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ABSTRACT

In this paper, we consider “Nearest points” and “Farthest points” in normed linear

spaces. For normed space (X, ∥.∥), the set W ⊆ X, we define Pg , Fg , Rg where g ∈ W .

We obtion results about on Pg , Fg , Rg . We find new results on Chebyshev centers in normed

spaces. In finally we define remotal center in normed spaces.

1 Introduction
Throughout this paper, letE be Banach space,C be closed convex subset ofE. Let J denote the normalized duality
mapping fromE into 2E∗ given by J(x) = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}, whereE∗ denotes the dual space of
E and , ⟨., .⟩ denotes the generalized duality pairing. We also denote by Br the closed ball in E with center 0 and
radius r.
The function δE(ε) : [0, 2] → [0, 1] is said to be the modulus of convexity of Banach space E, where δE(ε) =

inf{1 − ∥x−y∥
2 : ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x − y∥ ≥ ε}, 0 ≤ ε ≤ 1. E is said to be uniformly convex if for each δE(ε) > 0.

Let U = {x ∈ E : ∥x∥ = 1}. E is said to be smooth if the limit

lim
t→0+

∥x+ ty∥ − ∥x∥
t

exists for each x, y ∈ U . The norm of E is said to be uniformly Gâteaux differentiable if for each y ∈ U , the limit
exists uniformly for x ∈ U . We know that if E is smooth the duality mapping is single-valued and norm to weak
star continuous and that if the norm of E is uniformly Gâteaux differentiable, then the duality mapping is norm
to weak star uniformly continuous on each bounded subset of E. When J is single-valued, we use instead of J(x),
j(x).
A mapping T : C → C is said to be contraction if there exists a constant α ∈ (0, 1) such that ∥T (x) − T (y)∥ ≤
α∥x− y∥, for all x, y ∈ C. If α = 1, T is called nonexpansive on C.
The fixed point problem (FPP) for a nonexpansivemapping T is: To find x ∈ C such that x ∈ Fix(T ), where Fix(T )
is the fixed point set of the nonexpansive mapping T .
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The explicit midpoint rule is one of the powerful numerical methods for solving ordinary differential equations
and differential algebraic equations. For related works, we refer to [2, 3, 4, 7, 8, 10, 12, 11] and the references cited
therein. For instance, consider the initial value problem for the differential equation y

′
(t) = f(y(t))with the initial

condition y(0) = y0, where f is a continuous function fromRd toRd. The explicit midpoint rule in which generates
a sequence {yn} by the following the recurrence relation

1

h
(yn+1 − yn) = f(

yn+1 − yn
2

).

In 2017, Luo et al. [9] introduced the following iterative method for the explicit midpoint rule of nonexpansive
mappings in uniformly smooth Banach space:

xn+1 = αnf(xn) + (1− αn)T (
xn + xn+1

2
).

In 2018, Aibinu et al. [1] introduced the following iterative method for the explicit midpoint rule of nonexpansive
mappings in a uniformly smooth Banach space:

xn+1 = αnf(xn) + βnxn + γnT (
xn + xn+1

2
).

A family S := {T (s) : 0 ≤ s < ∞} of mapping from C into itself is called a nonexpansive semigroup on C if it
satisfies the following conditions:

1. T (0)x = x for all x ∈ C

2. T (s+ t) = T (s)T (t) for all s, t ≥ 0

3. ∥T (s)x− T (s)y∥ ≤ ∥x− y∥ for all x, y ∈ C and s ≥ 0

4. For all x ∈ C, s → T (s)x is continuous.

Chen and Song [6] introduced and studied the following iterative method to prove a strong convergence theorem
for FPP in a uniformly convex Banach space:

xn+1 = αnf(xn) + (1− αn)
1
sn

∫ sn
0 T (s)xnds, ∀n ∈ N.

where f is a contractionmapping and {αn} is the sequences in (0, 1) and {sn} is a positive real divergent sequence.
Motivated and inspired by the results mentioned and related literature in [1, 6], we propose an iterative midpoint
algorithm based on the viscosity method for finding a common element of the set of solutions of nonexpansive
semigroup in a uniformly smooth Banach space. Then we prove strong convergence theorems that extend and
improve the corresponding results of Aibinu et al. [1], Chen and Song [6], Luo et al. [9] and others. Finally, we
give a example and numerical result to illustrate our main result.

