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 ABSTRACT 

 In this paper, mechanical buckling analysis of composite annular sector 

plates with bean shape cut out is studied. Composite material sector plate 

made of Glass-Epoxy and Graphite-Epoxy with eight layers with same 

thickness but different fiber angles for each layer. Mechanical loading to 

form of uniform pressure loading in radial, environmental and biaxial 

directions is assumed. The method used in this analysis is three dimensional 

(3D) finite elements based on the elasticity relations. With zero first and 

second variation of potential energy of the entire annular sector plate, we find 

stability equation. Green non-linear displacement strain relations to obtain 

geometric stiffness matrix is used. Unlike many studies, in present work 

three dimensional finite elements method has been used with an eight node 

element and meshing in the thickness direction is done, too. The bean shaped 

cut out in the sector has increased the complexity of the analysis. The 

continuing, effect of different parameters including cut out dimensions, fiber 

angles of layers, loading direction and dimensions of the annular sector plate 

on the mechanical buckling load has been investigated and interesting results 

have been obtained.                © 2018 IAU, Arak Branch. All rights reserved. 

 Keywords : Annular sector plate; Composite material; 3D finite elements 

method; Mechanical buckling. 

1    INTRODUCTION 

 NNULAR sector plates have wide application in industry such as parts used in automobile, building, 

industry, etc. That is why studying and analyzing the behavior of these plates is important. Plates are affected 

by in-plane compression loading during application which creates buckling in the plate. Therefore, one of the 

important parameters for plate designing is investigation of the buckling behavior. Buckling may occur due to 

applying different loadings such as mechanical, thermal loadings, etc. Therefore, analysis of mechanical buckling 

perforated plate with annular sector geometry will be presented in this paper. The plate is made of composite 

material due to its various advantages; some of them are light weight, good resistance against corrosion and fatigue, 

high elasticity module and high overall resistance with low density. These are the reasons why composite materials 

are used in engineering and industries such as aerospace, automobile and building industry, and etc. Using precise 

solution makes the structure modeling complicated as well as giving exact answer and it is not developed enough to 
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cover structures with different conditions. Thus, using numerical methods with acceptable error in the final answer 

and also a variety of analyzing structures with different conditions is more common. Finite element method (FEM) 

based on three-dimensional (3D) elasticity theory is used in this paper. Thick plates can be analyzed using 3D 

elasticity theory in analogy with other plate theories. The following studies have investigated plate buckling with 

conditions similar to this analysis. 

Bruno and Lato [1] studied the buckling of thick composite plates. Chai [2] presented the buckling of laminated 

composite plates with different boundary conditions on edges. Kim and Hoa [3] studied buckling behavior of 

rectangular composite plates. Zhou et al., [4] proposed a semi-scalar method for the buckling of sector plates. 

Sundaresan et al., [5] studied the buckling of thick rectangular composite plates which part of edges was under 

compressive loading. Shariyat [6] analyzed thermal buckling of rectangular composite with thermal-dependent 

characteristics using layer wise theory. Özben [7] studied critical-load buckling of laminated composite plates with 

different boundary conditions using finite element scalar method and analytical method. Alipour and Shariyat [8] 

proposed semi-analytic solution for buckling of heterogeneous viscoelastic circular plates in elastic foundations. 

Dash and Singh [9] studied buckling and post-buckling of laminar composite plate. Jabbarzadeh and Baghdar [10] 

analyzed thermal buckling of sector plate made of Functionally Graded Materials (FGM) using Differential 

Quadrature Method (DQM). Asemi and Shariyat [11] presented non-linear 3D finite element method with high 

precision for biaxial buckling of rectangular anisotropic plates. Fazzolari et al., [12] analyzed buckling of composite 

plates using higher order shear deformation plate theory (HSDT) and exact method of solution. Lopatin and Morzov 

[13] presented buckling of rectangular composite plate under monotonous compressive loading. Asemi et al., [14] 

presented post-buckling behavior of annular sector plates made of Functionally Graded Material using simply 

supported conditions under compressive loading. Abolghasemi et al., [15] studied buckling of rectangular 

functionally graded plate with elliptic cutout. Nasirmanesh and Mohammadi [16] analyzed cracked composite plate 

buckling using finite element method. Rezaei et al., [17] presented the buckling of rectangular plate made of 

functionally graded material with elliptic cutout under thermal loading. Shaterzadeh [18] performed 

thermomechanical buckling of functionally graded plates with circular cutout on the center. Mansouri and Shariyat 

[19] performed thermomechanical buckling of functionally graded plates with thermal-dependent characteristics on 

elastic foundation. 

