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 ABSTRACT 

 This paper aims at optimizing the parameters involved in stress analysis of 

perforated plates, in order to achieve the least amount of stress around the 

square-shaped holes located in a finite isotropic plate using metaheuristic 

optimization algorithms. Metaheuristics may be classified into three main 

classes: evolutionary, physics-based, and swarm intelligence algorithms. This 

research uses Genetic Algorithm (GA) from evolutionary algorithm category, 

Gravitational Search Algorithm (GSA) from physics-based algorithm category 

and Bat Algorithm (BA) from Swarm Intelligence (SI) algorithm category. 

The results obtained from the present study necessitate the determination of 

the actual boundary between finite and infinite plate for the plates with 

square-shaped holes. The design variables such as bluntness, hole orientation, 

and plate dimension ratio as effective parameters on stress distribution are 

investigated. The results obtained from comparing BA, GA and GSA indicate 

that BA as SI algorithm category competitive results, proper convergence to 

global optimal solution and more optimal stress level than the two mentioned 

algorithms. The obtained results showed that the aforementioned parameters 

have a significant impact on stress distribution around a square-shaped holes 

and that the structure’s load-bearing capability can be increased by proper 

selection of these parameters without needing any change in material 

properties.                                © 2018 IAU, Arak Branch. All rights reserved. 

 Keywords: Isotropic finite plate; Analytical solution; Complex variable 

method; Metaheuristic algorithms. 

1    INTRODUCTION 

 HE determination of optimum shape of holes with minimum stress concentration in finite isotropic plates 

under uniaxial loading is an important engineering problem. These holes are mostly created in plates to cut the 

weight of structure or to create points of entry and exit. These holes change the plate geometry and lead to severe 
local stresses called stress concentration around the holes. Stress concentration reduces strength and cause premature 

failures in the structures and plastic deformations at the point of stress concentration. Experience has shown that 

most failures created in aerial structures originate from the presence of stress concentration in structural fittings and 
fasteners. Knowing the stress concentration factor (SCF) is crucial in achieving optimal design. Therefore, in the 

design of structures to achieve convenient and efficient design, the study of the effects of geometrical defects in 

structures is very important. 
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2    LITERATURE REVIEW    

Much research has been conducted on the stress analysis of isotropic plates with numerical, experimental and 

analytical approaches. Muskhelishvili [1] used complex variables method to solve the boundary value problems in 

two-dimensional elasticity. Materials applied in this study were assumed homogeneous, isotropic and linearly 

elastic. By using the complex variables method and conformal mapping, Savin [2] solved the infinite plate with a 

rounded triangular hole. The anisotropic plates containing circular and elliptical holes were analyzed by Lekhnitskii 

[3]. Theocaris et al. [4] studied the stress distribution around equilateral triangular hole also investigated the effect of 

the curvature of hole corner. Using the complex potential method, the stress distribution around triangular hole in an 

anisotropic plate was presented by Daoust et al. [5]. In their research bluntness as important parameter in stress 

analysis of isotropic plates was studied. Abuelfoutouh [6] formulated the circumferential stress around different 

holes such as elliptical, circular, triangular and square holes in composite shells by defining a special conformal 

mapping. In addition, Rezaeepazhand and Jafari [7] presented the analytical solution to study the anisotropic plates 

with holes. They also obtained stress concentration factor for different shapes of hole in metallic infinite plates and 

pursued the effect of the bluntness and loading directions on the stress concentration [8]. Odishelidze et al. [9] 

studied stress concentration factor in an elastic square plate with a full-strength hole. He used Kolosov–

Muskhelishvili formulas for investigating and the solution was written in quadrature forms. Sharma [10] presented 

the stress distribution around circular, elliptical and triangular holes for orthotropic laminates and anisotropic plates 

by means of Muskhelishvili’s solution. Kradinov et al. [11] showed application of genetic algorithm in optimal 

design of bolted composite lap joints. In this research, the laminate thickness, laminate lay-up, bolt location, bolt 

flexibility, and bolt size were considered as design variables for maximizing the strength of the joint. Yun [12] 

concerned with high stress concentrations in stiff-fiber reinforced composites, which causes low strengths of 

materials. Fuschi et al. [13] studied plane stress problems in nonlocal elasticity. He discussed an enhanced 

computational version of the finite element method in the context of nonlocal strain-integral elasticity of Eringen-

type. Rezaeepazhand et al. [14] investigated torsional analysis of hollow bars with specially shaped non-circular 

cross-sections. He used to complex variable theory for solve the torsion problem and obtain an expression for shear 

stresses, angle of twist and cross-sectional warping. Ghugal and Sayyad [15] applying shear deformation method to 

solve the isotropic plates problems. Pan et al. [16] presented the modified stress functions for solving the stress 

distribution problem of a finite plate with a rectangular hole subjected to uniaxial tension. They used the mapping 

function presented by Sharma based on Schwarz–Christoffel and studied finite isotropic plate containing rectangular 

hole. The rectangular hole and the finite area external to the rectangular hole in z-plane were mapped respectively 
into a unit circle and the finite area outside a unit circle in ζ-plane by using mapping function. Based on 

Muskhelishvili's complex variable method, two modified stress functions which are   and   in ζ-plane were proposed. 