The rest of paper is organized as follows. The next section presents some preliminary results. Section 3 is de-
voted to introducemidpoint algorithm for solving it. The last section presents a numerical example to demonstrate
the proposed algorithms.

2021, Volume 15, No.1 128 Theory of Approximation and Applications



An Explicit Midpoint Algorithm for Nonexpansive Semigroup in smooth Banach Spaces H.R. Sahebi, A. Fulga

2 Preliminaries
Lemma 2.1. [5] Let E be Banach space, for each x, e ∈ E, j(x) ∈ J(x), j(x + y) ∈ J(x + y), the following
inequalities hold:

∥x∥2 + 2⟨y, j(x)⟩ ≤ ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, j(x+ y)⟩, ∀x, y ∈ E.

Letµbe a continuous linear functional on l∞ and let (a0, a1, . . .) ∈ l∞. Wewriteµn(an) instead ofµ((a0, a1, . . .)).
We call µ a Banach limit when µ satisfies ∥µ∥ = µn(1) = 1 and µn(an+1) = µn(an) for each (a0, a1, . . .) ∈ l∞. For
a Banach limit µ, we know that lim infn→∞ an ≤ µn(an) ≤ lim supn→∞ an for all (a0, a1, . . .) ∈ l∞.

Lemma 2.2. [14] Let C be a convex subset of a Banach space E whose norm is uniformly Gâteaux differen-
tiable. Let {xn} be a bounded subset of E, let z be a element of C and µ be a Banach limit. Then µn∥xn − z∥2 =

miny∈C µn∥xn − y∥2 if and only if µn⟨y − z, j(xn − z)⟩ ≤ 0, ∀y ∈ C.

Lemma 2.3. [13] Let E be a reflexive Banach space and C be a closed convex subset of E. Let g be a proper
convex lower semicontinuous function of C into (−∞,∞] and suppose that g(xn) → ∞ as ∥xn∥ → ∞. Then,
there exists x0 ∈ C such that g(x0) = inf{g(x) : x ∈ C}.

Definition 2.1. A function ω = R+ → R+ is said to belong to ℑ if it satisfies the following conditions:

1. ω(0) = 0;

2. r > 0 ⇒ ω(r) > 0;

3. t ≤ s ⇒ ω(t) ≤ ω(s).

Lemma 2.4. [13] Let E be a uniformly convex Banach space. Then, for any r > 0, there exists ωr ∈ ℑ such that
for each x, y ∈ Br, x∗ ∈ j(x), y∗ ∈ j(y) have ⟨x− y, x∗ − y∗⟩ ≥ ωr(∥x− y∥)∥x− y∥.

Lemma 2.5. [6] Let C be a nonempty bounded closed convex subset of uniformly convex Banach space E and
let S := {T (s) : 0 ≤ s < ∞} be a nonexpansive semigroup on C such that F (S) is nonempty. Then for each
h, r > 0,

lim
t→∞

sup
x∈C∩Br

∥1
t

∫ t

0
T (s)xds− T (h)(

1

t

∫ t

0
T (s)xds)∥ = 0.

Lemma 2.6. [15] Let {an} be a sequence of nonnegative real numbers such that an+1 ≤ (1−αn)an + δn, n ≥ 0

where αn is a sequence in (0, 1) and δn is a sequence in R such that

(i) Σ∞
n=1αn = ∞; (ii) lim supn→∞

δn
αn

≤ 0 or Σ∞
n=1δn < ∞.

Then limn→∞ an = 0.

3 Viscosity Nonlinear Midpoint Algorithm
In this section, we prove a strong convergence theorem based on the explicit iterative for fixed point of nonexpan-
sive semigroup. We firstly present the following unified algorithm.
LetC be a nonempty closed convex subset of real Banach spaceE. Let S = {T (s) : s ∈ [0,+∞)} be a nonexpansive
semigroup on C such that Fix(S) ̸= ∅. Also f : C → C be a α-contraction mapping.

