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1 Introduction

It is well know that the conception of fuzzy sets, firstly defined by Zadeh
in 1965. Fuzzy set theory provides us with a framework which is wider
than that of classical set theory. Various mathematical structures, whose
features emphasize the effects of ordered structure, can be developed on
the theory. The theory of fuzzy sets has become an area of active research
for the last forty years. On the other hand, the notion of fuzzyness has
a wide application in many areas of science and engineering, chaos con-
trol, nonlinear dynamical systems, etc. In physics, for example, the fuzzy
structure of space time is followed by the fat that in strong quantum
gravity regime space time points are determined in a fuzzy manner and
therefore the impossibility of determining position of particles gives a
fuzzy structure.

In 1984, Kataras [16] defined a fuzzy norm on a linear space and at
the same year Wu and Fang[30]also introduced a notion of fuzzy normed
space and gave the generalization of the Kolomogroff normalized theorem
for a fuzzy topological linear space. In [5], Biswas defined and studied
fuzzy inner product space in linear space. Since than some some math-
ematicians have defined fuzzy metrics and norms on a linear space from
various points of view [6,9, 27, 29]. In 1994, Cheng and Mordeson intro-
duced a definition of fuzzy norm on a linear space in such a manner that
the corresponding induced fuzzy metric is of Kramosil and Michalek type
[17]. In 2003, Bag and Samanta [3] modified the definition of Cheng and
Mordeson [7] by removing a regular condition. They also established a
decomposition theorem of fuzzy norm into a family of crisp norms and
investigated some properties of fuzzy norms (see [4]). Following [3], we
give the following notion of a fuzzy norm.

Definition 1.1. Let X be a real linear space. A function N : X ×R→
[0, 1] (the so-called fuzzy subset) is saied fuzzy norm on X if for all
x, y ∈ X and all s, t ∈ R :
(FN1) N(x, c) = 0 for c ≤ o
(FN2) N(x, c) = 1 if and only if x = 0 for every c ∈ R+,
(FN3) N(cx, t) = N(x, t

|c|) for every c 6= 0 and t ∈ R+,
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(FN4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)} for every s, t ∈ R+ ,
(FN5) N(x, .) is non-decreasing on 1R, and limt→∞N(x, t) = 1.
(FN6) For x 6= 0, N(x, .) is (upper semi)continuous on R.
The pair (X,N) is called a fuzzy normed linear space. One may regard
N(x, t) as the truth value of the statement thwe norm of x is less than
or equal to thereal number t

Example 1.1 Let (X, ‖.‖) be a normed linear space. Then:

N(x, t) =


t

t+‖x‖ , t > 0, x ∈ X,

0 t ≤ 0, x ∈ X

is a fuzzy norm on X.

Example 1.2 Let (X, ‖.‖) be a normed linear space. Then:

N(x, t) =



0 t ≤ 0,

t
‖x‖ , 0 < t ≤ ‖x‖,

1. t ≥ ‖x‖

is a fuzzy norm on X.

Lemma 1.1 Let (X,N) be a norm fuzzy space. Define the function N ′ :
X ×R→ [0, 1] as follows:

N ′(x, t) =


∨{α ∈ (0, 1) : ‖x‖α ≤ t} (x, t) 6= (0, 0)

0 (x, t) = (0, 0)

Then
a)N ′ is a norm fuzzy on X.
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b) N = N ′.

Example 1.3 Let X be the Real or Complex vector space and let N
define on X ×R as follows :

N(x, t) =


1 t > |x|

0 t ≤ |x|

Definition 1.1 Let W be a nonempty subset of a fuzzy normed space
(X,N). For x ∈ X, t > 0, let

d(W,x, t) =
∨
y∈W

N(y − x, t).

An element y0 ∈ W is said to be a fuzzy best approximation point of x
from W if

N(y0 − x, t) = d(W,x, t).

Let W be a nonempty set of a fuzzy normed space (X,N). For x ∈ X,
we shall denote the set of all elements of fuzzy best approximation points
of x from W by

P F
W (x) = {y ∈ W : d(W,x, t) = N(y − x, t) for every t ∈ R}.