The unknown coefficients of the modified stress functions were determined by enforcing the stress functions to 
satisfy the stress boundary conditions around the unit circle in ζ-plane and the stress boundary conditions along 

external boundary in z-plane. Then, the stress field of a finite plate with a rectangular hole was calculated. Jafari and 

Ardalani [17] studied stress distribution around the different holes in a finite metallic plate, using the complex 

variable method and the expansion of research conducted by Pan et al. By using the finite element method, Liu and 

et al. [18] investigated the optimization of the composite plates with multiple holes. At first, they considered the 

effect of the number of holes and hole spacing relative to each other. The Tsai-Hill failure criterion for a composite 

plate was used to evaluate cost function. Sivakumara et al. [19] studied the optimization of laminate composites 

containing an elliptical hole by genetic algorithm method. In this research design variables were the stacking 

sequence of laminates, thickness of each layer, the relative size of hole, hole orientation and ellipse diameters. The 

first and second natural frequencies were considered as cost function. Almeida and Awruch [20] studied the optimal 

design of laminate composites using the genetic algorithm and the finite element approaches. Fiber angle and 

thickness of each layer were considered as design variables and the cost function was to achieve the lowest 

deflection and weight. Based on the particle swarm optimization and the finite element method, Chen et al. [21] 

presented an optimization method for designing reliability of composite structures. In this method, data are 

exchanged between the ANSYS and MATLAB software. They presented numerical examples for laminates, 

composite cylindrical shells and composite pressure vessel to prove the effectiveness of his method. Lopez et al. 

[22] studied an approach for the reliability based design optimization of laminated composites with Particle Swarm 

Optimization (PSO) method. Vosoughi and Gerist [23] presented a new mixed method of particle swarm 

optimization, finite element and continuous genetic algorithm to determine the damage of composite beams. At first, 

they obtained the equilibrium equations governing the composite beam using the first-order shear deformation 

theory (FSDT) and then by using the finite element method, they solved the resulting equations with related 
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boundary conditions. After that, they presented their method to check the damage detection. To prove the efficiency 

of their approach, they dealt with the effect of different parameters such as the loss ratio, the number of damage 

elements, the fiber angle of each layer and the number of layers on damage assessment of composite beam. Sharma 

et al.[24] conducted the optimal design of the symmetrical laminates containing an elliptical hole by using the 

genetic algorithm method. They obtained optimum fiber angle in symmetrical laminated composites with an 

elliptical hole under in-plane loading conditions. Cost function was calculated by using the Tsai-Hill failure 

criterion. Design variables were stacking sequence of laminates. Jafari and Rohani [25] studied the optimization of 

perforated composite plates under tensile stress using genetic algorithm method. The analytical solution was used to 

determine the stress distribution around different holes in perforated composite plates. Moreover, Suresh et al.[26] 

investigated the particle swarm optimization approach for multi-objective composite box-beam design. Vigdergauz 

[27] proposed minimum stress variation as a profound generalization of the equi-stress principle in the shape 

optimization problem for regular perforated structures in 2D elasticity. Due to its integral nature the new criterion 

was easily incorporated in the standard GA searching tool which employed complex variables and conformal 

mapping technique for the cost function of any admissible hole shape. Zhu and et al. [28] considered the 

optimization of composite strut using the genetic algorithm method and Tsai-Hill failure criterion. Their attention 

was paid to minimize the weight of structure and increase buckling load. Fiber volume fraction and stacking 

sequence of laminates were considered as design variables. Campbell et al. [29] investigated injecting problem-

dependent knowledge to improve evolutionary optimization search ability. Yang et al. [30] proposed an optimization 

procedure combining an automated finite element modelling technique with a ground structure approach for 

structural layout and sizing design of aircraft wings. Rasoli et al. [31] investigated the optimum parameters for 

determination of stress and strain curves. They used optimization technique and finite element method for solve the 

problem.  

