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 ABSTRACT 
 An analytical solution for a sandwich circular FGM plate coupled with piezoelectric layers under 

one-dimension heat conduction is presented in this paper. A nonlinear static problem is solved first 
to determine the initial stress state and pre-vibration deformations. By adding an incremental 
dynamic state to the pre-vibration state, the differential equations are derived. The role of thermal 
environment and control effects on nonlinear static deflections and natural frequencies imposed by 
the piezoelectric actuators using high input voltages are investigated. The good agreement 
between the results of this paper and those of the finite element (FE) analyses validated the 
presented approach. The emphasis is placed on investigating the effect of varying the applied 
actuator voltage and thermal environment as well as gradient index of FG plate on the dynamics 
and control characteristics of the structure. 

© 2009 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

HE concept of developing smart structures has been extensively used for active control of flexible structures 
during the past decade. In this regard, the use of axisymmetric piezoelectric actuators in the form of a disc or 

ring to produce motion in a circular or annular substrate plate is common in a wide range of applications including 
micro-pumps and micro-valves [1] and implantable medical devices [2]. Functionally graded materials (FGMs) are a 
new generation of composite materials wherein the material properties vary continuously to yield a predetermined 
composition profile. These materials have been introduced to benefit from the ideal performance of its constituents, 
e.g., high heat/corrosion resistance of ceramics on one side, and large mechanical strength and toughness of metals 
on the other side. FGMs have no interfaces and are hence advantageous over conventional laminated composites. 
FGMs also permit tailoring of material composition to optimize a desired characteristic such as minimize the 
maximum deflection for a given load and boundary conditions, or maximize the first frequency of free vibration, or 
minimize the maximum principal tensile stress. FGMs are now developed for the general use as structural 
components and specially to operate in environments with extremely high temperatures. Low thermal conductivity, 
low coefficient of thermal expansion and core ductility have enabled the FGM materials to withstand higher 
temperature gradients for a given heat flux. Structures made of FGMs are often susceptible to failure from large 
deflections, or excessive stresses that are induced by large temperature gradients and/or mechanical loads. It is 
therefore of prime importance to account for the geometrically nonlinear deformation as well as the thermal 
environment effect to ensure more accurate and reliable structural analysis and design. 

Also in recent years, with the increasing use of smart material in vibration control of plate structures, the 
mechanical response of FGM plates with surface-bonded piezoelectric layers has attracted some researchers’ 
attention. Since this area is relatively new, published literature on the free and forced vibration of FGM plates is 
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limited and most of them are focused on the cases of the linear problem. Among those, a 3-D solution for 
rectangular FG plates coupled with a piezoelectric actuator layer was proposed by Reddy and Cheng [3] using 
transfer matrix and asymptotic expansion techniques. Wang and Noda [4] analyzed a smart FG composite structure 
composed of a layer of metal, a layer of piezoelectric and an FG layer in between, while Huang and Shen [5] 
investigated the dynamics of an FG plate coupled with two monolithic piezoelectric layers at its top and bottom 
surfaces undergoing nonlinear vibrations in thermal environments. All the aforementioned studies focused on the 
rectangular-shaped plate structures.  

To the authors’ best knowledge, no researches dealing with the nonlinear vibration characteristics of the circular 
FGM plate integrated with piezoelectric layers have been reported in literature except the author's recent works in 
free axisymmetric linear vibration analysis of piezoelectric coupled circular and annular FGM plates [6, 7] and 
investigating the applied control voltage effect on piezoelectrically actuated FG circular plate [8] in which the 
thermal environment effects are not taken into account. Consequently, a non-linear dynamics and vibration analysis 
are conducted on pre-stressed piezo-actuated FG circular plates in thermal environment. Nonlinear governing 
equations of motion are derived based on Kirchhoff’s-Love hypothesis with von-Karman type geometrical large 
nonlinear deformations. An exact series expansion method combined with perturbation approach is used to model 
the non-linear thermo-electro-mechanical vibration behavior of the structure. Numerical results for FG plates with 
various mixture of ceramic and metal are presented in dimensionless forms. A parametric study is also undertaken to 
highlight the effects of the thermal environment, applied actuator voltage and material composition of FG core plate 
on the nonlinear vibration characteristics of the composite structure. 

