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ABSTRACT

The population growth, is increase in the number of individuals in population and it depends

on some random environment effects. There are several different mathematical models for

population growth. These models are suitable tool to predict future population growth. One

of these models is logistic model. In this paper, by using Feynman-Kac formula, the Ado-

mian decomposition method is applied to compute the moments for the solution of logistic

stochastic differential equation.

1 Introduction
The population growth is the increase in number of individual over time. Let assume that a population contains
N(t) individuals at time t. In deterministic exponential growth model [2] (suggested by Thomas Robert Malthus
(1766-1834)) it is supposed that the number of births and deaths are fractions of total population. Let the number
of births and deaths in time interval [t, t + 1] are α and β respectively. Therefore, we can write the increase in
population for time interval [t, t+ 1] in terms of N(t), α, and β as follows

N(t+ 1)−N(t) = αN(t)− βN(t)

= N(t)(α− β). (1.1)

Now by using given initial condition N(0) = N0, we get

N(t) = N0(1 + α− β)t = N0R
t, R = 1 + α− β. (1.2)

Above relation can be written in differential equation as
dN(t)

dt
= rN(t), r = lnR,

N(0) = N0,

(1.3)

with exact solution
N(t) = N0e

rt. (1.4)
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In deterministic logistic model (suggested by Pierre Francois Verhust in nineteen century (1804-1849)), the
population will not increase forever (for example because of insufficient resourses) and has environment limiting
N ( i.e. lim

t→∞
N(t) = N) and given by

dN(t)

dt
= rN(t)

(
1− N(t)

N

)
. (1.5)

In this model the rate of growth decrease as the limiting population (i.e. N) is approached and for N(t) << N ,
deterministic logistic model is similar to exponential growth model. The model can be solved by separation of
variables as

N(t) =
N

1 +
(
N−N0
N0

)
e−kt

. (1.6)

There are a great number of different deterministic population model in the literature (for instance, Von Berta-
lanffy growth model, Richard growth model, Blumberg growth model, Gompertz growth model, Generic growth
model, generalized logistic model). In general, population growth models have the following form

dN(t)

dt
= N(t)F (t,N(t)). (1.7)

Since the growth rate at time t is not exactly definite, aforesaid models can be improved by considering some
random environment effects [3]. Therefore populationmodels can be improved by considering both deterministic
and stochastic terms as

dN(t) = f(t,N(t))dt+ g(t,N(t))
dW (t)

dt
dt, (1.8)

where dW (t) is the differential of Brownian motion and
dW (t)

dt
called withe noise.

Feynman-Kac formula named after Richard Feynman and Mark Kac, expresses a close connection between
the expectations for solutions of SDEs and partial differential equations (PDEs) [4,5]. Let {X(t)}t⩾0 be a solution
of the SDE

dX(t) = a(t,X(t))dt+ σ(t,X(t))dW (t). (1.9)

Assume that f and ρ be given functions. Fix a final time T > 0 and define a new function V (t, x) for t ∈ [0, T ] by

V (t, x) = e−
∫ T
t ρ(u)duE [f(X(T )|X(t) = x] . (1.10)

Assume that V (t, x) < ∞ for all (t, x). Then V = V (t, x) solves the following boundary value problem
∂V (t, x)

∂t
+
σ2(t, x)

2

∂2V (t, x)

∂x2
+ a(t, x)

∂V (t, x)

∂x
= ρ(t)V,

V (T, x) = f(x).

(1.11)

Consequently, by solving the boundary value problem (11), the expectations for solutions of SDEs can be easily
computed.

The paper is organized as follows. In section 2, some preliminary in stochastic calculus are reviewed. In
section 3, for convenience of the reader, a short review of the ADM is presented. In section 4, the moments for
solution of the logistic stochastic differential equation are obtained. In section 5, two examples are presented.
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The convergence of the proposed method in consider for examples. Finally, in section 5, a short conclusion is
expressed.

2 Preliminaries to stochastic calculus and stochastic logistic model
In this section, some preliminaries to stochastic calculus are presented. For more details see [4,5] and references
therein.

Definition 2.1. The normal distribution N(µ, σ2), is the probability distribution defined by the following den-
sity function

g(x;µ, σ) =
1√
2πσ

exp
(
−(x− µ)2

2σ2

)
, −∞ < x < ∞.

Remark 1 If x is N(µ, σ2) then E[x] = µ and V ar(x) = σ2.