In this study by using the three different categories of optimization algorithms, the optimal values of parameters 

such as bluntness, rotation angle of hole, and plate dimension ratio that lead to lowest possible stress level around 

the square-shaped hole in a finite perforated plate under uniaxial loading were calculated. It is worth mentioning that 

the stress concentration factor value around the hole is considered as cost function (C.F.) for three optimization 

algorithm. The main goal of this paper is to obtain the optimal design variables which minimize the maximum stress 

around quasi-square hole calculated by analytical method based on complex variable method. 

3    THEORY ANALYSIS 

A plate with a hole in the center is available. The ratio of hole side to the longest side of the plate is greater than 0.2. 

Then, the plate can be considered as finite. The problem is evaluated based on the assumption of presence of in-

plane stress and absence of volumetric forces. Hole can rotate relative to the x-axis. Stress-strain relationship is 

linear. According to Fig. 1, the hole is located in the center of the plate, and because of the traction-free boundary 

conditions on the edge of the hole, the only stress induced around the hole is 
 ( 0    ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

The finite plate with square hole subjected to uniaxial 

loadings. 
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This study applied an appropriate mapping function and Muskhelishvili’s complex variable method investigating 

the stress distribution around the hole with different shapes in finite perforated plates. Compatibility equation for 

perforated materials in plane stress state in terms of stress function U is as follows: 

 
4 4 4

4 2 2 4
2 0

U U U

x x y y

  
  

   
      (1) 

 

Muskhelishvili showed that the solution of the Eq. (1) can be written as follows: 

 

( , ) Re[ ( ) ( )]U x y z z z         (2) 

 

After finding U(x,y) in terms of the functions )(z and )()( zz   the stress components in two-dimensional and 

simply-connected region is calculated as follows [1]: 

 

 4Re ( )x y z          (3) 

 

2 2( ( ) ( ))y x xyi z z z               (4) 

 

where ( )z and ( )z are the holomorphic functions in terms of the complex variable z. By using a general 

conformal mapping function as Eq. (5), the hole with different shapes in z-plane is mapped into a unit circle while 

the corresponding finite area external to the polygonal hole in z-plane is mapped into a finite area outside the unit 

circle in  -plane. In Eq. (5), since R, which is a positive and real number, affects only the size of the hole and not 

the shape of the curve, its value has no effect on stress distribution around the hole, hence it can be assumed that 

R=1. Integer n in the mapping function represents the shape of the hole. The hole sides are given by n+1. Parameter 

m determines the bluntness factor and changes the radius of curvature at the corner of the hole. As shown in Fig. 2, 

different bluntness can be developed in hole corners with varying m. It should be noted that m=0 is equivalent to a 

circular hole. In this article, n equal 3 an m between [0, 0.2] and the ratio L/a equals to 0. 4.  
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Fig.2 

The effect of parameter m on the hole shape. 

 

Using Eq. (6), the x and y coordinate values of the points on hole boundary in z-plane in terms of the  and 

 coordinate values in  -plane are in the form of the Eqs. (7) and (8). In the following equations Re and Im are real 

and imaginary parts of the terms in brackets. 
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The stress components in the curvilinear coordinates ( , )   expressed by the mapping function are: 
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By solving the system of Eqs. (9) and (10), the stress components in terms of stress functions and conformal 

mapping function will be as follows:  

 
2

2

2 ( )
Re ( ( ) ( ) ( ) ( ))

( ) ( )


  
        

    

 
     

  
     (12) 

 
2

2

2 ( )
Re ( ( ) ( ) ( ) ( ))

( ) ( )


  
        

    

 
     

  
    (13) 

 
2

2
Im ( ( ) ( ) ( ) ( ))

( )



        

  

 
    

 
    (14) 

 

Therefore, solution of plane stress problem is reduced to determination of two holomorphic analytical functions 

( )   and ( )   which satisfy the boundary conditions of the problem. Pan [16] used the conformal mapping to 

solve the problem of stress distribution around quasi-square holes in finite plate subjected to in-plane loadings. He 

introduced ( )   and ( )   in  as Eqs. (15) and (16): 
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where M is the number of terms related to different parts of Laurent series terms.  Where An, Bn, Cn and Dn are 

complex numbers which are considered as below:  
 

1 2n n nA a ia    ,    
1 2n n nB b ib   

1 2n n nC c ic    ,   
1 2n n nD d id   

   (17) 

 