If each x ∈ X has at least (respectively exactly) one fuzzy best approx-
imation in W , then W is called a fuzzy proximinal (respectively fuzzy
Chebyshev) set.

Suppose W be a nonempty subset of a fuzzy normed space (X,N). For
ω0 ∈ W , we define

(P F
W )−1(ω0) = {x ∈ X : ω0 ∈ P F

W (x)}
= {x ∈ X : d(W,x, t) = N(ω0 − x, t) for every t ∈ R},

which is called ω0-fuzzy farthest points set.
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Definition 1.2 Let (X,N) be a fuzzy normed space. A non-empty subset
W of X is called fuzzy bounded (F -bounded), if there exists a t > 0 and
0 < r < 1 such that N(x, t) > 1− r for all x ∈ W .

Definition 1.3 Let W be a nonempty F -bounded subset of a fuzzy normed
space (X,N).

For x ∈ X, t ∈ R, let

δ(W,x, t) =
∧
y∈W

N(y − x, t).

An element qFW (x) ∈ A is said to be a fuzzy farthest point of x from A if

N(qFW (x)− x, t) = δ(W,x, t).

We shall denote the set of all elements of Fuzzy farthest points of x from
W by F F

W (x); i.e.,

F F
W (x) = {y ∈ W : δ(W,x, t) = N(y − x, t) for every t ∈ R}.

If each x ∈ X has at least one fuzzy farthest in A, then W is called a
fuzzy remotal fuzzy set.
If each x ∈ X has an unique fuzzy farthest in A, then W is called a fuzzy
uniquely remotal fuzzy set.

Suppose W is a nonempty and F -bounded subset of a fuzzy normed space
(X,N). For ω0 ∈ W , we define

(F F
W )−1(ω0) = {x ∈ X : ω0 ∈ F F

W (x)}
= {x ∈ X : δ(W,x, t) = N(ω0, x, t) for every t ∈ R},

which is called ω0-fuzzy farthest points set.
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2 ω0-Fuzzy best approximation Points and ω0-Fuzzy farthest
Points in Fuzzy Normed Spaces

In this section we consider ω0-fuzzy best approximation points and ω0-
fuzzy Farthest points in fuzzy normed spaces.

Example 2.1 Suppose X = R, A = [0, 1] and N(x, t) = t
t+|x| . For

arbitrary t > 1, put r = 1
1+t

. Then for every x ∈ A, N(x, t) > 1− r, and
A is F -bounded.
For x > 1, we have

δ(A, x, t) =
t

t+ x
= N(x− 0, t),

and

(F F )−1(0) = {x|x > 1}.
For x < 0, we have

δ(A, x, t) =
t

t+ x− 1
= N(x− 1, t),

and

(F F )−1(1) = {x|x < 0}.

Theorem 2.1 Let W be a fuzzy subspace of a fuzzy normed space (X,N, ∗).
i) If ω0 ∈ W , then (P F

W )−1(ω0) = ω0 + (P F
W )−1(0).

ii) If w ∈ W , then d(W,w, t) = 1.
iii) If w ∈ W , then δ(W,w, t) ≤ d(W,w, t), also δ(W,w, t) ≤ 1.

Proof. i) x ∈ ω0 + (P F
W )−1(0) if and only if x− ω0 ∈ (P F

W )−1(0). Then

N(x− ω0, t) = d(W,x− ω0, t)

=
∨
g∈W

N(g − x+ ω0, t)

=
∨
w∈W

N(ω − x, t)

= d(W,x, t).
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If and only if x ∈ (P F
W )−1(0).

ii) We know that for y ∈ W , N(y − w, t) ≤ 1. Therefore d(W,w, t) ≤ 1.
Also N(w − w, t) = 1 and so d(W,w, t) ≥ 1. Then d(W,w, t) = 1.

iii) It is trivial.

Theorem 2.2 Let W be a subspace of fuzzy normed linear space X and
ω0 ∈ W . Then W is fuzzy proximinal if and only if X = W+(P F

W )−1(ω0).