Definition 2.2. The lognormal distribution LN(µ, σ2) is the distribution of y = ex, where x is N(µ, σ2). The
probability distribution function of y is given by

f(y;µ, σ) =
1

yσ
√
2π

exp
(
−(lnx− µ)2

2σ2

)
.

Remark 2 If y is LN(µ, σ2) then E[y] = eµ+
1
2
σ2

and V ar[y] = e2µ+σ2
(
eσ

2 − 1
)
.

Definition 2.3. Brownian motion is a stochastic process {W (t)|t ∈ [0,∞]}with the following properties:
1. W (0) = 0.
2. It has a continuous path.
3. For all non-overlapping time intervals [t1, t2], and [t3, t4] the random variables W (t2) − W (t1) and W (t4) −
W (t3) are independent (i.e. W (t2)−W (t1)⊥W (t4)−W (t3)).
4. The incrementW (t2)−W (t1) is a normal variable, with zero mean and variance t2− t1 (i.e. W (t2)−W (t1) ∼
N(0, t2 − t1)).

Theorem 2.1. LetX(t) be an Itô process given by

dX(t) = udt+ vdW (t). (2.1)

Let g(t, x) ∈ C2 ([0,∞)× R). Then Y (t) = g(t,X(t)) is again an Itô process, and

dY (t) =
∂g(t,X(t))

∂t
dt+

∂g(t,X(t))

∂x
dX(t) +

1

2

∂2g(t,X(t))

∂x2
(dX(t))2, (2.2)

where (dX(t))2 = (dX(t)).(dX(t)) is computed according to the rules
dt.dt = dt.dW (t) = dW (t).dt = 0, and dW (t).dW (t) = dt. Proof: see [4,5].

Remark 3 By using theorem 1, for g(t, x) = lnx, we get

d lnN(t) =
1

N(t)
dN(t) +

1

2

−1

N2(t)
(dN(t))2. (2.3)
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On the other hand, using properties dt.dW (t) = dW (t).dt = dt.dt = 0, and
dW (t).dW (t) = dt then (dN(t))2 can be written as

(dN(t))2 = β2dt. (2.4)

Now (14) becomes

d lnN(t) =
1

N(t)
dN(t)− 1

2
β2dt. (2.5)

Consequently, integrating both sides of (16) on [0, t] gives us∫ t

0

dN(s)

N(s)
= lnN(t)− lnN0 +

β2

2
t. (2.6)

Definition 2.4. The logistic model can be improved by considering some environment effects or a noise as

dN(t) = rN(t)(K −N(t))dt+ βN(t)dW (t). (2.7)

Theorem 2.2. Let {
dN(t) = rN(t)(K −N(t))dt+ βN(t)dW (t),

N(0) = N0.
(2.8)

Then the exact solution to equation (19) is given by

N(t) =

(
1

r

)
N0 exp

((
K − 1

2β
2
)
t+ βW (t)

)
1 +N0

∫ t
0 exp

((
K − 1

2β
2
)
s+ βW (s)

)
ds

. (2.9)

Proof: The equation (19) changes to the following form

dN(t)

N(t)
= r(K −N(t))dt+ βdW (t). (2.10)

Integrating both sides of (21) on [0, t] and using (17) gives us

ln
(
N(t)

N0

)
+

β2

2
t = −r

∫ t

0
N(s)ds+ βW (t) + rKt,

ln
(
N(t)

N0

)
+ r

∫ t

0
N(s)ds = βW (t) + rKt− β2

2
t,

ln
(
N(t)

N0

)
+ r

∫ t

0
N(s)ds = βW (t) +

(
rK − β2

2

)
t,

N(t)

N0
exp

(
r

∫ t

0
N(s)ds

)
= exp

(
βW (t) +

(
rK − β2

2

)
t

)
. (2.11)
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Now integrating both sides of (22) on [0, t] result in∫ t

0
N(s) exp

(
r

∫ s

0
N(u)du

)
ds = N0

∫ t

0
exp

(
βW (s) +

(
rK − β2

2

)
s

)
ds,∫ t

0
exp

(
r

∫ s

0
N(u)du

)
d

(∫ s

0
N(u)du

)
= N0

∫ t

0
exp

(
βW (s) +

(
rK − β2

2

)
s

)
ds,

1

r
exp

(
r

∫ s

0
N(u)du

) ∣∣t
0

= N0

∫ t

0
exp

(
βW (s) +

(
rK − β2

2

)
s

)
ds,

1

r

(
exp

(
r

∫ t

0
N(u)du

)
− 1

)
= N0

∫ t

0
exp

(
βW (s) +

(
rK − β2

2

)
s

)
ds.