1 2 1 2 1 2 1, , , , , ,n n n n n n na a b b c c d  and 
2nd  are unknown real constants. According to described relations, to investigate 

the stress distribution around hole, the unknown coefficients An , Bn , Cn and Dn in Eqs. (12) to (14) need to be 

calculated. For this purpose, the least squares boundary method is used for both internal and external boundary 
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conditions [16].
 0  is the tensile stress applied on the external boundary of the plate. In this paper, this stress is 

considered to be 1 MPa . The external boundary conditions of the finite plate with hole are as Eqs. (18) and (19): 

 
2 2cos sin 2 sin cosx y xy n              (18) 

 
2 2( )sin cos (cos sin )y x xy n               (19) 

   

In the above equation,   is the angle between the vector perpendicular to the external boundary of the plate and 

the X-axis.
n  and 

n are respectively the normal stress and the shear stress on the external boundary. The effect of 

rotation angle of different holes is evaluated by using two Cartesian coordinate system on the center of the plate. 

The x-y coordinates positioned on hole and the X-Y coordinate positioned on the plate. The rotation angle of hole is 

the angle between these coordinates. Consequently, according to the aforementioned formulas, a linear equation 

system is constructed such that the unknown constants can be obtained by its solution. In substituting these constants 

in Eqs. (15) and (16), two stress functions of ( )   and are calculated and finally the stress components are obtained 

using Eqs. (12) to (14).  

4    METAHEURISTICS ALGORITHMS 

Nowadays, metaheuristic algorithms have many applications in different branches of optimization. Most of these 

algorithms are inspired by the order and rules found in natural organisms, and some of them are derived from other 

branches of science. Unlike exact optimization methods, these algorithms seek to find points that are as close to the 

global optimum as possible, so that the decision-makers needs are met to an acceptable level. In other words, 

metaheuristic methods search for near-optimum solutions with an acceptable computational cost.  

 
Table 1 

Algorithm implementation details. 

GA GSA BA 

Population size = 30 Population size = 30 Population size = 30 

Maximum of iteration = 120 Maximum of iteration = 120 Maximum of iteration = 120 

Probability of crossover (Pc) = 0.8 
Euclidian distance = ( ) ( ), ( )R t x t x t

ij i j
  

Variable wavelength =   

Probability of mutation (Pm) = 0.03  Pulse emission =  0,1ir   

ncrossover = 2*round(npop*Pc/2)   

nmut = npop*Pm   

 

Metaheuristic methods are also known as approximate methods because of the major role played by stochastic 

mechanisms in their structure. So far, various metaheuristic algorithms have been devised.  

Examples include the genetic algorithm inspired by genetics and evolution; the gravitational search algorithm 

inspired by the force of gravity and gravitation in nature and the bat algorithm inspired by the life behavior of bats in 

nature. Such algorithms have ways to escape local optima and can be used for a wide range of problems. Table 1. 

indicates the influence parameters for each optimization algorithms. 

4.1 Genetic Algorithm (GA) 

Genetic Algorithm (GA) is a subset of evolutionary algorithms that uses Darwin's principles of natural selection to 

find the most optimal solution. This algorithm was developed by John Holland. A collection of all previous research 

on genetic algorithm was attended by Gen [32] and Sivanandam [33]. Zhao and et al. [34] studied the reinforcement 

design for composite laminate with large hole by a genetic algorithm method. It can be said that this algorithm uses 

of genetic evolution as a problem-solving model. Toledo et al. [35] applied a genetic algorithm with hierarchically 

structured population to solve unconstrained optimization problems. This algorithm begins with a set of solutions 

(represented by chromosomes) called population. Each set of solutions includes all the variables of the genes 
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problem [32]. This algorithm starts by generating an initial population. With the available information on current 

population, new population is created. For better results, new population of parents is selected to have better 

responses then new children are produced for the next generation from these parents. Production of these 

generations continues so much to close to the desired condition and the best answer to be achieved. The process of 

genetic algorithm begins by selecting the number of chromosomes. Then the optimization function is obtained for 

each of the produced chromosomes. New stages are carried out by producing the new generation. At this stage, the 

concepts of selection, mutation, reproduction and migration are handled.  One of the most important effective factors 

on the choice of the number of parents for reproduction is crossover probability. The number of population that 

participates in crossover is given as below: 

 

2* ( * 2)cncrossover round npop P     (20) 

 

In this equation, npop and 
cP are the number of population and the probably crossover respectively. Crossover is 

the process of taking two parent solutions and producing from them a child. The traditional genetic algorithm uses 

single point crossover, where the two mating chromosomes are cut once at corresponding points and the sections 

after the cuts exchanged. After crossover, the strings are subjected to mutation. Mutation prevents the algorithm to 

be trapped in a local minimum. If crossover is supposed to exploit the current solution to find better ones, mutation 

is supposed to help in the exploration of the whole search space. Then the optimum of the new chromosomes is 

evaluated. Now, individuals from the old population are killed and replaced by the new ones. The algorithms 

stopped when the population converges toward the optimal solution [33]. 