2    MATERIAL PROPERTIES 

Nowadays not only FGM can easily be produced but one can control even the variation of the FG constituents in a 
specific way. For example in an FG material made of ceramic and metal mixture, we have; 
 

1m cV V+ =  (1) 
 
in which Vc and Vm are the volume fraction of the ceramic and metallic part, respectively. Based on the power law 
distribution [9], the variation of Vc vs. thickness coordinates (z) with its origin placed at the middle of thickness can 
be expressed as; 
 

( / 2 1/ 2) , 0n
c fV z h n= + ≥  (2) 

 
in which hf  is the FG core plate thickness and n is the FGM volume fraction index. We assume that the 
inhomogeneous material properties, such as the modulus of elasticity E, density ρ , thermal expansion coefficient α  
and the thermal conductivity κ  change within the thickness direction z based on Voigt’s rule over the whole range 
of the volume fraction while the Poisson’s ratio υ is assumed to be constant in the thickness direction [8] as; 
 

( ) ( ) ( )c m c mE z E E V z E= − +  
( ) ( ) ( )c m c mz V zρ ρ ρ ρ= − +  
( ) ( ) ( )c m c mz V zκ κ κ κ= − +  
( ) ( ) ( )c m c mz V zα α α α= − +  
( )zν ν=  

(3) 

 
where subscripts m and c refer to the metal and ceramic constituents, respectively. After substituting Vc from Eq. (2) 
into Eqs. (3), material properties of the FGM plate are determined in the power law form which are the same as 
those proposed by Reddy and Praveen [9] i.e.; 
 

( ) ( )( / 2 1/ 2)n
f c m f mE z E E z h E= − + +  

( ) ( )( / 2 1/ 2)n
f c m f mz z hρ ρ ρ ρ= − + +  

( ) ( )( / 2 1/ 2)n
f c m f mz z hκ κ κ κ= − + +  

 
 

(4) 
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( ) ( )( / 2 1/ 2)n
f c m f mz z hα α α α= − + +  

3    THERMAL ENVIRONMENT 

Assuming piezo-laminated FGM plate is subjected to the thermal environment and the temperature variation occurs 
in the thickness direction and 1D temperature field is assumed to be constant in the r-θ plane of the plate. In such a 
case, the temperature distribution along the thickness can be obtained by solving a steady-state heat transfer equation 
[5] 
 

d d( ) 0
d d

Tz
z z
κ − =  

 
(5) 

 
in which 
 

( / 2 / 2)

( ) ( ) ( / 2 / 2)

( / 2 / 2)

p f p f

f f f

p p f f

h z h h

z z h z h

h h z h

κ

κ κ

κ

 < < +
= − < <
 − − < < −

 (6) 

( ) ( / 2 / 2)

( ) ( ) ( / 2 / 2)

( ) ( / 2 / 2)

p f p f

f f f

p p f f

T z h z h h

T z T z h z h

T z h h z h

 ≤ ≤ +
= − ≤ ≤


− − ≤ ≤ −


 (7) 

 
where κp and  κ f  are the thermal conductivity of piezoelectric layers and FG plate respectively. Eq. (5) is solved by 
imposing the boundary conditions as 

 

/2p f
p Uz h h

T T
= +

=  
/2p f

p Lz h h
T T

=− −
=  (8) 

 
and the continuity conditions 
 

1/2 /2f f
p fz h z h

T T T
= =

= =  2/2 /2f f
f pz h z h

T T T
=− =−

= =  

/2 /2

d ( ) d ( )
d d

f f

p f
p c

z h z h

T z T z
z z

κ κ
= =

=  

/2/2

d ( ) d ( )
d d

ff

p f
p m

z hz h

T z T z
z z

κ κ
=−=−

=


 