Proof. Suppose W is fuzzy proximinal. Then for every x ∈ X, there
exists a ω ∈ P F

W (x). Therefore x−ω ∈ (P F
W )−1(0). From Theorem 3.2(i),

x − ω ∈ (P F
W )−1(ω0) − ω0. Then x − ω + ω0 ∈ (P F

W )−1(ω0), and so x ∈
W + (P t

W )−1(ω0).
Conversely, If X = W + (P F

W )−1(ω0) and x ∈ X, then for some ω ∈ W
and u0 ∈ (P F

W )−1(ω0), we have x = ω+u0. Since x−ω−ω0 ∈ (P F
W )−1(0).

Therefore ω + ω0 ∈ P t
W (x), and W is fuzzy proximinal.

Theorem 2.3 Let W be a fuzzy subspace of fuzzy normed linear space X
and ω0 ∈ W . Then W is fuzzy Chebyshev if and only if X = W

⊕
(P F

W )−1(0)
(the mains representation sum two element is unique).

Proof. Suppose W is fuzzy Chebyshev, then W is fuzzy proximinal, there-
fore X = W + (P F

W )−1(0). If x = ω1 + x1 = ω2 + x2 for ω1, ω2 ∈ W and
x1, x2 ∈ (P F

W )−1(0). Then ω1−ω2 = x1−x2 ∈ W . From Theorem 3.2(ii),
W

⋂
(P F

W )−1(0) = {0}. We have x1 = x2 and ω1 = ω2.
Conversely, If X = W

⊕
(P F

W )−1(0), then W is fuzzy proximinal. For
x ∈ X, if ω1, ω2 ∈ P F

W (x). Then ω̂1 = x − ω1, ω̂2 = x − ω2 ∈ (P F
W )−1(0).

Therefore x = ω1 + ω̂1 = ω2 + ω̂2, ω1 = ω2 and ω̂1 = ω̂2. Therefore W is
fuzzy Chebyshev.

Theorem 2.4 Let W be a subset and F -bounded of fuzzy normed linear
space X. Then W is fuzzy remotal if and only if X = W + (F F

W )−1(0).

Proof. Suppose W is fuzzy remotal, then for every x ∈ X there exists a
ω0 ∈ F F

W (x). Therefore x− ω0 ∈ (F F
W )−1(0), and so x ∈ ω0 + (P F

W )−1(0).
Therefore x ∈ W + (P F

W )−1(0) and X = W + (F F
W )−1(0).
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If X = W + (F F
W )−1(0), it is clear that W is fuzzy remotal.

Theorem 2.5 Let W be a fuzzy subspace of fuzzy normed linear space
X. If W is fuzzy proximinal and (P F

W )−1(0) is singleton, then W is fuzzy
Chebyshev.

Proof. Suppose (P F
W )−1(0) = {x0} and x ∈ X. If ω1, ω2 ∈ P F

W (x). Then
x− ω1, x− ω2 ∈ (P F

W )−1(0), x− ω1 = x− ω2 = x0, and so ω1 = ω2.

Theorem 2.6 Let W be a subset and f -bounded of fuzzy normed linear
space X. If W is fuzzy remotal and (F F

W )−1(0) is singleton, then W is
fuzzy uniquely remotal set.

Proof. Suppose (F F
W )−1(0) = {x0} and x ∈ X. If ω1, ω2 ∈ F F

W (x). Then
x− ω1, x− ω2 ∈ (F F

W )−1(0) and x− ω1 = x− ω2 = x0 and so ω1 = ω2.

Theorem 2.7 Let W be a subset of fuzzy normed linear space X and
ω0 ∈ W . If (P F

W )−1(ω0) = X, then W is a singleton set and W = {ω0}.

Proof. Suppose there exists a ω1 ∈ W and ω1 6= ω. Then ω1 ∈ (P F
W )−1(ω0).

Then
d(W,ω1, t) = N(ω1 − ω0, t).

Since ω1 ∈ W , from Theorem 3.2(ii), we have d(W,ω1, t) = 1, therefore
N(ω1 − ω0, t) = 1, and so ω1 = ω0.