4.2 Gravitational Search Algorithm (GSA) 

Gravitational Search Algorithm (GSA) was introduced by Rashedi et al. in [36] and is intended to solve optimization 

problems. The gravitational search algorithm is inspired by the law of gravity and the force of gravitation in nature. 

In the Newton law of gravity, each particle attracts every other particle with a gravitational force. The gravitational 

force between two particles is directly proportional to the product of their masses and inversely proportional to the 

square of the distance between them [36]: 

 

1 2

2

M M
F G

R
     (21) 

 

where F is the magnitude of the gravitational force, G is gravitational constant, 
1M and 

2M are the mass of the first 

and second particles respectively, and R is the distance between the two particles. Newton’s second law says that 

when a force, F is applied to a particle, its acceleration, a, depends only on the force and its mass M [36]: 

 

F
a

M
     (22) 

 

Three kinds of masses are defined in theoretical physics: active gravitational mass ( aM ), passive gravitational 

mass ( pM ) and inertial mass (
iM ).

 aM is a measure of the strength of the gravitational field due to a particular 

object. pM  is a measure of the strength of an object interaction with the gravitational field and 
iM is a measure of 

an object resistance to changing its state of motion when a force is applied. Now, considering the above-mentioned 

aspects, we rewrite Newton’s laws. The gravitational force, ijF  that acts on mass i by mass j, is proportional to the 

product of the active gravitational of mass j and passive gravitational of mass i, and inversely proportional to the 

square distance between them.
ia is proportional to ijF and inversely proportional to inertia mass of i. More 

precisely, one can rewrite Eqs. (21) and (22) as follows [36]: 
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where ajM and piM represent the active gravitational mass of particle j and passive gravitational mass of particle i, 

respectively and 
iiM represents the inertia mass of particle i. In the GSA algorithm, agents are considered as objects 

and their performance is measured by their masses. In fact, each mass presents a solution, and the algorithm is 

navigated by properly adjusting the gravitational and inertia masses. By lapse of time, we expected that masses be 

attracted by the heaviest mass. This mass will present an optimum solution in the search space. The masses obey the 

law of gravity and law of motion. Therefore, consider a system with N agents (masses). We define the position of 

the thi (i =1, 2,…, N ) agent by Eq.(24) [36]: 

 
1( )d n

i i i ix x x x                   (24) 

 

where 
d

ix presents the position of thi agent in the thd dimension. At a specific time t, we define the force acting on 

mass i from mass j as Eq. (25) [37]: 

 

( ) ( )
( ) ( ) ( ( ) ( ))

( )

aj pid d d

ij j i

ij

M t M t
F t G t x t x t

R t 


 


                  (25) 

 

where ajM is the active gravitational mass related to agent  j, piM is the passive gravitational mass related to agent 

i, ( )G t  is gravitational constant at time t,   is a small constant, and ( )ijR t is the Euclidean distance between two 

agents i and j as Eq.(26) [37]: 

 

( ) ( ), ( )ij i jR t x t x t                   (26) 

 

To give a stochastic characteristic to GSA algorithm, Rashedi et al. [36] supposed that the total force that acts on 

agent  i  in a dimension d  be a randomly weighted sum of thd components of the forces exerted from other agents as 

Eq.(27) [36]: 

 

1,

( ) ( )
N

d d

i j ij

j j i

F t rand F t
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                    (27) 

 

where jrand  is a random number in the interval [0, 1]. Hence, by the law of motion, the acceleration of the agent i 

at time t, and in direction thd , ( )d

ia t  is given as follows [36]: 

 

( )
( )

( )

d

d i

i

ii

F t
a t

M t
                   (28) 

 

where 
iiM

 
is the inertial mass of thi agent. Furthermore, the next velocity of an agent is considered as a fraction of 

its current velocity added to its acceleration. Therefore, its position and its velocity could be calculated as Eqs. (29) 

and (30) [37]: 

 

( 1) ( ) ( )d d d

i i i iv t rand v t a t                      (29) 

 

( 1) ( ) ( 1)d d d

i i ix t x t v t                      (30) 

 

where irand  is a uniform random variable in the interval [0, 1]. This random number used to give a randomized 

characteristic to the search. The gravitational constant G is initialized at the beginning and will be reduced with time 

to control the search accuracy. In other words, G is a function of the initial value (
0G ) and time (t) as follows [36]: 
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0( ) ( , )G t G G t                   (31) 