 
 
 

(9) 

 
The solution of Eq. (5) with the aforementioned conditions can be expressed as polynomial series 

 
1

1( ) ( 2)U
p f

p

T T
T z T z h

h
−

= + −  
 

(10) 

2( ) ( / 2 )L
p L f p

p

T TT z T z h h
h
−

= + + +  
(11) 

 
and 
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( )

1 2 1 3 1 4 1

0 1 2 3 4 5

5 1
6 1

6

1 1 1 1 1( )
2 2 2 2 2

1
2

N N N N

f
f f f f f

N
N

f

z z z z zT z A A A A A A
h h h h h

zA O z
h

+ + + +

+
+

         
= + + + + + + + + + +                  

         

 
+ + +  

 

 

(12) 
 
where constants T1, T2 and Aj can be found in Appendix A. 

4    THEORY 

It is assumed that an FGM circular plate is sandwiched between two thin piezoelectric layers which are sensitive in 
both circumferential and radial directions and the structure is in thermal environment, also the piezoelectric layers 
are much thinner than the FGM plate, i.e., hp<<hf .An initial large deformation exceeding the linear range is 
imposed on the circular plate and the von-Karman type nonlinear deformation is adopted in the analysis. The von-
Karman type nonlinearity assumes that the transverse nonlinear deflection w is much more prominent than the other 
two in-plane deflections. Based on Kirchhoff's-Love assumptions, the strain components at distance z from the 
middle plane are given by 
 

,rr rr rrzkε ε= +    ,zkθθ θθ θθε ε= +     r r rzkθ θ θε ε= +  (13) 
 
Here rrε , θθε , rθε  are the engineering strain components in the median surface, and rrk , kθθ , rk θ  are the curvatures 
which can be expressed in terms of the displacement components. The relations between the middle plane strains 
and the displacement components according to the von-Karman type nonlinear deformation and Sander’s 
assumptions [10] are defined as: 
 

21
2

r
rr

u w
r r

ε
∂ ∂ = +  ∂ ∂ 

,    
2

2
1 1

2r
w w

r r rθκ
θ θ

 ∂ ∂
= − +  ∂ ∂ ∂ 

 

21 1 1
2

ru u w
r r r

θ
θθε

θ θ
∂ ∂ = + +  ∂ ∂ 

,   
2

2 2
1 1w w
r r rθθκ

θ
∂ ∂

= − −
∂ ∂

 (14) 

1 1r
r

u uu w w
r r r r r

θ θ
θε θ θ

∂∂ ∂ ∂ = + − +  ∂ ∂ ∂ ∂ 
, 

2

2rr
w

r
κ ∂

= −
∂

 
 

 
where ru , uθ ,w represent the corresponding components of the displacement of a point on the middle plate surface. 
Substituting Eqs. (14) into Eqs. (13), the following expressions for the strain components are obtained 
 

2 2

2
1
2

r
rr

u w wz
r r r

ε
∂ ∂ ∂ = + − ∂ ∂ ∂ 

 

2 2

2 2
1 1 1 1 1

2
ru u w w wz

r r r r r r
θ

θθε
θ θ θ

 ∂ ∂ ∂ ∂ = + + − +    ∂ ∂ ∂ ∂   
 (15) 

2

2
1 1 1 12

2
r

r
u uu w w w wz

r r r r r r r r
θ θ

θε θ θ θ θ

  ∂∂ ∂ ∂ ∂ ∂ = + − + + − +      ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 

 
For a circular plate with axisymmetric oscillations, the strain expressions are simplified to 
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2 2

2
1
2

r
rr

u w wz
r r r

ε
∂ ∂ ∂ = + − ∂ ∂ ∂ 

                                               

ru z w
r r rθθε ∂

= −
∂

 