2021, Volume 15, No.1 129 Theory of Approximation and Applications



An Explicit Midpoint Algorithm for Nonexpansive Semigroup in smooth Banach Spaces H.R. Sahebi, A. Fulga

Algorithm 3.1. For given x0 ∈ C arbitrary, let the sequence {xn} be generated by:

xn+1 = αnf(xn) + βnxn + γn
1

sn

∫ sn

0
T (s)(

xn + xn+1

2
)ds. (3.1)

where {αn}, {γn} are the sequence in (0, 1) and {βn} is the sequence in [0, 1) satisfying αn + βn + γn = 1 and
{sn} ⊂ [s,∞)with s > 0.

(C1) limn→∞ αn = 0, Σ∞
n=1αn = ∞;

(C2)
∑∞

n=1 |βn+1 − βn| < ∞ or limn→∞
βn+1

βn
= 1;

(C3) limn→∞ sn = ∞, supn∈N |sn+1 − sn| is bounded.

Lemma 3.1. Let E be a uniformly smooth Banach space and C be a nonempty closed convex subset of E and
p ∈ Fix(S). Then the sequence {xn} generated by Algorithm 3.1 is bounded.

Proof. Let p ∈ Fix(S), we obtain

∥xn+1 − p∥

= ∥αnf(xn) + βnxn + γn
1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds− p∥

≤ αn∥γf(xn)− p∥+ βn∥xn − p∥+ γn∥ 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )− T (s)p∥ds

≤ αn(∥f(xn)− f(p)∥+ ∥f(p)− p∥) + βn∥xn − p∥+ γn∥xn+xn+1

2 − p∥

≤ αnα∥xn − p∥+ αn∥f(p)−Bp∥+ βn∥xn − p∥+ γn
2 (∥xn − p∥+ ∥xn+1 − p∥).

which implies that
(1− γn

2 )∥xn+1 − p∥ ≤ (αnα+ βn + γn
2 )∥xn − p∥+ αn∥f(p)− p∥.

Then
∥xn+1 − p∥ ≤ (1− 2(1−α)αn

1+βn+αn
)∥xn − p∥+ 2αn(1−α)

1+βn+αn

∥f(p)−p∥
1−α

≤ max{∥xn − p∥, ∥f(p)−p∥
1−α }

...
≤ max{∥x0 − p∥, ∥f(p)−p∥

1−α }.

(3.2)

Hence {xn} is bounded.

Now, set tn := 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds. Then {tn} and {f(xn)} are bounded.

Lemma 3.2. The following properties are satisfying for the Algorithm 3.1
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P1. limn→∞ ∥xn+1 − xn∥ = 0.

P2. limn→∞ ∥xn − tn∥ = 0.

P3. limn→∞ ∥T (s)tn − tn∥ = 0.

Proof. P1:We have

∥tn+1 − tn∥

= ∥ 1
sn+1

∫ sn+1

0 T (s)(xn+1+xn+2

2 )ds− 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds∥

= 1
2∥

1
sn+1

∫ sn+1

0 T (s)xn+1ds+
1

sn+1

∫ sn+1

0 T (s)xn+2ds

− 1
sn

∫ sn
0 T (s)xnds− 1

sn

∫ sn
0 T (s)xn+1ds∥

= 1
2∥

1
sn+1

∫ sn+1

0 (T (s)xn+1 − T (s)xn)ds+ ( 1
sn+1

− 1
sn
)
∫ sn
0 (T (s)xn − T (s)p)ds

+ 1
sn+1

∫ sn+1

sn
(T (s)xn − T (s)p)ds+ 1

sn+1

∫ sn+1

0 (T (s)xn+2 − T (s)xn+1)ds

+( 1
sn+1

− 1
sn
)
∫ sn
0 (T (s)xn+1 − T (s)p)ds+ 1

sn+1

∫ sn+1

sn
(T (s)xn+1 − T (s)p)ds∥

≤ 1
2∥xn+1 − xn∥+ |sn+1−sn|

sn+1
∥xn − p∥+ 1

2∥xn+2 − xn+1∥+ |sn+1−sn|
sn+1

∥xn+1 − p∥

= 1
2(∥xn+1 − xn∥+ ∥xn+2 − xn+1∥) + |sn+1−sn|

sn+1
(∥xn − p∥+ ∥xn+1 − p∥).