 

Once the system has been created, each mass is randomly positioned at a point in the search space.  Gravitational 

and inertia masses are simply calculated by the cost function. A heavier mass means a more efficient agent. This 

means that better agents have higher attractions and walk more slowly. Assuming the equality of the gravitational 

and inertia mass, the values of masses are calculated using the map of optimum. We update the gravitational and 

inertial masses by the following equations [36]: 

 

ai pi ii iM M M M    
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j

m t
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m t

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
        

   (32) 

 

The mass of each agent is ( )im t  and ( )iopt t represent the optimum value of the agent i at time t, and, 

( )worst t and ( )best t are defined for a minimization problem as Eq.(33) [36]: 

 

1,...,
( ) min ( )i

i N
best t opt t


  

1,...,
( ) max ( )i

i N
worst t opt t


  

   (33) 

4.3 Bat Algorithm (BA) 

The Bat Algorithm (BA), inspired by the echolocation behavior of bats has been proposed by Yang [38]. There are 

many types of bats in the nature. They are different in terms of size and weight but they all have quite similar 

behaviors when navigating and hunting. Bats utilize natural sonar in order to do this. The three main characteristics 

of bats when finding prey have been adopted in designing the BA algorithm.  Firstly, most of the species of the bat 

utilize the echolocation to detect their prey, but not all species of the bat do the same thing. However, the bat is a 

famous example of extensively using the echolocation. Hence, the first characteristic is the echolocation behavior. 

The second characteristic is the frequency that the bat sends a fixed frequency 
minf with a variable wavelength   

and the loudness 
0A
 
to search for prey. Thirdly, there are many ways to adjust the loudness. For simplicity, the 

loudness is assumed to be varied from a positive large 
0A  to a minimum constant value, which is denoted by 

minA . 

All bats fly randomly in the search space producing random pulses. After each fly, the position of each bat is 

updated as Eq.(34) [38]: 

 
min max min( )if f f f    

1 ( )t t t

i i i i bestV V f X X
      

1t t t

i i iX X V
     

   (34) 

 

where if  is the frequency used by the bat seeking for its prey, the suffixes, min and max, represent the minimum 

and maximum value, respectively. iX  denotes the location of the thi  bat in the solution space, iV  represents the 

velocity of the bat, t   indicates the current iteration,  is a random vector ([0,1]), which is drawn from a 

uniform distribution, and bestX  indicates the global near best solution found so far over the whole population [38]. 

In addition, the rate of the pulse emission from the bat is also taken to be one of the roles in the process. The pulse 

emission rate is denoted by the symbol
ir , and 

ir  [0, 1], where the suffix i indicates the thi  bat. In every iteration, 
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a random number is generated and compared with
ir . If the random number (  ) is greater than

ir , a local search 

strategy, namely, random walk is detonated. A new solution for the bat is generated by Eq. (35) [39]: 

 
1t t tX X A

         (35) 

 

where   is a random number in the range of [−1,1], 
tA

 represents the average loudness of all bats at the current 

time step and 
ir  indicates pulse emission rate in the range of [0,1]. After updating the positions of the bats, the 

loudness 
iA and the pulse emission rate 

ir  are also updated only when the global near best solution is updated and 

the random generated number is smaller than
iA . The update of 

iA  and 
ir  are operated by Eq. (36) and Eq. (37) 

[39]: 

 
1 .t t

i iA A
       (36) 

 

 1 0 1 exp( )t

i ir r t
         (37) 

 

where  and   are constant values and equal to 0.9 is used for the simplicity ( 0.9   ). 

5    ALGHORITHMS CONVERGENCE 

Accordingly, Fig. 3 shows convergence graph of the cost function for three optimization algorithm in m=0.12 and 

b/a=1.5. It is clear that in most runs of GA consecutive cost function values remain more or less unchanged after 

generation 95 and GSA with similar populations, consecutive cost function values remain more or less unchanged 

after generation 38 while in BA this occurs near generation 16. The running time achieved for these three algorithms 

was also compared, and after running the program multiple times, it was found that BA is able to find the global 

optimum sooner than the other two algorithms. 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

GA, GSA and BA convergence diagram. 