0z r z zrθ θε γ γ γ= = = =  

(16) 

 
The stress components in the FG core plate in terms of strains based on the generalized Hooke’s Law using the 

plate theory approximation of 0zσ ≈ in the constitutive equations are defined as [11]; 
 

2
( ) ( ) ( )( )

11
f

r r
E z E z z Tθ

ασ ε νε
νν

= + − ∆
−−

 (17) 

2
( ) ( ) ( )( )

11
f

r
E z E z z Tθθ

ασ ε νε
νν

= + − ∆
−−

 (18) 

 
where E(z), ( )zν  and α(z) are Young’s modulus, Poisson’s ratio and coefficient of thermal expansion of the FGM 
material respectively as expressed in Eq.(4) ; where 0( )T T z T∆ = −  is temperature rise from the stress-free reference 
temperature 0( )T  which is assumed to exist at a temperature of 0 0T =  and  ( )T z  is presented in Eqs. (10)-(12). The 
moments and membrane forces include both mechanical and electric components as 
 

,m e t
r r r rN N N N= − −    m e tN N N Nθ θ θ θ= − −  ,  (19) 

,m e t
r r r rM M M M= − −   m e tM M M Mθ θ θ θ= − −                    (20) 

 
where the superscripts m, e, and t, respectively, denote the mechanical, electric, and temperature components. 
Mechanical forces and moments of the thin circular plate made of functionally graded material can be expressed as 
 

2

2
( , ) ( , ) d

f

f

h
m m
r rr

h
N N zθ θθσ σ


           (21) 

2

2
( , ) ( , )  d

f

f

h
m m
r rr

h
M M z zθ θθσ σ


   (22) 

2

2
( , ) (1, )  d

f

f

h
m m
r r r

h
N M z zθ θ θσ


   (23) 

 
Substituting Eqs. (13), (17), and (18) into Eqs. (22) and (23) gives the following constitutive relations for 

mechanical forces and moments of FG plate : 
 

1( )m
r rrN D θθε νε= + ,     1( )m

rrN Dθ θθε νε= +    (24) 

2 ( )m
r rrM D θθκ νκ= + ,   2 ( )m

rrM Dθ θθκ νκ= +    (25) 
2

2

( ) ( ) ( ) d
1

t

t

h
t t
r

h

z E zN N T z z
vθ

α
∆


 

                      (26) 

2

2

( ) ( ) ( )  d
1

t

t

h
t t
r

h

z E zM M T z z z
vθ

α
∆


 

  (27) 

 
in which the coefficients of D1 and D2 in the above equations are related to the plate stiffness and are given by 
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2

1 22

( )
 d

1

f

f

h f

h f

E z
D z

ν


    , 
2

2
2 22

( )
 d

1

f

f

h f

h f

E z
D z z

ν


  (28) 

 
It is assumed that the piezoelectric layers are sensitive in both radial and circumferential directions and the 

piezoelectric permeability constants e31=e32. Hence, the electric membrane forces and bending moments vary 
linearly as  
 

31( ) / 2,e e t b
r z zN N e V Vθ= = − +                        (29) 

31( )( ) / 2e e t b
r f p z zM M e h h V Vθ= = − + −         (30) 

 
in which t

zV  and b
zV  are the control voltages applied to the top and bottom piezoelectric layers respectively. 

