Auzinger W, Frank R. Asymptotic error expansions for stiff equations: an analysis for the implicit midpoint and trapezoidal rules in the strongly stiff case. Numerische Mathematik. 1989 May;56(5):469-99.
- [3] Bader G, Deuflhard P. A semi-implicit mid-point rule for stiff systems of ordinary differential equations. Numerische Mathematik. 1983 Oct;41(3):373-98.
- [4] Kastner-Maresch AE. The implicit midpoint rule applied to discontinuous differential equations. Computing. 1992 Mar;49(1):45-62.
- [5] Chang SS, Lee HJ, Chan CK. A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Analysis: Theory, Methods & Applications. 2009 May 1;70(9):3307-19.
- [6] Chen R, Song Y. Convergence to common fixed point of nonexpansive semigroups. Journal of Computational and Applied Mathematics. 2007 Mar 15;200(2):566-75.
- [7] Deuflhard P. Recent progress in extrapolation methods for ordinary differential equations. SIAM review. 1985 Dec;27(4):505-35.
- [8] Hofer E. A partially implicit method for large stiff systems of ODEs with only few equations introducing small time-constants. SIAM Journal on Numerical Analysis. 1976 Oct;13(5):645-63.
- [9] Luo P, Cai G, Shehu Y. The viscosity iterative algorithms for the implicit midpoint rule of nonexpansive mappings in uniformly smooth Banach spaces. Journal of Inequalities and Applications. 2017 Dec;2017(1):1-2.
- [10] Schneider C. Analysis of the linearly implicit mid–point rule for differential–algebraic equations. Electronic Transactions on Numerical Analysis. 1993 Sep;1:1-0.
- [11] Somali S, Davulcu S. Implicit midpoint rule and extrapolation to singularly perturbed boundary alue problems. International journal of computer mathematics. 2000 Jan 1;75(1):117-27.
- [12] Somali S. Implicit midpoint rule to the nonlinear degenerate boundary value problems. International journal of computer mathematics. 2002 Jan 1;79(3):327-32.
- [13] Takahashi W. Nonlinear functional analysis. Fixed Point Theory and its Applications. 2000.
- [14] Takahashi W, Ueda Y. On Reich's strong convergence theorems for resolvents of accretive operators. Journal of Mathematical Analysis and Applications. 1984 Dec 1;104(2):546-53.

[15] Xu HK. Viscosity approximation methods for nonexpansive mappings. Journal of Mathematical Analysis and Applications. 2004 Oct 1;298(1):279-91.