6    VALIDATION OF THE RESULTS 

To check the accuracy of the result, the existing cases in literatures are modeled. As an example, Fig. 4 presents a 

comparison between the analytical solution and finite element method for a finite perforated plate with square hole 

(m=0.12). The hole geometry was modeled in accordance with optimum parameters obtained from program 

execution in ABAQUS software. Comparison of the obtained values of the cost function from analytical solution 

method in this case and numerical solution in one of the optimized cases of ( 0.12 1.75 0.4m b a L a   ) for 

a finite perforated plate subjected to uniaxial load is shown in Fig. 4. Angle of , specifies angle of points on the 

border of the hole with respect to horizontal axis. Good agreements between the results obtained by the analytical 

solution with numerical solution show the accuracy and precision of the present analytical solution. 
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Fig.4 

Compare FEM and present solution for 0.12 1.75 0.4m b a L a   . 

 

7    RESULTS 

In this section tries to investigate the effected of plate dimension ratios (b/a) on stress analysis of a finite perforated 

plate with central quasi-square hole with 0.4L a   by using GA as evolutionary algorithm category, GSA as 

physics-based algorithm category and BA as swarm intelligence algorithm category. It is worth discussing here that 

the effective parameters on stress distribution around holes include plate dimension ratio, curvature radius of the 

corner of the hole and rotation angle of the hole subjected to uniaxial loading. Mechanical properties used in this 

study are presented in Table 2. 

 
Table 2  

Material properties. 
  E(MPa) Materials 

0.3 207 Steel 

 

when the geometry of hole is considered as design variable, by choosing the appropriate value of hole orientation, 

the value of stress concentration factor can be minimized. For this purpose, using genetic, gravitational search and 

bat algorithms in different values of (b/a), optimal values of hole orientation in different m values are investigated 

for a finite perforated plate with central quasi-square hole in the ratio of hole size to plate size (L/a) equal to 0.4. 

Results obtained for different m values from the three optimization algorithms are shown in Tables 3 to 8. According 

to the results of these Tables, it is observed that the optimal values of stress concentration factor in all values of 

bluntness parameter (m) occur at 3b a  . The most important point of these results is that the lowest value of the 

optimized stress concentration factor occurs in the m=0.08. Then, it can be concluded that the value of stress 

concentration factor less than circular hole (m=0) can be achieved by selecting the appropriate values for the 

effective parameters such as hole orientation angle. Furthermore, using the results of Tables 3 to 8, the optimal 

solution obtained from the three algorithms can be compared with each other. It can be concluded that BA as swarm 

intelligence category offers outperforms genetic and gravitational search algorithms in optimizing the value of stress 

concentration factor, frequently. According to the results, the least value of the optimized stress concentration factor 

equal to 3.0784 obtained from bat algorithm in 0.4, 3,, 0.08.L a b a m    

 

Table 3 

Optimum values corresponding cost function for m=0. 

b a    GA GSA BA 

     0.75 0        7.5373   7.5143 6.9103 

1 36.1284   5.8451 5.814 5.7719 

     1.25 54.7231   4.7719   4.7789 4.6632 

   1.5 33.4165 4.333     4.3309 4.3281 

     1.75   9.3172   4.1607   4.1614 4.0008 

2 29.8453   4.1185   4.1013 3.8371 

3 26.7035   4.1886   4.0485 3.7423 
 

FEM 

Analytical Solution - - - - 
- 
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Table 4   

Optimum values of corresponding cost function for m=0.04. 

b a    GA GSA BA 

0.75 59.6921 6.4564 6.4564 6.4551 

1 53.4088 4.8551 4.8604 4.8195 

1.25 28.2747 4.1233 4.0027 4.0027 

1.5   40.8424 3.8101 3.6471 3.7533 

1.75 53.4041 3.5164 3.5158 3.4719 

2 28.1756 3.4711 3.4701 3.4432 

3 47.1216 3.4210 3.4236 3.4179 
 

 

Table 5 

Optimum values of corresponding cost function for m=0.08. 

b a    GA GSA BA 

0.75 59.6901 6.6121 6.5208 5.9423 

1   9.4264  4.4471 4.4433 4.4439 

1.25 53.4041 3.7177 3.6134 3.6513 

1.5 28.2747 3.3592 3.271   3.2581 

1.75 28.2712 3.2841 3.1818 3.1417 

2   9.4251 3.2174 3.1001 3.0986 

3 34.5565 3.1128 3.0928 3.0784 
 

 

Table 6   

Optimum values of corresponding cost function for m=0.12. 

b a    GA GSA BA 

0.75 28.3119 7.4913 7.9891 6.6227 

1    9.4251 6.0541 4.8557 4.7155 

1.25 28.2742 4.2996 3.9287 3.9262 

1.5   47.1228 3.5573 3.5545 3.6834 

1.75 53.4041 3.4179 3.4211 3.4155 

2   9.4264 3.362   3.362   3.2701 

3 59.6904 3.3411 3.3403 3.2377 

 
 

