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 ABSTRACT 

 In this paper an overview of functionally graded materials and constitutive relations of electro 
elasticity for three-dimensional deformable  solids is presented, and  governing equations of 
the Bernoulli–Euler and Timoshenko beam theories which account for through-thickness 
power-law variation of a two-constituent material and piezoelectric layers are developed  
using the  principle  of virtual  displacements. The formulation is based on a power-law 
variation of the material in the core with piezoelectric layers at the top and bottom. Virtual 
work statements of the two theories are also developed and their finite element models are 
presented. The theoretical formulations and finite element models presented herein can be 
used in the analysis of piezolaminated and adaptive structures such as beams and plates. 
                                                                          © 2011 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 
1.1 Functionally graded materials 

UNCTIONALLY graded materials (FGM) are a class of composites that have a gradual variation of material 
properties from one surface to another [1–3]. These novel materials were proposed as thermal barrier materials 

for applications in space planes, space structures, nuclear reactors, turbine rotors, flywheels, gears, and so on. These 
materials are isotropic and nonhomogeneous. In general, all the multi-phase materials, in which the material 
properties are varied gradually in a predetermined manner, fall into the category of functionally gradient materials. 

Two-constituent FGMs are usually made of a mixture of ceramic and metals for use in thermal environments.  
The ceramic constituent of the material provides the high temperature resistance due to its low thermal conductivity. 
The ductile metal constituent, on the other hand, prevents fracture due to high temperature gradient in a very short 
period of time. The gradation in properties of the material reduces thermal stresses, residual stresses, and stress 
concentration factors. The gradual variation results in a very efficient material tailored to suit the needs. 

Noda [4] presented an extensive review that covers a wide range of topics from thermo- elastic to thermo-
inelastic problems, where he discussed the importance of temperature dependent properties on thermo elastic 
problems. He further presented analytical methods to handle transient heat conduction problems and indicates the 
necessity for the optimization of FGM properties. Zhang et al. [5] modeled an isotropic ceramic/metal laminated 
beam subjected to an abrupt heating condition and demonstrated the influence of thermo- mechanical coupling on 
thermal shock response. Tanigawa [6] compiled a comprehensive review on the thermo elastic analyses of 
functionally graded materials. In this review, he discussed closed-form solutions for some simple geometries. Sankar 
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and Tzeng [7] studied thermal stresses in beams. These solutions, however, were restricted to steady-state conditions 
and linear analyses. Praveen and Reddy [8-10] considered the von Kármán geometric nonlinearity in their bending 
and transient analysis of functionally graded plates. The von Kármán strains are computed using the assumption that 
the strains are small enough to neglect the difference between various measures of stress and strain but the rotations 
are moderately large. The book by Shen [11] provides an excellent treatment of the subject. 

1.2 Hyperelastic materials 
1.2.1 Isothermal elasticity 

As a precursor to electroelasticity, we begin with linear elastic materials. Materials for which the constitutive 
behavior is only a function of the current state of deformation are known as elastic. When the work done by stresses 
in deforming an elastic material is independent of the path (i.e., depends only the initial and final states), then the 
material is termed hyperelastic (see Bonet and Wood [12] and Reddy [13]). For such materials, there exists a strain 

energy density function of strain, 0 0 ( )U U =
 
such that stress   is derivable from: 
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For infinitesimal deformations considered herein, we do not distinguish between various stress and strain 

measures, although   should be thought of as the second Piola-Kirchhoff stress tensor and   as the Green-
Lagrange strain tensor. In some books (see Reddy [13]), a hyperelastic material is defined to be one for which Eq. 
(1) holds. For linear elastic materials under isothermal conditions, the strain energy density function can be 
expressed as 
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where : denotes the double-dot product (see Reddy [13]) and we have 
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which is known the generalized Hooke’s law. The total virtual work done for an elastic body is 
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where f is the body force vector, t is the traction vector on the surface 1S

 
of the volume V occupied by the elastic 

body, u  is the virtual displacement vector, and 
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1.2.2 Thermoelasticity 

If thermal effects are to be included, the strain energy density function 0U
 
is replaced with the Helmholtz free-

energy function 0 (see Reddy [13] and Gurtin et al. [14]) 0 0 ( , )  = ) such that 

0 0 0 or  and  ij
ij

  
  
  ¶ ¶ ¶

= = =-
¶ ¶ ¶

 (6)
 