(3.3)

Next, we show that the sequence {xn} is asymptotically regular, i.e.,
limn→∞ ∥xn+2 − xn+1∥ = 0.
By (3.3) we estimate that
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∥xn+2 − xn+1∥

= ∥(αn+1f(xn+1) + βn+1xn+1 + γn+1
1

sn+1

∫ sn+1

0 T (s)(xn+1+xn+2

2 )ds)

−(αnf(xn) + βnxn + γn
1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds)∥

= ∥γn+1(
1

sn+1

∫ sn+1

0 T (s)(xn+1+xn+2

2 )ds− 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds)

+(γn − γn+1)
1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds+ (αn+1 − αn)f(xn)

+αn+1(f(xn+1)− f(xn)) + (βn+1 − βn)xn + βn+1(xn+1 − xn)∥

≤ (1− αn+1 − βn+1)∥tn+1 − tn∥+ |αn+1 − αn|M + αn+1∥f(xn+1)− f(xn)∥

+|βn+1 − βn|N + βn+1∥xn+1 − xn∥

≤ 1−αn+1−βn+1

2 (∥xn+1 − xn∥+ ∥xn+2 − xn+1∥)
+(1− αn+1 − βn+1)

|sn+1−sn|
sn+1

(∥xn − p∥+ ∥xn+1 − p∥) + |αn+1 − αn|M

+αn+1α∥xn+1 − xn∥+ |βn+1 − βn|N + βn+1∥xn+1 − xn∥,

where
M := sup{∥ 1

sn

∫ sn
0 T (s)(xn+xn+1

2 )ds∥+ ∥f(xn)∥},
N := sup{∥ 1

sn

∫ sn
0 T (s)(xn+xn+1

2 )ds∥+ ∥xn∥}.

Then

(1 + αn+1 + βn+1)∥xn+2 − xn+1∥ ≤ (1 + βn+1 + (2α− 1)αn+1)∥xn+1 − xn∥

+(1− αn+1 − βn+1)
2|sn+1−sn|

sn+1
(∥xn − p∥

+∥xn+1 − p∥) + 2|αn − αn+1|M + 2|βn − βn+1|N.

Therefore

∥xn+2 − xn+1∥ ≤ (1− 2(1−α)αn+1

1+αn+1+βn+1
)∥xn+1 − xn∥

+(1−βn+1−αn+1

1+αn+1+βn+1
)(2|sn+1−sn|

sn+1
)(∥xn − p∥+ ∥xn+1 − p∥)

+ 2M
1+αn+1+βn+1

|αn − αn+1|+ 2N
1+αn+1+βn+1

|βn − βn+1|.

Hence, it follows by Lemma 2.6 and (C1)-(C3) that

lim
n→∞

∥xn+1 − xn∥ = 0. (3.4)
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And similarly, we have
lim
n→∞

∥xn+2 − xn+1∥ = 0. (3.5)

Also by (3.3), (3.4),(3.5) and (C3) we have limn→∞ ∥tn+1 − tn∥ = 0.

P2: We can write

∥xn − tn∥ ≤ ∥xn+1 − xn∥+ ∥αnf(xn) + βnxn + γntn − tn∥

= ∥xn+1 − xn∥+ ∥αnf(xn) + βnxn + (1− αn − βn)tn − tn∥

≤ ∥xn − xn+1∥+ αn∥f(xn)− tn∥+ βn∥xn − tn∥,

then
(1− βn)∥xn − tn∥ ≤ ∥xn − xn+1∥+ αn∥f(xn)− tn∥.