Table 7  

Optimum values of corresponding cost function for m=0.16. 

b a    GA GSA BA 

0.75 53.4088 10.9123   10.7954   10.7937    
1     9.4251  5.8211 5.8209 5.8226 

1.25 21.9906 4.6871 4.6877 4.6675 

1.5   23.8116 4.2627 4.2502 4.1883 

1.75 47.1228 4.1219 4.086   3.8513 

2 34.5565 4.0277 4.027   3.6097 

3 28.2747 3.9135 4.0062 3.5226 

 
 

Table 8   

Optimum values of corresponding cost function for m=0.2. 
b a    GA GSA BA 

0.75   9.4211 16.0562 16.1346 15.7719 

1 40.8607    7.7266 7.587   7.5881 

1.25 34.5165    6.1619   6.0697   6.2046 

1.5   3.142    5.5203   5.5163   5.5037 

1.75 34.5559    5.3277   5.3144   5.3101 

2 53.4054    5.2444   5.2454   5.2384 

3 47.1246   5.2276  5.2227  5.2218 
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Figs. 5 to 7 show the values of the cost function (optimum stress values) in terms of plate dimension ratios in 

various curvatures by genetic, gravitational search and bat algorithms, respectively. According to Figs. 5 to 7, the 

highest values of optimum stress occur in m=0.2 and the lowest values of optimum stress occur in m=0.08. It means 

that quasi-square hole in special bluntness, optimum stress will be obtained. Then, the value of stress concentration 

factor less than circular hole (m=0) can be achieved by selecting appropriate values for the effective parameters such 

as rotation angle. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

The effective plate dimension ratio in various curvature radius of 

the corner by genetic algorithm (GA). 

  

 

 
 
 
 
 
 
 
 
 
Fig.6 

The effective plate dimension ratio in various curvature radius of 

the corner by gravitational search algorithm(GSA). 

  

 

 
 
 
 
 
 
 
 
 
Fig.7 

The effective plate dimension ratio in various curvature radius of 

the corner by bat algorithm (BA). 

 

Finally, Table 9. shows overall optimum results for the perforated material. The optimum values of curvature 

radius of the corner of the hole and the hole orientation obtained by GA, GSA and BA.  According to the Table 9, 

for perforated material, by increasing plate dimension ratio, the value of the cost function decreases. Also, among 

the three groups of metaheuristic algorithms expressed in this paper, the bat algorithm as SI algorithm category leads 

to the most optimal result than the other two algorithms. 
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Table 9 

Overall optimum results by metaheuristic optimization algorithm. 
b a    m GA GSA BA 

0.75 58.4097 0.05836149 6.3498 6.3342 6.313   
1 75.3532 0.07232119 4.5412 4.4909 4.4722 

1.25 34.5567 0.08054442 3.6222 3.6218 3.6205 

1.5   29.6753 0.07853241 3.2987 3.2773 3.2773 

1.75 53.8951 0.07932772 3.1816 3.1417 3.1413 

2 21.9892 0.08054387 3.1291 3.0991 3.0985 

3 38.6405 0.07975969 3.0913 3.0848 3.078   

8    CONCLUSIONS 

This paper applied three metaheuristic optimization algorithms categories. Using GA, GSA and BA, The optimal 

values of parameters affecting the stress distribution around quasi- square hole located in a finite perforated plate 

subjected to uniaxial loading were discussed. Moreover, the results of these algorithms were compared with each 

other. The results obtained in this paper showed that BA is other forms of metaheuristic algorithms based on swarm 

intelligence which has the advantages such as high exploration and exploitation in comparison with other used 

algorithms. Besides, avoiding from the local optimum in many cases, indicated the superiority of this algorithm to 

other cases. The design variables are the curvature of hole corners, rotation angle of hole, plate dimension ratio and 

the ratio of cut-out size to plate size. The considered cost function was obtained based on Muskhelishvili’s complex 
variable and conformal mapping with plane stress assumption. The stress functions in ζ-plane were determined by 

superposition of the stress function in infinite plate containing square hole with stress function in finite plate without 

hole. Using least square boundary collocation method and applying appropriate boundary conditions, unknown 

coefficients of stress function were obtained. The results also showed that the hole bluntness is not the only 

parameter affecting the reduction of stress concentration, but also the hole orientation play a role in the reduction of 

stress that with choosing the optimum values of these parameters in a specific curvature, stress concentration can be 

reduced significantly. 
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