334                   Theoretical Formulations for Finite Element Models of Functionally Graded Beams … 
 

© 2011 IAU, Arak Branch 

where   is the absolute  temperature and   is the entropy. Using thermodynamic considerations [13-18], 0
 
can 

be expressed as 
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where   is the symmetric second-order tensor of material coefficients, : ,C =    is the symmetric second-

order tensor of thermal coefficients of expansion, 0  is a reference temperature,   is the material density, and vc  is 

the specific heat  at constant temperature. The constitutive relations become 
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The principle of virtual displacements for a thermoelastic body with known temperature field ( )X = (hence, 

0 = ) takes the form 
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where we have used the fact 
 

0 0
0 : : : ij ij      

 
 


¶ ¶

= + = =
¶ ¶

 (11)
 

1.3 Piezoelectric materials 
1.3.1 Constitutive models 

Electro elasticity is the phenomena caused by interactions between electric and mechanical fields, and the 
piezoelectric effect is one such phenomenon, which is concerned with the effect of the electric charge on 
deformation [15–18]. A laminated or functionally graded beam structure with surface mounted piezoelectric layers 
receives actuation through an applied electric field, and the piezoelectric layers send electric signals that are used to 
measure the motion or deformation of the laminate. In these problems, the electric charge that is applied to actuate a 
structure is treated as an additional body force in the problem, much the same way a temperature field induces a 
body force through thermal strains. 

The coupling between the mechanical, thermal, and electrical fields can be established using thermodynamic 
principles and Maxwell’s relations. Analogous to the strain energy density function 0U

 
for isothermal elasticity and 

the Helmholtz free-energy function 0 for hermoelasticity, we assume the existence of a potential function 

0 0 ( , , ),E  =  called the Gibbs free energy function or enthalpy function, such that 
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where D is the electric displacement vector and E is the electric field vector. The specific form of 0
 
is given by 

(see [15–18]) 
 

0 0 0

2
0

0

2

0

( , , ) ( , ) ( , , )

1
                 ( ) : : · · · ·

2 2

1 1
                 

2 2 2

v

v
ijk ij k ij ij ijk ij k k k k k

E H E

c
U e E E E p e

c
C e E E E p E

     


     



       



 = -

= - - - - -

= - - - - -   

  
(13)

 

 
Here e denotes the third-order tensor of piezoelectric moduli, is the second-order tensor of dielectric constants 

(also known as the permittivity tensor), and p is the vector of pyroelectric constants. Then we have 
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1.3.2 Maxwell’s equations 

In addition to obeying the conservation principles of continuum mechanics, a deformable piezoelectric medium must 
satisfy Maxwell’s equations governing the electric displacement vector D and electric field E in the absence of a 
magnetic field (see Reddy and Gartling [19]) 
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where c  

is the distributed charge density (which  can be assumed  to be zero). It is often assumed that the electric 

field E is derivable from an electric scalar potential function   such that 
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Consequently, the second equation in (15) is trivially satisfied (i.e., the curl of the gradient of any function is 

zero). 

1.3.3 Virtual work statements 

The principle of virtual displacements for a deformable piezoelectric medium with known temperature field ( )X  
has the form 
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where 
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1.3.4 Condensed notation for various tensors of mechanics 

Although most equations in mechanics are derived using vector and tensor notation, they are expressed  in terms  of 
condensed notation for solution purposes. For example, stresses and strains, which are second-order tensors, are 
expressed as column vectors using the notation (see Reddy [18]) 
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This notation for stresses and strains requires the need to use condensed notation for constitutive tensors of 

various orders. The constitutive relations are listed below for Lead zirconate titanate (PZT), a polarized ferroelectric 
ceramic. These are listed under the assumption of orthotropy (in the material coordinate system) and plane stress 
state: 
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The condensed elastic stiffness coefficients ijc
 
can be expressed in terms of the engineering constants 
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where 1

mE
 
and 2

mE  are Young’s moduli in 1,2, and 3 material coordinate directions, respectively, ijv is Poisson’s 

ratio, defined as the ratio of transverse strain in the jth direction to the axial strain in the ith direction when stressed 
in the ith direction, and 23 13 12, , ,G G G  are the shear moduli in the 2-3, 1-3, 1-2 planes, respectively.  