Studying the buckling of sector plate is more difficult due to geometric condition and few researches are 

attributed to annular sector plates. It is attempted to study the mechanical buckling of sector plates with bean-shaped 

cutout with 3D finite element method.  

2    CONDITIONS  

2.1 Geometry of sector plates 

Considering the geometry of annular sector plate and its bean-shaped cutout, the best coordinate system for 
describing its geometry is cylindrical coordinate system in which three values of diameter, r, angle, θ, and thickness, 

z, of the sector should be determined.  If a, b, h, and β are internal, external diameters, thickness, and angle of the 

sector, respectively, cylindrical coordinate system should be established so that: 

 

,0 ,
2 2

h h
b r a z                  

 

A bean-shape opening should be cutout in the sector, according to Fig. 1, to investigate the effect of opening on 

buckling strength of the annular sector. Bean-shape opening of the sector can be described with two parameters of 

origin coordination, radial and circumferential variations of the opening. We consider the opening so that it would 
be symmetrical in r and θ direction; therefore, center of the sector opening will always have coordination of 

( ) / 2cr a b  and / 2
c
   in this paper. Variations of cutout diameter 

2 1
( )r r  express cutout size in r axis 

direction and circumferential variations of cutout 
2 1

( )  are cutout size in θ axis direction. Also, depth of the 

cutout equals sector thickness.  
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Fig.1 

Geometry of the sector plate. 

2.2 Method of loading 

Mechanical loading is considered in three states of uniform compressive loading in radial, circumferential and 

combined (biaxial) directions under radial and circumferential loading to study the effect of load direction on 

buckling results. Fig. 2 shows sector plate with biaxial loading. 

 

 

 

 

 

 

 

 

Fig.2 

Schematic of biaxial loading. 

 

Loading conditions for mentioned loading modes given in Table1. p  is the applied load to faces of sector. 

 
Table 1 

Method of compressive loading on annular sector plate. 

Loading direction Right surface ( 0  ) left surface (  ) inner surface ( r b ) outer surface ( r a ) 

Radial without loading without loading radial  loading radial  loading 

Circumferential circumferential  loading circumferential  loading without loading without loading 

Biaxial circumferential  loading circumferential  loading radial  loading radial  loading 

2.3 Kinematic conditions 

Natural boundary conditions (such as moment, shear force, and compressive load in edge) have been applied in 

functional form. Kinematic conditions for various loading are addressed in Table 2. ,
t n

u u is tangential and normal 

displacements to surface of sector, respectively. It should be noted that displacement of boundaries in thickness 

direction is zero. 
 

Table 2 

Kinematic conditions of annular sector plate. 

Loading direction Right surface ( 0  ) left surface (  ) inner surface ( r b ) outer surface ( r a ) 

Radial , 0
t n

u u   , 0
t n

u u   0
t

u   0
t

u   

Circumferential 0
t

u   0
t

u   , 0
t n

u u   , 0
t n

u u   

Biaxial 0
t

u   0
t

u   0
t

u   0
t

u   

2.4 Sector material 

Sector is made of composite material considered in 8 layers in the thickness direction and layers are arranged 

symmetrically regarding the main coordination system. Thickness of the layers is similar and equals / 8h . Layer 

arrangement is assumed in two cases of [0, 90]4 and [45, -45]4 so that its effect on buckling loading can be studied. 
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It is assumed that two upper and lower layers are made of Graphite-Epoxy composite and four middle layers of 

Glass-Epoxy.  Characteristics of these two composite materials are expressed in Table 3. [21] 

 
Table 3 

 Material properties of Graphite-Epoxy & Glass-Epoxy [21]. 