By (C1) and (3.4), we obtain
lim
n→∞

∥xn − tn∥ = 0. (3.6)

P3: Let K := {w ∈ C : ∥w − p∥ ≤ ∥x0 − p∥, 1
1−α∥f(p) − p∥}. Then K is a nonempty bounded closed convex

subset of C which is T (s)-invariant for each s ∈ [0,+∞) and contains {xn}. So, without loss of generality, we may
assume that S := {T (s) : s ∈ [0,+∞)} is a nonexpansive semigroup on K. Since {xn} ⊂ K and K is bounded,
there exists r > 0 such thatK ⊂ Br.

∥T (s)xn − xn∥ = ∥T (s)xn − T (s) 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds+ T (s) 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds

− 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds+ 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds− xn∥

≤ ∥T (s)xn − T (s) 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds∥

+∥T (s) 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds− 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds∥

+∥ 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds− xn∥

≤ ∥xn − 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds∥

+∥T (s) 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds− 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds∥

+∥ 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds− xn∥

= 2∥ 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds− xn∥

+∥T (s) 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds− 1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds∥

Since xn+xn+1

2 ∈ C, from (3.6) and Lemma 2.5, we obtain limn→∞ ∥T (s)xn − xn∥ = 0. Therefore
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∥T (s)tn − tn∥ ≤ ∥T (s)tn − T (s)xn∥+ ∥T (s)xn − xn∥+ ∥xn − tn∥

≤ ∥tn − xn∥+ ∥T (s)xn − xn∥+ ∥xn − tn∥.

Then we have
lim
n→∞

∥T (s)tn − tn∥ = 0. (3.7)

4 Convergence Algorithm
Theorem 4.1. Let E The Algorithm defined by (4.4) convergence strongly to z ∈ Fix(S), which is a unique
solution in of the variational inequality ⟨(I − f)z, j(x− z)⟩ ≤ 0, ∀x ∈ Fix(S).

Proof. Set tni := tn and let Ḱ = {q ∈ C : µi∥tni − q∥2 = minx∈C µi∥tni − x∥2} such that µ be a Banach limit. we
claim that Ḱ consists of one point. Indeed, let g(x) = µi∥tni − x∥2 for each x ∈ C and r0 = inf{g(x) : x ∈ C}.
Since the function g on C is convex and continuous and g(tn) → ∞ as ∥tn∥ → ∞, from Lemma 2.3, there exists
z ∈ C with g(z) = r0, i.e.,Ḱ is nonempty. From Lemma 2.2, we know that z ∈ Ḱ if and only if

µi⟨x− z, j(tni − z)⟩ ≤ 0, ∀x ∈ C (4.1)

Suppose ź ∈ Ḱ and z ̸= ź. By Lemma 2.4, there exists a positive number k such that ⟨tni − z − (tni − ź), j(tni −
z)− j(tni − ź)⟩ ≥ k for each i ∈ N. Therefore, µi⟨ź − z, j(tni − z)− j(tni − ź)⟩ ≥ k > 0.
On the other hand, since z, ź ∈ Ḱ, we have µi⟨ź − z, j(tni − z)⟩ ≤ 0 and µi⟨z − ź, j(tni − ź)⟩ ≤ 0. Then we have

µi⟨ź − z, j(tni − z)− j(tni − ź)⟩ ≤ 0

This is a contradiction. Therefore z = ź, that is, Ḱ consists of one point.
Noting (3.7), we have for each s ≥ 0,

g(T (s)z) = µi∥tni − T (s)z∥2 = µi∥T (s)tni − T (s)z∥2 ≤ µi∥tni − z∥2 = g(z).

Since Ḱ consists of a point, T (s)z = z, ∀s ≥ 0, i.e., z ∈ Fix(S).
We show that lim supn→∞⟨f(z)− z, j(xn+1 − z)⟩ ≤ 0.