(2.12)

Therefore, we get

exp
(
r

∫ t

0
N(u)du

)
= 1 + rN0

∫ t

0
exp

(
βW (s) +

(
rK − β2

2

)
s

)
ds,∫ t

0
N(u)du =

1

r
ln

(
1 + rN0

∫ t

0
exp

(
βW (s) +

(
rK − β2

2

)
s

)
ds

)
. (2.13)

Finally, by differentiating (24), (20) is obtained.

3 The Adomian Decomposition Method (ADM)
Consider the following differential equation

Lu+Ru+Nu = g, (3.1)

where L is the highest order derivative which assumed to be easily invertible, R is a linear differential operator
of less order than L, Nu represents the nonlinear terms, and g is source term. Applying L−1 to both side of the
relation (25) and using initial conditions results in

u = f − L−1(Ru)− L−1(Nu), (3.2)

where the function f represents the terms arising from integrating the source term g and from using the given
conditions. Let u =

∑∞
n=0 un. In this method, the components u0, u1, u2, · · · are determined recursively as follows

[1,6-14] {
u0 = f,

uk = −L−1(Ruk−1)− L−1(Nuk−1), k ∈ N.
(3.3)

In the next section, by using the Feynman-Kac formula, the ADM is applied to obtained an explicit formula for
the moments of the square-root diffusion process.
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4 Main results
By using Feynman-Kac formula, to compute the n-moment for the solution of logistic stochstic differential equa-
tion, the following PDE is achieved{

∂V (t,x)
∂t + 1

2σ
2x2∂

2V (t,x)
∂x2 + x(α− βx)∂V (t,x)

∂x = 0,

V (T, x) = f(x) = xn.
(4.1)

Let L = ∂
∂t , R = 1

2σ
2x2 ∂2

∂x2 + x(α − βx) ∂
∂x , and N = g = 0. Integrating both sides of the relation (28) on [t, T ]

results in ∫ T

t

∂V (s, x)

∂s
ds+

1

2
σ2x2

∫ T

t

∂2V (s, x)

∂x2
ds+ x(α− βx)

∫ T

t

∂V (s, x)

∂x
ds = 0. (4.2)

Therefore, by using initial condition V (T, x) = f(x) = xn, the relation (29) simplifies as

V (t, x) = xn +
1

2
σ2x2

∫ T

t

∂2V (s, x)

∂x2
ds+ x(α− βx)

∫ T

t

∂V (s, x)

∂x
ds. (4.3)

Let V (t, x) =
∑∞

n=0 Vn(t, x). According to the relation (27), the components V0(t, x), V1(t, x),
V2(t, x), · · · are determined as follows{

V0(t, x) = xn,

Vk(t, x) =
1
2σ

2x2
∫ T
t

∂2Vk−1(s,x)
∂x2 ds+ x(α− βx)

∫ T
t

∂Vk−1(s,x)
∂x ds, k ∈ N.

(4.4)

Subsequently, the n-term approximate can be used to approximate the solution.
The following program, written by Maple, generates all of the components , V1(t, x),

V2(t, x), · · · in the relation (31) for any given n, a, b, c, t and T . In this program, it is supposed that alpha = 1,
beta = 1, sigma = 1, T = 1, t = 0, n = 15, and V0(t, x) = x2 which can easily changed by the user.
alpha:=1;
beta:=1;
sigma:=1;
T:=1;
t:=1;
n:=15;
v[0]:=x**2;
v[0]:=unapply(v[0],x);
for i from 1 to n do
v[i]:=simplify(sigma**2*x**2*diff(v[i-1](x),x,x)*((-1)**i*(T-t)**(i-1)/(i-1)!)
+(alpha-beta*x)*diff(v[i-1](x),x)*((-1)**i*(T-t)**(i-1)/(i-1)!));
v[i]:=unapply(v[i],x);
od;
approximate:=add(v[i](x),i=0..n);
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5 Numerical examples
Example 5.1. As a first example, consider the following stochastic differential equation{

dN(t) = N(t)(1−N(t))dt+N(t)dW (t),

X(0) = x ⩾ 0
(5.1)