Properties 
Material 

Graphite-Epoxy (T300/5208) Glass-Epoxy (s-2) 

E1 [N/m2] 132×109 43.5×109 

E2 [N/m2] 10.8×109 11.5×109 

G12 [N/m2] 5.65×109 3.45×109 

G23 [N/m2] 3.38×109 4.12×109 

ν12 0.24            0.27        

v23 0.59         0.4          

3    FORMULATION  

3.1 3D Elasticity theory 

The governing equations are defined from Lagrangian description point of view in reference coordination system or 

un-deformed configuration [22]. 

Elasticity relations of the plate with mentioned geometry are expressed firstly in cylindrical coordination system. 

3.1.1 Stress- strain relations 

Stress-strain relation can be expressed for k
th

 layer based on Hook’s law considering the sector is made of 8-layer 

composite, as shown below: 

 

 
 

 
 
 

 kk k

D     (1) 

 

which   is stress vector and   is strain vector and each one is expressed in cylindrical coordination system as 

follows: 

 

   
T

rr zz r z rz  
          (2) 

 

   
T

rr zz r z rz  
          (3) 

 

Elasticity matrix for k
th

 layer is stated as follow: 

 

 

11 12 13 16

22 23 26

33 36

66

44 45

55

0 0

  0 0

      0     0  

 0  0

sym.  

   

Q Q Q Q

Q Q Q

Q Q
D

Q

Q Q

Q



 
 
 
 
 
 
 
 
 

   (4) 

 

ij
Q  depends on the material and orientation of fiber angles. For more information about this topic refer to [21, 

23]. In addition, as fiber angles are expressed in relation to Descartes axis, elasticity matrix can be obtained using 

transform matrix.    
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3.1.2 Strain- displacement relation 

As shape variation in relation to loading increment is disproportionate at the moment of buckling, Green’s strain-

displacement relation should be used which includes linear relation of strain-displacement before buckling and also 

non-linear relation of strain-displacement at the moment of buckling. 

Strain-displacement relation can be decomposed as the two sections of linear and non-linear part 

 

     
L NL

       (5) 

 

If we show displacement in three main directions as u, v, and w, respectively, then we can state linear and non-

linear parts of strain-displacement part as follows: 

 

  , , ,

, , , , , ,

T

L r z r z z r

u v u v w
u w v v u w

r r r

  


 
   
 
 
 

   (6) 
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z z z
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

 
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
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     

     
     
     


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




 
 
 
 
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 
 
 
 

   (7) 

3.2 Applying FEM  

3D 8-noded elements are used to model the sector. Therefore, elements are in the direction of thickness which leads 

to difference between the current analysis and existing plate theories as traverse displacement of the plate in element 

will be different. It should be noted that displacement is continuous at the boundary of elements but gradient and 

consequently strain and stress have no continuity at the boundaries.  

If  q and    are considered displacement vector for any point and arbitrary element nodes, respectively, their 

relation can be written as follows:  

 

    q N     (8) 

 

where 

 

   
T

q u v w    (9) 

   
1 1 1 8 8 8

T

u v w u v w   (10) 

 

Shape function matrix in relation (8) will be as follows: 
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 
1 8

1 8

1 8

0 0 0 0

0 0 0 0

0 0 0 0

N N

N N N

N N



 
 
 
  

 (11) 

 

Components of shape function matrix for a 3D 8-noded linear element can be obtained from this relation [22]. 

 

   
1

1 1 1
8

i i i i
N        (12) 

 

where ,   and   are right-hand principals of natural coordination system which its range for any element will be 

as follows: 

 

1 , , 1       

 

The following relation can be considered between components of cylindrical and natural coordination system 

regarding the geometry of each element [14]. 

 
   

   

 
 

 
 

2 22
, ,

e e

c c

e e e e

z zr a b

a b h

 
  



  
  


 (13) 

 

In Eq. (13), 
     

, ,e e e
a b  and 

 e
h  are internal and external diameter, angle, and thickness of each element, 

respectively. Also, 
c

  and 
c

z  are coordination of each element center in global (cylindrical) coordination system. 