3 ω0-fuzzy best Approximation Points in Fuzzy Hilbert Spaces

In this section we consider ω0-fuzzy best approximation points in fuzzy
Hilbert spaces.In the First step we give the new modified definition of
a fuzzy inner product space and then we prove some interesting results
which hold in any fuzzy inner product space. Throughout this paper we
let

H(t) =


1 t > 0,

0 t ≤ 0.
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Definition 3.1 A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is said to be
a continuous t-norm if ([0, 1], ∗) is a topological monoid with unit 1 such
that a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d (a, b, c, d ∈ [0, 1]).

Definition 3.2 A fuzzy inner product space (FIP-space) is a triplet (X;F ; ∗),
where X is a real vector space, ∗ is a continuous t-norm, F is a fuzzy set
on X2 × R and the following conditions hold for every x; y; z ∈ X and
s; t; r ∈ R:
(FI-1) F (x;x; 0) = 0 and F (x;x; t) > 0, for each t > 0
(FI-2) F (x;x; t) 6= H(t) for some t ∈ R if and only if x 6= 0
(FI-3) F (x; y; t) = F (y;x; t))
(FI-4) For any real number α, F (αx; y; t) = F (x; y; t

α
) if α > 0,

F (αx; y; t) = H(t) if α = 0 and F (αx, y, t) = 1−F (x; y; t
−α) if α < 0

(FI-5) F (x;x; t) ∗ F (y; y; s) ≤ F (x+ y;x+ y; ; t+ s)
(FI-6) sups+r=t(F (x; z; s) ∗ F (y; z; r)) = F (x+ y; z; t)
(FI-7) F (x; y; .) : R→ [0; 1] is continuous on R\{0}
(FI-8) limt→+∞F (x; y; t) = 1.

In the following we shall present a list of known lemmas and definitions
which are needed in the proof of the main results.

Lemma 3.1 Let (X,F, ∗) be a FIP-space. Then it is a fuzzy normed
space. We can define

N(x, t) =


F (x, x, t2) t > 0,

0 t ≤ 0.

Lemma 3.2 Suppose that (X,F, ∗) be a FIP-space, where ∗ is a strong
t-norm and for each x, y ∈ X, define < ., . >: X ×X → X → R by

< x, y >= sup{t ∈ R : F (x, y, t) < 1}.

Then (X,< ., . >) is an inner product space.

Lemma 3.3 Let (X,F, ∗) be a FIP-space, where * is a strong t-norm
and for each x, y ∈ X, sup{t ∈ R : F (x, y, t) < 1} < ∞. If we define
‖x‖ =< x, y > 1

2
. Then (X, ‖‖) is a normed space.
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Definition 3.3 (i) Let (X,F, ∗) be a FIP-space. u, v ∈ X is said to be
fuzzy orthogonal if F (u, v, t) = H(t) (∀t ∈ R).

(ii) Let (X,F, ∗) be a FIP-space and M a subset of X. The set of vectors
in X, fuzzy orthogonal to every vector in M , denoted by M⊥, is called
fuzzy orthogonal complement of M .

Definition 3.4 Let (X,F, ∗) be a FIP-space, where ∗ is a strong t-norm
and for each x, y ∈ X, sup{t ∈ R : F (x, y, t) < 1} < ∞. We say that
(X,F, ∗) is fuzzy Hilbert space and denoted by (FH,F, t) if (X, ‖.‖) is a
complete normed space.

Lemma 3.4 Let (X,F, ∗) be a FIP-space. Then M⊥ is a closed subspace
of X. Possibly consisting of jut the zero vector. However, if M 6= {0},
then M⊥ 6= X.

We shall extend following lemma in this paper.

Lemma 3.5 If K is a nonempty, closed and convex subset of a τF -
complete standard FIP-space (X;F ;min), then there exists a unique vec-
tor in K of greatest norm.