From xn+1 = αnf(xn) + βnxn + γn
1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds, we have

(I − f)xn = 1
αn

((βn + αn)xn + (1− βn − αn)
1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds− xn+1),

then
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⟨(I − f)xn, j(xn+1 − z)⟩

= 1
αn

⟨(βn + αn)xn + (1− βn − αn)
1
sn

∫ sn
0 T (s)(xn+xn+1

2 )ds− xn+1, j(xn+1 − z)⟩

= 1
αn

(1−βn−αn

2 ⟨ 1
sn

∫ sn
0 T (s)xnds− xn, j(xn+1 − z)⟩

+1−βn−αn

2 ⟨ 1
sn

∫ sn
0 T (s)xn+1ds− xn+1, j(xn+1 − z)⟩

−1+βn+αn

2 ⟨xn+1 − xn, j(xn+1 − z)⟩)

≤ 1−βn−αn

2αn
(∥tn − xn∥+ ∥tn+1 − xn+1∥)∥xn+1 − z∥ − 1+βn+αn

2αn
∥xn+1 − xn∥∥xn+1 − z∥

By (3.4)and (3.6), we obtain
lim sup
n→∞

⟨f(z)− z, j(xn+1 − z)⟩ ≤ 0. (4.2)

Now we prove that xn is strongly convergence to z.
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∥xn+1 − z∥2 = αn⟨f(xn)− z, j(xn+1 − z)⟩+ βn⟨xn − z, j(xn+1 − z)⟩

+⟨(1− βn − αn)(tn − z), j(xn+1 − z)⟩

≤ αn(⟨f(xn)− f(z), j(xn+1 − z)⟩+ ⟨f(z)− z, j(xn+1 − z)⟩)

+βn∥xn − z∥∥xn+1 − z∥+ (1− βn − αn)∥tn − z∥∥xn+1 − z∥

≤ αnα∥xn − z∥∥xn+1 − z∥+ αn⟨f(z)− z, j(xn+1 − z)⟩

+βn∥xn − z∥∥xn+1 − z∥+ (1− βn − αn)∥xn+xn+1

2 − z∥∥xn+1 − z∥

≤ αnα∥xn − z∥∥xn+1 − z∥+ αn⟨f(z)− z, j(xn+1 − z)⟩

+βn∥xn − z∥∥xn+1 − z∥+ 1−βn−αn

2 (∥xn − z∥+ ∥xn+1 − z∥)∥xn+1 − z∥

= 1+βn−αn(1−2α)
2 ∥xn − z∥∥xn+1 − z∥+ αn⟨f(z)− z, j(xn+1 − z)⟩

+1−βn−αn

2 ∥xn+1 − z∥2

≤ 1+βn−αn(1−2α)
4 (∥xn − z∥2 + ∥xn+1 − z∥2) + αn⟨f(z)− z, j(xn+1 − z)⟩

+1−βn−αn

2 ∥xn+1 − z∥2

≤ 1+βn−αn(1−2α)
4 ∥xn − z∥2 + 3−βn−αn(3−2α)

4 ∥xn+1 − z∥2

+αn⟨f(z)− z, j(xn+1 − z)⟩.

This implies that

∥xn+1 − z∥2 ≤ 1+βn−αn(1−2α)
1+βn+αn(3−2α)∥xn − z∥2 + 4αn

1+βn+αn(3−2α)⟨f(z)− z, j(xn+1 − z)⟩

≤ (1− 4(1−α)αn

1+βn+αn(3−2α))∥xn − z∥2 + 4αn
1+βn+αn(3−2α)⟨f(z)− z, j(xn+1 − z)⟩

= (1− kn)∥xn − z∥2 + 4αnln,

(4.3)

where kn = 4(1−α)αn

1+βn+αn(3−2α) and ln = ⟨f(z)− z, j(xn+1 − z)⟩.
Since limn→∞ αn = 0 and Σ∞

n=0αn = ∞, it is easy to see that limn→∞ kn = 0, Σ∞
n=0kn = ∞ and lim supn→∞ ln ≤ 0.

Hence, from (4.2) and (4.3) and Lemma 2.6, we deduce that xn → z.

Corollary 4.1. Let E be a uniformly smooth Banach space and C be a nonempty closed convex subset of E.
Let S = {T (s) : s ∈ [0,+∞)} be a nonexpansive semigroup on C such that Fix(S) ̸= ∅. Also f : C → C be a
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α-contraction mapping. For given x0 ∈ C arbitrary, let the sequence {xn} be generated by:

xn+1 = αnf(xn) + (1− αn)
1

sn

∫ sn

0
T (s)(

xn + xn+1

2
)ds. (4.4)

where {αn} is a sequence in (0, 1) and {sn} ⊂ [s,∞)with s > 0.