According to the relation (28), to compute the secondmoment ofN(t), the following partial differential equation
is considered {

∂V (t,x)
∂t + x∂2V (t,x)

∂x2 + (1− x)∂V (t,x)
∂x = 0,

V (T, x) = x2
(5.2)

Let T = 1. Thus, the first few components, calculated by the formula (31), are as follows

V0 = x2,

V1 = 2x3 − 4x2,

V2 = −6x4 + 26x3 − 16x2,

V3 = −12x5 + 87x4 − 133x3 + 32x2,

V4 = 10x6 − 108x5 + 597
2 x4 − 1261

6 x3 + 64
3 x

2,

V5 =
5
2x

7 − 75
2 x

6 + 649
4 x5 − 10813

48 x4 + 11605
144 x3 − 32

9 x
2,

V6 =
−7
48 x

8 + 139
48 x

7 − 1729
96 x6 + 1859

45 x5 − 184613
5760 x4 + 105469

17280 x
3 − 16

135x
2,

V7 =
−7
4320x

9 + 1421
34560x

8 − 5999
17280x

7 + 12311
10368x

6 − 61919
38400x

5 + 1019759
1382400x

4−
953317

12441600x
3 + 4

6075x
2,

...

(5.3)

Finally, the series have been obtained is convergent because the ratio of ||Vi||∞ to ||Vi−1||∞ for i = 1, 2, 3, · · ·
decrease to zero [14]. Below, these ratios for the first few are expressed

||V1||∞
||V0||∞ = 4.0,
||V2||∞
||V1||∞ = 6.5,
||V3||∞
||V2||∞ = 5.115384615,
||V4||∞
||V3||∞ = 2.244360902,
||V5||∞
||V4||∞ = 0.7546761586,
||V6||∞
||V5||∞ = 0.1833841980,
||V7||∞
||V6||∞ = 0.03903245192,

...

(5.4)

Example 5.2. As a second example, consider the following stochastic differential equation{
dN(t) = N(t)(10− 2N(t))dt+ 4N(t)dW (t),

X(0) = x ⩾ 0.
(5.5)

According to the relation (28), to compute the third moment ofX(t), the following partial differential equation
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is considered {
∂V (t,x)

∂t + 16x∂2V (t,x)
∂x2 + (10− 2x)∂V (t,x)

∂x = 0,

V (T, x) = x3.
(5.6)

Let T = 2. Thus, the first few components, calculated by the formula (31), are as follows

V0 = x3,

V1 = 6x4 − 126x3,

V2 = −48x5 + 2148x4 − 1587x3,

V3 = −240x6 + 17472x5 − 296796x4 + 1000188x3,

V4 = 480x7 − 50720x6 + 1473168x5 − 12476300x4,

V5 = 280x8 − 40200x7 + 1755020x6 − 80610320

3
x5 +

377565661

3
x4 − 110270727x3,

V6 =
−112

3
x9 +

20902

3
x8 − 424072x7 +

91230890

9
x6 − 4105792961

45
x5 +

44790053219

180
x4

−2315685267

20
x3,

V7 =
−14

15
x10 +

29596

135
x9 − 2388211

135
x8 +

163613479

270
x7 − 28738133261

3240
x6 +

67030145917

1350
x5

−5258169675613

64800
x4 +

16209796869

800
x3,

...

(5.7)

Finally, the series have been obtained is convergent because the ratio of ||Vi||∞ to ||Vi−1||∞ for i = 1, 2, 3, · · ·
decrease to zero [14]. Below, these ratios for the first few are expressed

||V1||∞
||V0||∞

= 126.0,

||V2||∞
||V1||∞

= 126.0,

||V3||∞
||V2||∞

= 63.0,

||V4||∞
||V3||∞

= 21.0,

||V5||∞
||V4||∞

= 5.991979238,

||V6||∞
||V5||∞

= 1.977141896,

||V7||∞
||V6||∞

= 0.3260997884,

...

(5.8)

6 Conclusions
In this paper, by using the Feynman-Kac formula, the ADM is applied to compute the moments for solution of
logistic stochastic differential equation. In thismethod, the solution is found in the formof a convergent series and
usually converges to the exact solution. Moreover, the terms of the series can be computed easily. similarly, other
semi-analytic methods such as homotopy perturbation method, and homotopy analysis method can be applied to
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compute the moments for solution of logistic differential equation.
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