Axisymmetric free oscillation equations of the piezoelectric coupled circular FG plate in thermal environment can 
be derived from the generic piezoelectric shell equations using four system parameters: two Lame parameters, i.e., 
A1 =1, A2 =r, where r is the radial distance measured from the center and two radii, i.e., R1 =∞ , R2 =∞  [12,13] as 
 

( )
0rrN N

r θ
∂

− =
∂

 (31) 

2 2

12 2

( )1 1 0rz
r

rQ w w wN N I
r r rr tθθ θ
∂ ∂ ∂ ∂ + + − = ∂ ∂∂ ∂ 

 (32) 

 

in which 
2

1
2

( ) d
f

f

h

f
h

I z zρ


      and the transverse shear component rzQ  is related to moments as 

 
( )1 r

rz
rMQ M

r r θ
∂ = − ∂ 

     (33) 

 
Substituting all force/moment components and strain-displacement equations into the radial and transverse 

equations (31), (32) yields 
 

( ) ( ) ( )
2

2 21
2

m e t e t
r r r r r

Y wr r N r N N r N N
r r r r r r r

ν∂ ∂ ∂ ∂ ∂ ∂     = − + + + +    ∂ ∂ ∂ ∂ ∂ ∂     
     (34) 

( ) ( )
2

2
1 2

1 1 1( , ) m e t e t
r r r r r

D w wr r w r t I r N N N r M M
r r r r r r r r r r r rt

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     = − + − − − +        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂       
     (35) 

 

in which 
2

2
( ) d

f

f

h

f
h

Y E z z


  and boundary conditions at the center of the plate with axisymmetric oscillations are 

defined as 
 

(1) Plate center (r=0):  

Slope: 0w
r

∂
=

∂
  (36a) 

Radial force: m
rrN : finite  (36b) 

 
Boundary conditions for the simply supported (immovable) circumference are defined as: 

 
(2) Plate circumference  (r=a):               

0w =  (37a) 
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( ) ( )m m e t
r r r rrN N r N N

r r
ν∂ ∂

− = +
∂ ∂

 (37b) 

2

2 2 ( )e t
r r

w wD M M
r rr
ν ∂ ∂

− + = +  ∂∂ 
 (37c) 

 
It is further assumed that the control potentials on top and bottom piezoelectric actuators are of equal magnitudes 

and opposite signs, i.e ˆt b
z zV V V= − = and the plate is subjected to a uniform temperature excitation of T(z). 

Accordingly, the electric and temperature induced forces and moments can be defined as: 
 

0e e
rN Nθ= =                        (38a) 

( )31
ˆe e e

r f pM M M e h h Vθ= = = − +         (38b) 
t t t

rN N Nθ = =  (39a) 
t t t

rM M Mθ = =  (39b) 
 

Using these force and moment expressions, one can further simplify the open-loop plate equations and boundary 
conditions 
 

( )
2

21
2

m
r

Y wr r N
r r r r
∂ ∂ ∂   = −   ∂ ∂ ∂   

 (40) 

2
2

1 2
1 1( , ) ( )m t

r
D w wr r w r t I r N N
r r r r r r r r rt

  ∂ ∂ ∂ ∂ ∂ ∂ ∂   = − + −      ∂ ∂ ∂ ∂ ∂ ∂∂     
 

 
(41) 

 
Boundary conditions become 

 
(1) Plate center (r=0):  
  

Slope: 
0r

w
r =

∂
∂

  (42a) 

Radial force:
0

m
r r

N
=

: finite  (42b) 
 

(2) Plate circumference (r=a):  
  

0r aw
=

=  (43a) 

( ) 0m m
r r

r a
rN N

r
ν

=

∂ − = ∂ 
 (43b) 

2

2 2 ( )e t

r a

w wD M M
r rr
ν

=

  ∂ ∂
− + = +   ∂∂   

 (43c) 

 
Solutions of the transverse displacement w and radial force m

rN  of the above open-loop plate equations and 
boundary conditions can be expressed as a summation of a static component and a dynamic component as 
 

( , ) ( ) ( , )s dw r t w r w r t= + ,   (44a) 
( , ) ( , ) ( , )

s d

m m m
r r rN r t N r t N r t= +  (44b) 
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where ( )sw r  and ( , )
s

m
rN r t  are the static solutions; ( , )dw r t  and ( , )

d

m
rN r t  are the dynamic solutions; and the 

subscripts s and d, respectively, denote the static and dynamic solutions. Accordingly, the solution procedures can 
be divided into two parts. The first part deals with the nonlinear static solutions and the second part deals with the 
dynamic solutions. In addition, normalized dimensionless quantities are adopted in the static and dynamic analyses. 
These dimensionless quantities are defined by known geometrical and material parameters [14]: 
 