Linear part of Green’s strain relation can be written in this way: 

 

    
L L

d q   (14) 

 

where 
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 
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(15) 

 

Replacing Eq. (10) in (14), linear part of strain-displacement relation can be rewritten as follows: 

 

    
L L

B    (16) 

 

where linear strain-displacement matrix in cylindrical coordination system equals: 
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(17) 

 

Similarly, nonlinear part of strain-displacement relation can be expressed as: 

 

    
NL NL

B    (18) 

 

Nonlinear strain-displacement matrix in cylindrical coordination system equals: 

 

     1 8

NL NL NL
B B B     (19) 

 

As element terms of nonlinear strain- displacement matrix are lengthy, it can be shown as relation (20): 
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 (20) 

3.3 Stability equation 

In this paper, buckling analysis is performed by obtaining sector stability equation which is based on resetting first 

and second changes of total sector potential energy to zero. 

First, static balance relation is obtained using virtual work principal (first changes of total potential energy is 

zero). Total potential energy of the sector is as follows: 
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U W    (21) 

 

where W  includes the following external works: 

 

b s p
W W W W    (22) 

 

b s
W W  and 

p
W  are volume, surface, and centralized works of external forces, respectively. As we have ignored 

the weight of the sector in comparison with other loadings, only surface forces are not zero in the relation. 

Therefore, total external force work (which equals surface forces in this analysis) for each loading mode can be 

obtained. 

Radial loading: 

 

     
 

,

TT

s

A r b a

W N P dA



 
 
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 
   (23a) 

 

Circumferential loading: 

 

     
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s

A

W N P dA
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Biaxial loading: 
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In Eq. (25),  sN is shape function matrix of nods located on faces under loading. Strain-displacement relation is 

liner before buckling, thus strain energy of the sector is: 

 

   
 

1
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T

L

V

U dV       (24) 

 

Replacing Eqs. (1) and (16) in (24), this relation can be expressed as: 
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U B D B dV      (25) 

 

Now, based on virtual work principal we have: 

 

0      (26) 

 

Choosing: 

 

      
 

T

L L

V

K B D B dV      (27) 

 

     
 

T

s

A

F N P dA      (28) 
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One can achieve static balance relation. 

 

    F K      (29) 

 

Displacement vector and consequently stress vector of each element can be obtained after forming elasticity 

matrix and force vector for each element. Next, second-order changes of total potential energy of the sector are reset 

to zero considering linear and nonlinear parts of strain-displacement relation to obtain stability equation. 

 
2

0       (30) 

 

Second-order changes of external forces work and sector strain energy are: 

 
2

0W      (31) 

 

        
 

2 2TT

L L NL

V

U B D B dV U           (32) 

 

NL
U  is potential energy at the moment of buckling. 

 

 
 

01

2

T

NL NL

V

U dV         (33) 

 

Replacing Eqs. (2) and (7) in (33), Eq. (33) can be rewritten in matrix form.  
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 

   

 

0

0

0
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  0

sym.  

S









   
 

   
    

    (36) 

 

Replacing Eqs. (31) and (32) in Eq. (30) and choosing: 

 

      
 

T

G

V

K G S G dV      (37) 

 

Stability equation of buckling can be written as follows: 

 

       0
G

K K        (38) 

4    RESULTS AND VERIFICATION    

4.1 Verification of the results 

To study the accuracy of results extracted from written code, first the convergence of the obtained results is 

examined. In this analysis, 3D 8-noded elements are used. Fig. 3 shows an example of load convergence leading to 

buckling for a non-perforated sector with geometric dimensions of 0.5 [ ], 1 [ ], 0.025 [ ]b m a m h m   and 

90   which are under combined loading (biaxial) and convergence of results increases as the number of elements 

rises.  

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Mechanical buckling stress vs. number of elements. 

 

Next step is validating the results. As there is no mechanical buckling load analysis for perforated composite 

sector plates, validations is performed based on the results of [14] for homogenous sector without opening and with 

geometric dimensions of 0.5 [ ], 1 [ ], 0.05 [ ]b m a m h m    and 60  which is made of pure ceramic (Zirconia, 

ZrO2) with engineering characteristics of 151 [ ]E GPa and 0.3v   (Table 4). 

 
Table 4 

Mechanical buckling stress [GPa] for ceramic annular sector plate. 