Theorem 3.1 Let (X,F, ∗) be a FIP-space, M is a subspace of X and
x ∈ X. Then g0 ∈ P F

M(x) if and only if ‖x − g0‖ ≤ ‖x − m‖ for every
m ∈M . Thus if g0 ∈ P F

M(x), then

‖x− g0‖ = inf
m∈M

‖x−m‖ (∗)

Proof. We know that ‖x−g0‖ ≤ ‖x−m‖ for every m ∈M , if and only if
‖x−g0‖2 ≤ ‖x−m‖2 for every m ∈M , if and only if < x−g0, x−g0 >≤<
x−m,x−m > for every m ∈M , if and only if sup{t : F (x−g0, x−g0, t) <
1} ≤ sup{t : F (x −m,x −m, t) < 1} for every m ∈ M . If and only if
F (x − g0, x − g0, s) ≥ F (x −m,x −m, s) for every s > 0 and for every
m ∈ M . If s > 0, there exist a t ∈ R such that s = t2. If and only if
F (x−g0, x−g0, t2) ≥ F (x−m,x−m, t2), that isN(x−g0, t) ≥ N(x−m, t),
therefore g0 ∈ P t

M(x).

Theorem 3.2 If K is a nonempty, closed and convex subset of a fuzzy
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Hilbert space (FH,F, ∗). For x ∈ X, there exists an unique fuzzy best
approximation k0 ∈ P F

K (x).

Proof. Suppose δ = infm∈K ‖x−m‖. Then there is a sequence {yn}n∈N
in K such that ‖yn − x‖ → δ. By the parallelogram law,

‖yn − ym‖2 = 2‖yn − x‖2 + 2‖ym − x‖2 − ‖(yn + ym)− 2x‖2

≤ 2‖yn − x‖2 + 2‖ym − x‖2 − 4δ2

→ 0

as n→∞. Hence {yn}n∈N is a Cauchy sequences. But K is closed (hence
complete) and so yn converges to k0 ∈ K. It follows, by the continuity of
the norm,

‖x− k0‖ = δ.

Suppose y ∈ K is another fuzzy best approximation to x, i.e. ‖x−y‖ = δ.
Then

‖k0 − y‖= 2‖k0 − x‖2 + 2‖y − x‖2 − ‖(k0 + y)− 2x‖2

≤ 2‖k0 − x‖2 + 2‖y − x‖2 − 4δ2

= 0.

and so k0 = y.

The following corollary is an extension of Lemma 4.7.

Theorem 3.3 If K is a nonempty, closed and convex subset of a fuzzy
Hilbert space (FH,F, ∗). Then there exists an unique vector in K of
greatest norm.

Proof. Since 0 ∈ X, from above theorem there exists an unique fuzzy
best approximation k0 ∈ P t

K(0) therefore

N(k0, t) =
∨
k∈K

N(k, t).

Theorem 3.4 Let (X,F, ∗) be a FIP-space. If u, v ∈ X is fuzzy orthog-
onal, then < u, v >= 0.
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Proof. Since u⊥v, then F (u, v, t) = H(t). From definition < u, v >=
sup{t ∈ R : F (u, v, t) < 1}, it follows that < u, v >= 0.

Theorem 3.5 Let (X,F, ∗) be a FIP-space, M is a subspace of X and
x ∈ X. Then g0 ∈ P t

M(x) if and only if < x − g0,m >= 0 for every
m ∈M .

Proof. Suppose g0 be a fuzzy best approximation to x in M . Then for
any real s, arbitrary m ∈ M and any scalar α the element g0 + sαm
belongs to M so that function

g(s) =< (g0 + sαm), (g0 + sαm) >,

must have a minimum at s = 0. This implies that

g′(0) =< αm, g0 − x > + < g0 − x, αm > .

If we choose α 6= 0 such that < αm, g0−x > is real, then < αm, g0−x >=
0. Since m was arbitrary this implies < m, x− g0 >= 0 for any m ∈M .

Conversely, suppose < m, x − g0 >= 0 for any m ∈ M . Let m be any
element in M . Then

‖x−m‖2 = ‖x− g0 + (g0 −m)‖2

=< x− g0 + (g0 −m), x− g0 + (g0 −m) >

= ‖x− g0‖2 + ‖g0 −m‖2,

because g0 −m ∈M and thus is orthogonal to x− g0. Hence

‖x− g0‖ ≤ ‖x−m‖.