• radial distance: 2( )y r a=  

• transverse deflection: 23(1 ) /s s fw w hν= −  

• slope: ( ) s
s

dw
X y y

dy
=       

• static force: 2
2( ) ( / 4 )

s

m m
s rY y a N D y=  

• temperature load: 2
2* ( 4 )tT a N D=  

• radial distance: ( )x r a=  

• dynamic deflection: 23(1 ) /d d fw w hν= −       

• dynamic force: 2
2( ) ( / )

d

m m
d rY y a N D=  

• voltage: 
1/22

31 2
ˆ3(1 ) ( ) / (2 )f p fV e h h V D hν = − +   

 
Substituting these normalized dimensionless quantities into the open-loop plate equations and boundary 

conditions of axisymmetric plate oscillations and separating the static parts from the dynamic parts gives the static 
equations and dynamic equations with their associated boundary conditions: 
 
(A)    Static equations and boundary conditions 
 

2
2

2 *ms
s s s

d X
y X Y T yX

dy
= −   (45) 

( )
2

22
2

1 , 0 1
2

m
s

s
d Y

y X y
dy

= − < <   (46) 

 
Boundary conditions at center y = 0: 

 

0 0s yX
=

=          (47a) 

0
0m

s y
Y

=
=    (47b) 

 
Boundary conditions on circumference y = 1: 

 

( )
1

d
1 2 0

d

m
m s

s
y

Y
Y

y
ν

=

 
+ − = 

  
,  

  
 

(48a) 

( ) 1
1

d
1 2

d
s s

y
y

X X
V

y y
ν

=
=

 
− − = 

  
 

 (48b) 

 
(B)    Dynamic equations and boundary conditions 
 

2
2 d1 12

d 2
m s d d

d
w w w

x x Y
x x x x x x

 ∂ ∂∂ ∂      = − −    ∂ ∂ ∂ ∂     
 (49) 
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1 1 ( )dx x w
x x x x x x

  ∂ ∂ ∂ ∂   =   ∂ ∂ ∂ ∂    
 (50) 

24
1

2
2

d1 4 1ˆ4
d

m m md s d d d
d s d

w w w w wI a xY Y xY T x
D x x x x x x x x xt

∂ ∂ ∂ ∂∂ ∂   
− + + + −   ∂ ∂ ∂ ∂ ∂∂    

            0<x<1 

 
Boundary conditions at center x = 0: 

 

0
0d

x

w
x =

∂
=

∂
,          (51a) 

0
finitem

d x
Y

=
=    (51b) 

 
Boundary conditions on circumference x = 1: 

 

1 0d xw
=
= ,    (52a) 

( )
1

( ) 1 0m m
d d

x
Y Y

x
ν ν

=

∂ + − = ∂ 
 (52b) 

2

2
1

0d d

x

w w
xx

ν
=

 ∂ ∂
+ = 

∂∂  
  (52c) 

5    STATIC SOLUTIONS 

For the nonlinear static equations and boundary conditions of the boundary value problem derived above, static 
solutions of slopes ( )sX y and forces ( )m

sY y can be represented in (exact) series expansion forms [14]: 
 

1

( ) i
s i

i

X y A y
∞

=

=∑     (53a) 

1

( ) ,m i
s i

i

Y y B y
∞

=

=∑       0 1y≤ ≤  (53b) 

 
where Ai and Bi are constant coefficients. Substituting the series solutions Eqs. (53) into static equations, Eqs. (45) 
and (46), and grouping coefficients of yi one can obtain the recurrence equations for coefficients Ai and Bi: 
 