Loading direction             Present Ref. [14] 

Radial             2.3761 2.3400 

Circumferential             9.3378 9.2000 

Biaxial             2.2565 2.2200 

 

Reference [14] is used from finite element method based on 3-D elasticity, too; but instead of using continuous 

functions for material properties, used from shape functions. (Using graded element has computing error.)  
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4.2 Results 

In all of the cases inner and outer radius is 0.5[m] and 1[m], respectively. Angles of sector is 60, 90   . Also 

the thickness of sector is selected 0.025[m], 0.05[m]. 

Table 5. shows the results of mechanical load leading to buckling for perforated sector with internal diameter of 

0.5[m], external diameter of 1[m] and cutout radial variations of 12
o
 for sector 60

o
 and 18

o
 for sector 90

o
. Critical 

load for two thicknesses of 0.025[m] and 0.05[m] are reported which this plate with thickness of 0.05[m] and 

dimensions of 0.5 [ ]b m and 1 [ ]a m  can be placed in thick plate range regarding existing theories of plate. As 

it is shown, when dimensions are specified, as the thickness of the sector is reduced, the fewer loads is needed for 

buckling to occur due to reduced elasticity and vice versa. According to results, plate under combined loading has 

lower strength compared with radial loading. In addition, plate strength against radial loading is less than 

circumferential loading. Sector plate geometry is the reason of great numbers affected by circumferential loading 

which buckling occurs later in this mode. Results of two angles of 60
o
 and 90

o
 in the sector shows that the less the 

angle of the sector is, the longer it takes for buckling to occur in the plates which is under radial and combined 

loading mode; but, reducing the angle of sector leads to buckling with smaller load in the directions of 

circumferential loading due to approaching of two lateral surfaces (right and left faces). 

 
 

Table 5 

Mechanical buckling stress [GPa] for sector plate with bean shape cut-out with 
2 1 2 1( ) / 5 0.1 [ ], / 5r r a b m         . 

Loading 

direction 

[0,90]4 [45,-45]4 

h=0.025[m] h=0.05[m] h=0.025[m] h=0.05[m] h=0.025[m] h=0.05[m] h=0.025[m] h=0.05[m] 

β=60o β=90o β=60o β=90o β=60o β=90o β=60o β=90o 
Radial 0.2202 0.1134 0.6447 0.3674 0.1966 0.1060 0.5878 0.3390 
Circumferential 0.7019 0.7884 1.6451 1.6817 0.7062 1.0341 1.6855 2.2457 
Biaxial 0.1235 0.0839 0.4220 0.2898 0.1131 0.0936 0.3994 0.3207 

 

Table 6. presents results of mechanical buckling load on perforated sector with internal and external diameter of 

0.5[m] and 1[m] respectively, cutout radial variations of 1[m] and cutout circumferential variations of 20
o
 for 60

o
 

sector and 30
o
 for 90

o
 sector. Circumferential loading makes sector plate buckles later than radial loading due to its 

geometry and later buckling is radial loading expected compared with combined loading. Reducing the gradient of 

the sector leads to large buckling load under radial and combined loading and fewer buckling load is obtained under 

circumferential loading. 

Comparing two arrangements shows that stacking sequence [0,90]4 under radial loading leads to more buckling 

load than stacking sequence [45,-45]4 but critical load will be fewer under circumferential loading.  

 
 

Table 6 

Mechanical buckling stress [GPa] for sector plate with bean shape cut-out with 
2 1 2 1( ) / 5 0.1 [ ], / 3.r r a b m          

Loading 

direction 

[0,90]4 [45,-45]4 

h=0.025[m] h=0.05[m] h=0.025[m] h=0.05[m] h=0.025[m] h=0.05[m] h=0.025[m] h=0.05[m] 

β=60o β=90o β=60o β=90o β=60o β=90o β=60o β=90o 
Radial 0.1983 0.0975 0.6043 0.3080 0.2003 0.0952 0.5522 0.2979 
Circumferential 0.6651 0.8161 1.4426 1.7991 0.6678 1.0286 1.5873 2.2775 
Biaxial 0.1065 0.0659 0.3756 0.2254 0.1081 0.0774 0.3613 0.2686 

 

Table 7. shows critical load of mechanical buckling for perforated sector with internal and external diameters of 

0.5[m] and 1[m], respectively, cutout radial variations of 0.1667[m] and cutout circumferential variations of 12
o
 for 

60
o
 sector and of 18

o
 for 90

o
 sector. 