Therefore from Theorem 4.8, g0 ∈ P t
M(x).

Theorem 3.6 Let M be a subspace of fuzzy inner product space X. Then
(P t

M)−1(ω0) = ω0 +M⊥.

Proof. Suppose x ∈ (P t
M)−1(ω0), then ω0 ∈ P t

M(x). Therefore x − ω0 ∈
M⊥, and so x ∈M⊥ + ω0.
Now if x ∈M⊥ + ω0, then x− ω0 ∈M⊥. Therefore x ∈ (P t

M)−1(ω0).
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4 Fuzzy farthest orthogonality

In this section we define the concept fuzzy farthest orthogonality in fuzzy
normed linear spaces.

Definition 4.1 Let (X,N) be a fuzzy normed linear space and x, y ∈ X.
We say that x is fuzzy farthest orthogonal to y and is denoted by x⊥FFy
if and only if N(x, t) ≤ N(x−y, t). If W is a f -bounded subset of X and
x ∈ X. We say that x⊥FFW, if and only if N(x, t) ≤ δ(W,x, t).

Theorem 4.1 Let (X,N) be a fuzzy normed linear space, W a F -bounded
subset of X and x ∈ X. Then x⊥FFW if and only if for every y ∈
W, x⊥FFy.

Proof. Suppose x⊥FFW, then N(x, t) ≤ δ(W,x, t) =
∧
y∈W N(y − x, t)

for every t ∈ R. Therefore N(x, t) ≤ N(y − x, t) for every y ∈ W and
for every t ∈ R. Conversely, if for every y ∈ W and for every t ∈ R,
N(x, t) ≤ N(x − y, t). We get inf on y ∈ W. Then N(x, t) ≤ δ(W,x, t)
for every t ∈ R. �

Definition 4.2 Let (X, ‖.‖) be a normed linear space, W a bounded sub-
set of X. The set

W⊥F = {x ∈ X : x⊥FW}.
is denoted by the farthest orthogonal complement with respect to W .

Theorem 4.2 Let (X,N) be a fuzzy normed linear space, W a f -bounded
subset of X and x ∈ X. If 0 ∈ F F

W (x), then x⊥FFW.

Proof. If 0 ∈ FW (x), then N(x, t) = δ(W,x, t) for every t ∈ R. Therefore
x⊥FFW. �

Proposition 1 Let (X,N) be a fuzzy normed linear space, W a f -bounded
subset of X and x ∈ X. then: (i) For x ∈ X, x⊥FFx.
(ii) If x ∈ X, then x⊥FF0.
(iv) If x⊥FFy and N(x, t) = N(y, t) for every t ∈ R, then y⊥Fx.
(iv) If 0⊥FFx for x ∈ X, then x = 0.
(v) For α ∈ C, x⊥FFy if and only if αx⊥FFαy.

23



(vi) If xn → x, yn → y and xn⊥FFyn, then x⊥FFy.
(vii) For x 6= 0 and λ, µ ∈ C, λx⊥FFµx if and only if λ⊥FFµ.

Proof. It is trivial. �

Theorem 4.3 Let (X,< ., . >) be an inner product space and x, y ∈ X.
(i) If < x, y >= 0 and y 6= 0, then x is not farthest orthogonal to y.
(ii) If x⊥Fy then 2Re < x, y >≥ ‖y‖2.

Proof. It is trivial. �

Theorem 4.4 Let (X, ‖.‖) be a normed linear space, x, y ∈ X. If x⊥By,
then x′⊥Fy for every x′ ∈ [x, y〉.

Proof. Since x′ ∈ [x, y〉, we have ‖x′− y‖ = ‖x′− x‖− ‖x− y‖. If x⊥By.
It follows that ‖x‖ ≤ ‖x− y‖. Therefore

‖x′‖≥‖x′ − x‖ − ‖x‖
≥‖x′ − x‖ − ‖x− y‖
= ‖x′ − y‖.

Therefore, x′⊥Fy. �
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