( )
1

1
1

1 ˆ
1

i

i j i j i
j

A A B TA
i i

−

− −
=

= −
− ∑  

  
 

(54a) 

( )
1

1

1
2 1

i

i j i j
j

B A A
i i

−

−
=

−
=

− ∑                2,3, 4,...i =  
 

(54b) 

 
It is observed that only A1 and B1 are independent constants, and the others are dependent constants. As long as 

A1 and B1 are determined by the boundary conditions, other coefficients Ai and Bi can be calculated from the 
recurrence equations. Accordingly, static series solutions are completed. The series solutions of ( )m

sY y and 

( )sX y satisfy the boundary conditions at y=0, Eqs. (47). Substituting the assumed series solutions ( )m
sY y and ( )sX y  

into the boundary conditions at y=1, Eqs. (48), yields 
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( )
1

1 2 0i
i

i Bν
∞

=

 + − = ∑                    (55a) 

( )
1

1 2 i
i

i A Vν
∞

=

 − − = ∑  (55b) 

 
Ai and Bi can be determined from the nonlinear algebraic equations Eqs. (55a, b) using the Newton-Raphson 
iteration method [15]. Define 
 

( ) ( )1 1
1

, 1 2 i
i

A B i A Vα ν
∞

=

 = − − − ∑ ,     ( ) ( )1 1
1

, 1 2 i
i

A B i Bβ ν
∞

=

 = + − ∑                (56) 

1 1 1A A= + ∆ ,          1 1 2B B= + ∆                 (57) 
 
in which 
 

( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1
1 1

1 , , , ,A B A B A B A B
B B

β α α β
 ∂ ∂

∆ = − ∆ ∂ ∂ 
 (58a) 

( ) ( ) ( ) ( )2 1 1 1 1 1 1 1 1
1 1

1 , , , ,A B A B A B A B
A A

α β β α
 ∂ ∂

∆ = − ∆ ∂ ∂ 
 (58b) 

 
and 

( ) ( )

( ) ( )

1 1 1 1
1 1

1 1 1 1
1 1

, ,
det 0

, ,

A B A B
A B

A B A B
A B

α α

β β

∂ ∂ 
 ∂ ∂ ∆ = ≠
 ∂ ∂
 ∂ ∂ 

                    (58c) 

 
1A  and 1B are, respectively, the iteration values of A1 and B1 ; 1∆  and 2∆  are the correction factors of A1 and B1 at 

each iteration. The partial derivatives 1Aα∂ ∂ , 1Bα∂ ∂ , β∂ ∂ 1 ,A and 1Bβ∂ ∂ can be determined from the definitions 

of ( )1 1,A Bα and ( )1 1,A Bβ . These iterations are repeated until they reach their prescribed limits, say α , β , 1∆  

and 2∆ are smaller than 10-4. Accordingly, a set of A1 and B1 are determined for a set of given control voltages V 
and temperatures *.T  Using the recurrence equations, one can determine all other Ai 's and Bi 's, and further the 
nonlinear static solutions of slope ( )sX y  and static force ( )m

sY y . Knowing the slope, one can determine the static 
deflections sw and sw  of the nonlinear circular plate subjected to voltage and temperature excitations. 

6     DYNAMIC SOLUTIONS 

It is assumed that the FG circular plate is oscillating in the vicinity of the nonlinearly deformed static equilibrium 
position. FG index, voltage and temperature effects to the natural frequencies and amplitude/frequency relations are 
investigated in this section. Neglect the nonlinear terms in the normalized dynamic equations, and then assume 
following harmonic solutions of displacement and dynamic force 
 

( , ) ( )sin( )d d nw x t R x tω=  (59a) 

( , ) ( )sin( )m
d d nY x t S x tω=  (59b) 

 
where nω  is the natural frequency; ( )dR x  and ( )dS x are the (linear) eigenfunctions or mode shape functions of 