 

1.4 Present study 

To the best of the authors’ knowledge, no work has been reported till date which concerns the thermo-mechanical 
analysis of functionally graded beams with temperature-dependent properties and surface mounted piezoelectric 
material layers. This very fact motivates the investigation of the present study. In this study, through-thickness 
functionally graded beams with temperature-dependent material properties and surface mounted piezoelectric layers 
are considered. The beam is subjected to transverse force and thermal loading. This work aims to investigate the 
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effects of the thermal field, the material grading index and the geometry of the beam on the displacement and stress 
fields under various boundary conditions. The material properties modeled as nonlinear functions of the 
temperature, which is determined as a function of the thickness coordinate, consistent with the power-law 
distribution of the constituent materials. Complete theoretical developments for functionally graded beams 
according to the Bernoulli-Euler beam theory and Timoshenko beam theory are presented and associated finite 
element models are developed. 

2   THICKNESS PROFILE AND TEMPERATURE FILD 
2.1 Through Thickness Variation of Material Properties 

Consider a beam of length L, width b, and height (or thickness) h. The x-coordinate is taken along the length of the 
beam and is assumed to pass through the geometric centroid of the cross sections, the z-coordinate is taken 
transverse (i.e., along the height of the beam), and the y-coordinate is taken along the width of the beam, as shown in 
Fig 1. In addition, the piezoelectric layers are placed at the top and bottom of the beam and the thickness of each of 
these layers is taken to be H. Generally the variation of a typical material property of the material in the FGM beam 
along the thickness coordinate z is assumed to be represented by the simple power-law as (see [8-11]). 
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where Pc 

and Pm are the material properties of the ceramic and metal faces of the beam respectively, n is the volume 
fraction exponent (power-law index), and T is the temperature above the room temperature, T0. Note that when n0, 
we obtain the single material beam (with property Pc). Fig 2. shows the variation of the volume fraction, f(z), 
through the beam thickness for various values of the power-law index, n. Note that the volume fraction f(z) of the 
ceramic material decreases with increasing values of n. 

Since FGMs are generally used in high temperature environment, the material properties are temperature-
dependent and they can be expressed as 
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where c0 

is a constant appearing in the cubic fit of the material property with temperature; and 1 1 2 3, , ,  and c c c c-  
coefficients of 1 2 3, ,  and ,,T T T T-  obtained after factoring out 0c  from the cubic fit of the property. The material 

properties were expressed in this way, so that the higher-order effects of the temperature on the material properties 
would be readily discernible. 
 
 
 

 

 
 
 
 
Fig. 1 
Geometry of a through-thickness functionally 
graded beam.  
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Fig. 2 
Volume fraction of ceramic material, f(z), through the 
beam thickness for various values of power-law index, n. 

 
Table 1 
Material properties of Zirconia (c-10). 
Property                                         

 
c0 c1×104 c2×108 c3× 010 

, Density (kg/m3) 5700    0     0  0 
k, Conductivity (W/m K)       1.7    1.276 664.85  0 
, Coefficient of thermal expansion (K)       2.7657×10-6    14.9     0.0001 -0.06775 
, Poisson's ratio        0.2882    1.13345     0  0 
cv, Specific heat (J/kg K)   487.34279    3.04908    -6.037232  0 
E, Young's modulus (Pa)   244.266 ×109 -13.707 121.393 -3.681378 

 

Table 2 
Material properties of Ti6AlV (c-10). 
Property c0 c1×104 c2×108 c3× 010 
, Density (kg/m3) 4429     0   0  0 
k, Conductivity (W/m K)       1.20947  139.375   0  0 
, Coefficient of thermal expansion (K)       7.57876×10-6     6.5 31.467  0 
, Poisson's ratio       0.28838235     1.12136   0  0 
cv, Specific heat (J/kg K)   625.2969     -4.22387 71.786536  0 
E, Young's modulus (Pa)   122.557 ×109    -4.58635   0 -3.681378 

 
 
For the analysis with constant properties, the material properties were all evaluated at 25.15ºC. The values of 

each of the coefficients appearing in section (2.2) are listed for the metal and ceramic in Tables 1 and 2, 
respectively. The modulus of elasticity, conductivity, and the coefficient of thermal expansion are considered vary 
according to Eqs. (23) and (24). 