(C1) limn→∞ αn = 0, Σ∞
n=1αn = ∞;

(C2)
∑∞

n=1 |αn − αn−1| < ∞ or limn→∞
αn+1

αn
= 1;

(C2) limn→∞ sn = ∞, supn∈N |sn+1 − sn| is bounded.

Then the sequence {xn} converges strongly to z ∈ Fix(S), which is a unique solution in of the variational in-
equality ⟨(I − f)z, j(x− z)⟩ ≤ 0, ∀x ∈ Fix(S).

5 Numerical example
In this section, we give some examples and numerical results for supporting our main theorem. All the numerical
results have been produced in Matlab 2017 on a Linux workstation with a 3.8 GHZ Intel annex processor and 8
Gb of memory

Example 5.1. Let H = R, the set of all real numbers, with the inner product defined by ⟨x, y⟩ = xy, ∀x, y ∈ R,
and induced usual norm | . |. Let C = [−2, 1]; Let f(x) = 1

10(x− 3) and let, for each x ∈ C, T (s)x = 1
1+2sx. Then

there exist unique sequences {xn} ⊂ R generated by the iterative scheme

xn+1 =
1

30n+ 20
(xn − 3) +

2n+ 1

3n+ 2
xn +

n

3n+ 2

1

sn

∫ sn

0

1

1 + 2s
(
xn + xn+1

2
)ds (5.1)

where αn = 1
3n+2 , βn = 2n+1

3n+2 , γn = n
3n+2 and sn = 2n. Then {xn} converges to {0} ∈ Fix(S). f is contraction

mapping with constant α = 1
9 . It is easy to observe that Fix(S) = {0} ̸= ∅. After simplification, scheme (5.1)

reduce to

xn+1 =
(20n+11
30n+20 + n

24n2+16n
ln(1 + 4n))xn − 3

30n+20

1− n
24n2+16n

ln(1 + 4n)
.

Following the proof of Theorem 4.1, we obtain that {xn} converges strongly to w = {0} ∈ Fix(S).

Example 5.2. Let H = R2, the set of all real numbers, with the inner product defined by ⟨(x, y), (z, t)⟩ = xz +

yt, ∀(x, y), (z, t) ∈ R2, and induced usual norm ∥(x, y)∥ = (x2 + y2)
1
2 . Let C = [0, 4] × [−2, 1]; Let for each

(x, y) ∈ R2, we define f(x, y) = (15x,
1
6y) and let, for each (x, y) ∈ C, T (s)(x, y) = e−2s(x, y). Then there exist

unique sequences {(xn, yn)} ⊂ R2 generated by the iterative scheme

(xn+1, yn+1) =
3

6n+ 2
(
1

5
xn,

1

6
yn) + (

2

3
− n+ 1

6n+ 2
)(xn, yn) +

15n− 2

18n+ 6

1

sn

∫ sn

0

e−2s(
(xn+1, yn+1) + (xn, yn)

2
)ds (5.2)

where αn = 3
6n+2 , βn = 2

3 − n+1
6n+2 , γn = 15n−2

18n+6 and sn = n. Then {(xn+1, yn+1)} converges to {(0, 0)} ∈ Fix(S). f
is contraction mapping with constant α = 1

7 . It is easy to observe that Fix(S) = {(0, 0)} ̸= ∅. After simplification,
scheme (5.2) reduce to

xn+1 =
45n+14
90n+30 − 15n−2

72n2+24n
e−2n

1 + 15n−2
72n2+24n

e−2n
xn,
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yn+1 =
18n+5
36n+12 − 15n−2

72n2+24n
e−2n

1 + 15n−2
72n2+24n

e−2n
yn,

Following the proof of Theorem 4.1, we obtain that {(xn, yn)} converges strongly to w = {(0, 0)} ∈ Fix(S).
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