Based on the results for buckling of the sector plate in sectors with different cutout, by increasing the size of cut 

out, the strength will be lower under radial and combined loading; but, sometimes the cutout leads to the 

improvement of buckling behavior in the plate under circumferential loading. 
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Table 7 

Mechanical buckling stress [GPa] for sector plate with bean shape cut-out with 
2 1 2 10.5 [ ], 1 [ ], ( ) / 3 0.1667 [ ], / 5.b m a m r r a b m            

Loading 

direction 

[0,90]4 [45,-45]4 

h=0.025[m] h=0.05[m] h=0.025[m] h=0.05[m] h=0.025[m] h=0.05[m] h=0.025[m] h=0.05[m] 

β=60o β=90o β=60o β=90o β=60o β=90o β=60o β=90o 
Radial 0.1988 0.1023 0.5770 0.3315 0.1772 0.0938 0.5556 0.3022 
Circumferential 0.6784 0.7511 1.6284 1.7078 0.7290 0.9516 1.7321 2.1746 
Biaxial 0.1059 0.0746 0.3668 0.2549 0.1014 0.0828 0.3563 0.2832 

 

Table 8. shows mechanical buckling load of perforated sector with internal and external diameters of 0.5[m] and 

1[m], respectively, cutout radial variations of 0.1667[m] and cutout circumferential variations of 20
o
 for 60

o
 sector 

and of 30
o
 for 90

o
 sector. Cutout dimensions can be increased for obtaining higher buckling strength if sector is 

under circumferential loading. For a sector with above dimensions, doubling the thickness with other specified 

dimensions leads to more than two- fold increase of buckling strength of sector plate compared with the initial state. 

 
 

Table 8 

Mechanical buckling stress [GPa] for sector plate with bean shape cut-out with 
2 1 2 1( ) / 3 0.1667 [ ], / 3.r r a b m          

Loading 

direction 

[0,90]4 [45,-45]4 

h=0.025[m] h=0.05[m] h=0.025[m] h=0.05[m] h=0.025[m] h=0.05[m] h=0.025[m] h=0.05[m] 

β=60o β=90o β=60o β=90o β=60o β=90o β=60o β=90o 
Radial 0.1810 0.0900 0.5132 0.2706 0.1844 0.0871 0.5091 0.2692 
Circumferential 0.6428 0.7324 1.4442 1.6067 0.6638 0.9102 1.5582 2.0584 
Biaxial 0.0914 0.0581 0.3016 0.1940 0.0957 0.0713 0.3195 0.2424 

5    CONCLUSIONS 

In this paper, 3D elasticity relation and finite element method was used to study the load leading to the buckling of 

composite sector plate with bean-shaped cutout in different conditions and the effect of loading direction, layer 

arrangement, cutout and sector dimensions on buckling strength of the plate was examined. 

 Results show that buckling of the plate for any dimensions of the cutout or the sector is larger under 

circumferential loading than radial loading and it is also larger under radial than combined loadings. 

 In all geometric conditions of perforated sector with different stacking sequence, load leading to buckling 

under radial and combined loading is larger for a 60
o
 sector than 90

o
 one but buckling load under circumferential 

loading is smaller for 60
o
 sector than 90

o
 one which is because of sector geometry and more elasticity in smaller 

gradients of the sector. 

 In sector plates with different cutout dimensions, loading direction and stacking sequence, the thicker plate 

is more loads needed until buckling occurs.  

 According to the extracted results, increasing the dimensions of the cutout leads to reduction in the 

buckling strength of the sector plate in radial and combined loading directions but the existence of cutout for 

circumferential loading may sometimes lead to increase or decrease of sector buckling strength. 

Finally, it can be said that based on loading, critical load leading to buckling can be controlled by correct 

selection of stacking sequence and sector and cutout dimensions if it is needed to use perforated composite sector 

plate. 
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