2.2 Temperature distribution through beam thickness 

The temperature is assumed to be uniform along the length of the beam but vary through the thickness of the beam. 
The temperature field   through the beam thickness is determined by solving the one-dimensional heat conduction 

problem, with specified temperature boundary conditions at the top and bottom of the beam. 
The energy equation for the temperature variation through the thickness is governed by 
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where ( , )k z T  is assumed to vary according to Eqs. (23) and (24), while density   and specific heat vc  are assumed 

to be constants. Fig. 3 shows linear finite element discretization through the beam thickness. The values of the 
parameters 0 1, ,c c etc. of Eq. (24) for temperature dependent thermal conductivities of Titanium and Zirconia are 

taken from Tables 1 and 2, respectively. The calculated temperature profiles through the beam thickness are shown 
in Fig 4. For n0, n0.2, n1, and n5 for Tc1000ºC and Tm25ºC 

 
for temperature-independent (linear) and 

temperature-dependent (nonlinear) thermal conductivity. The heat flux through the thickness of the beam are shown 
in Fig 5 for n0, n0.2, n5. 

 
 

 

 
 
 
 
 
 
 
 
 
Fig. 3 
Finite element discretization through the thickness of 
the beam. 

   

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 
Temperature distribution through the thickness of the 
beam. 
 
 

   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 
Heat through the thickness of the beam. 
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3    BEAM THEORIES 
3.1 Preliminary comments 

Equations governing the bending of beams can be formulated  using (1) the Bernoulli–Euler beam theory (i.e., the 
theory in which transverse shear strain is assumed to be zero) and (2) the Timoshenko beam theory. Considering 
bending in the xz-plane, all displacements are assumed to be only functions of the x and z coordinates. Further, it is 
assumed that the displacement u2 is identically zero. We suppose that the beam consists of a FGM material layer and 
layers made of piezoelectric material with no pyroelectric effect. Since bending is caused by, in addition to a 
transversely applied mechanical load q(x), an electric field applied in the z-direction (i.e., thickness polarization), we 

have 3 ) .( zE z=E e  Suppose that the electric scalar potential is a quadratic function of z 
 

2

0 1 2( )
2

z
z z   = + +  (27)

 

 
where 10 2, , and   

 
are to be determined in terms of electric potential. Suppose that the electrical boundary 

conditions are 
 

( / 2) , ( / 2)h V h V = - =-  (28)
 

 
Then 
 

2

0 2 1, 2
8

h V

h
  =- =  (29)

 

 
Then Eq. (16) takes the form 
 

(0) (1) (0) (1)
3 1 2 3 3 1 3 2 3( ) , ,

d
E z E zE E E

dz

    =- =- + º + =- =-  (30)
 

 
The constitutive relations for the one-dimensional case at hand become 
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where mE  is Young’s modulus, / [2(1 )]mG E = + ,   is the coefficient of thermal expansion and is the 

temperature change from the room temperature, 0 .T T = -  The temperature   is assumed to vary only through the 

thickness. 

3.2 Bernoulli-Euler beam theory 

The total displacements 1 3( , )u u  along the coordinate directions ( , ),x z  as implied by the Bernoulli-Euler hypothesis 

are 
 

1 3

d
( , ) ( ) , ( , ) ( )

d

w
u x z u x z u x z w x

x
= - =  (32)
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where w denotes the transverse displacement of a point on the mid-plane of the beam. The only nonzero linear 
strains are 

 
2

(0) (1) (0) (1)
2

d d
( , ) ; ,

d dxx xx xx xx xx

u w
x z z

x x
    = + = =-  (33)

 

 
The principle of virtual displacements (17) for the Bernoulli-Euler beam theory takes the form 
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3.3 Timoshenko beam theory 

The Timoshenko beam theory (TBT) (see Reddy [20, 21]) is based on the displacement field of 
 

1 3( , ) ( ) ( ), ( , ) ( )xu x z u x z x u x z w x= + =  (39)
 

 
where x  denotes the rotation of the cross section about the y-axis. In the Timoshenko beam theory the normality 

assumption of the Bernoulli-Euler beam theory is relaxed and a constant state of transverse shear strain (and thus 
constant shear stress computed from the constitutive equation) with respect to the thickness coordinate z is included. 
The Timoshenko beam theory requires shear correction factors to compensate for the error due to this constant shear 
stress assumption. The shear correction factors depend not only on the material and geometric parameters but also 
on the load and boundary conditions. 

The linear strains and stresses of the Timoshenko beam theory are 
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The virtual work statement takes the form  
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where 
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and all other variables appearing in Eq. (41) are defined by Eqs. (35)-(38) with (0)

xx and (1)
xx

 
defined by Eq. (40). 

4    FINITE ELEMENT MODELS 
4.1 Bernoulli-Euler beam theory 

In the finite element method, the domain of the beam is discretized into a set of finite elements, the domain of a 
typical element being ( , ).e

a bx x =  Equations relating the nodal displacements to nodal forces are derived using 

the virtual work statements. As per Eq. (28), the virtual work statement in Eq. (32) is modified to 
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where jQ  are the generalized forces associated with the generalized displacements [see Figs. 6(a) and 6(b)]. The 

virtual work statement in Eq. (43) forms the basis of the Bernoulli-Euler beam finite element model (see Reddy 
[21]). 
 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 6 
Beam finite element. (a) Generalized displacements. (b) 
Generalized forces. 
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We assume linear approximation of the axial displacement u and Hermite cubic approximation of the transverse 
displacement w over a typical beam  element, and represent (0)

3E and (1)
3E  as constant in the element 

 

1 1 4 2 2 1 3 2 5 3 6 4( ) ( ) ( ), ( ) ( ) ( ) ( ) ( )u x x x w x x x x x          » + » + + +  (44)
 

 
where ( )j x  are the linear polynomials, ( )j x

 
are the Hermite cubic polynomials, and i  are the nodal values 
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where (d / d )x w x =-  Substitution of Eq. (44) for u, w, ,iu =  and iw =  into the virtual work statements in 

Eq. (44), we obtain the finite element equations 
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Clearly, there is a coupling between the axial displacement u and the transverse displacement w due to the 

extensional-bending coefficient B. 

4.2 Timoshenko beam theory 

The virtual work statement for the Timoshenko beam element is given by 
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where 
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We assume Lagrange approximation of the all field variables ( , , )xu w   independently 
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are the Lagrange polynomials of different order used for the three variables. Substitution of Eq. (51) 
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into the virtual work 

statement in Eq. (49), we obtain the finite element equations 
 

11 13 14 15 1

22 23

31 32 33 34 35 3

41 42 43 44 (0)
3

51 52 53 55 (1)
3

2

0 0

0 0

K E

K E

ì üé ù ì üï ï ï ïï ï ï ïê úï ï ï ïï ïê ú ï ïï ï ï ïê úï ï ï ïï ï ï ïï ï ï ïê ú =í ý í ýê úï ï ï ïê úï ï ï ïï ï ï ïê úï ï ï ïï ï ï ïê úï ï ï ïê úï ï ï ïï ïë û î þï ïî þ

uK 0 K K K F

0 K K 0 0 Fw

K K K K K Fs

K K K

K K K

 (52)
 

 

where 
 

(1)(1) (1)
11 1 (1) (1)

1 4

(3)(1) (1)
13 14

1 31

(2)(2) (2)
22 23 (3)

dd d
d , d ( ) ( )

d d d

dd d
d , d

d d d

dd d
d , d

d d d

b b

a a

b b

a a

b b

a a

x x
j Ti i

ij xx i xx i a i b
x x

x x
ji i

ij xx i
x x

x x
ji

ij xz ij xz j
x x

K A x F N x x Q x Q
x x x

K B x K A x
x x x

K S x K S x
x x x

F

 
 

 

  

= = + +

= =-

= =

ò ò

ò ò

ò ò
(2)

2 (2) (2)
2 5

(3)(3) (3)
33 (3) (3) 34

1 31

(3) (3)
35 3 (3)
1 31 3

d d
d ( ) ( )

d d

dd d
d , d

d d d

d d
d , d ( )

d d

b

a

b b

a a

b b

a a

x
Ti

i xx i a i b
x

x x
ji i

ij xz i j xx i
x x

x x
Ti i

i i xx i a i
x x

w
N x x Q x Q

x x

K S D x K D x
x x x

K D x F M x x Q
x x


 

 
 

 
 

= + +

æ ö÷ç ÷ç= + =-÷ç ÷ç ÷çè ø

=- = + +

ò

ò ò

ò ò (3)
6

44 45 55
11 33 11 33 11 33

( )

d , d , d
b b b

a a a

b

x x x

x x x

x Q

K A x K A x K D x=- =- =-ò ò ò

 (53)
 

5    SUMMARY 

The constitutive equations of electroelasticity for three-dimensional deformable solids are presented, and governing 
equations of the Bernoulli–Euler and Timoshenko beam theories that account for through-thickness power-law 
variation of a two-constituent material and piezoelectric layers are derived using the principle of virtual 
displacements. Virtual work statements of the two theories in terms of the generalized displacements are developed 
and their finite element models are formulated. The theoretical formulations and finite element models presented 
herein should help in the analysis of piezolaminated and adaptive structures such as beams and plates. 
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