( , )dw x t and ( , )m
dY x t , respectively. ( )dR x defines the mode shape function, and ( )dS x  defines the spatial force 
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distribution. Both ( )dR x and )(xSd  have to satisfy the boundary conditions, and they are also assumed in the series 
expansion forms. Substituting Eqs. (59a, b) into the dynamic equations and boundary conditions, Eqs. (49)-(52), 
yields 
 

21 ( ) 2 s d
d

dw dRd dx x S x
dx x dx dx dx

   = −   
 (60) 

1 1 1 4 1ˆ( ( )) ( ) 2 ( ) 4 ,  0 1ms d d
d d d s

dw dR dRd d d d d dx x R x R x xS x Y T x x
x dx dx x dx dx x dx dx x dx x dx dx

λ
         = + + − < <               

      (61) 

 

where λ is the eigenvalue and
4

2
1

2
n

aI
D

λ ω= . Boundary conditions become: 

Center x=0: 
 

0
0d

x

dR
dx =

=         (62a) 

0( )d xS x
=

: finite (62b) 
 

Circumference x=1: 
 

1 0d xR
=
= ,    (63a) 

( )
1

( ) 1 ( ) 0d d
x

d S x S x
dx

ν ν
=

 + − =    
 (63b) 

 (63c) 
2

2
1

0d d

x

d R dR
dxdx

ν
=

 
+ = 

  
 

 
Again, assume the eigenfunctions take the series expansion forms: 
 

2

0

( ) i
d i

i

R x a x
∞

=

=∑      (64a) 

2

0

( ) i
d i

i

S x b x
∞

=

=∑  (64b) 

 
where ia  and ib are constants determined by eigenvalue equations and boundary conditions. The series solutions 

( )dR x  and ( )dS x  satisfy the boundary conditions at x = 0. Assume ia  and ib , be represented by the linear 
combinations of independent constants 0a , 1a and 0b . 
 

1 0 2 1 3 0i i i ia f a f a f b= + +                   (65a) 
1 0 2 1 3 0 , 1, 2,3,...i i i ib g a g a g b i= + + =  (65b) 

 
where ijf  and ijg are to be determined. Substituting the series expressions of modes ( )dR x and forces ( )dS x  into the 
dynamic equations, one can derive a set of recurrence equations of ia  and ib . Then, using expressions of ia  and ib  
of Eqs. (65a, b), one can further determine the coefficients ijf  and ijg  
 

01 02 031, 0f f f= = =           (66) 
11 12 130, 1 , 0f f f= = =  (67) 
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01 02 030, 0 , 1g g g= = =           (68) 

1
1

2
( 1)

i

ik jk i j
j

g jf A
i i − +

=

= −
+ ∑ ,     1, 2,3,...i = ,    1, 2,3k =  (69) 

21 22 1 23 1/ 64, ( *) / 4, / 8f f B T f Aλ= = − =           (70) 
[ ]31 1 11 21 14 ( *) / 36,f A g f B T= + −  (71a) 

[ ]{ }32 2 1 12 22 132 16 4 ( *) / 24,f B A g f B Tλ= + + + −  (71b) 

33 1 13 23 1 24 ( *) / 36,f A g f B T A= + − +    (71c) 

( ) ( ) ( )( )
1

22
22 1

1

16 *( 1) 8( 1) (2 ) 4 1 2 ,  2,3, 4,...,  1, 2,3.
i

ik ik i k ji k i j k
j

f f T i i jf B A g i i i kλ
+

−
− ++ − +

=

 
   = − + + + × + × + + = =   

∑   

 (72) 
 
Substituting these coefficients into the boundary conditions at x=1, one can obtain an explicit matrix 

representation of the eigenvalue equation. 
 

[ ]
11 12 13 0

21 22 23 1

31 32 33 0

0
h h h a
h h h a
h h h b

   
    =   
      

 (73) 

 
where ijh are defined by 
 

1
0 1

, 1, 2,3k ik
i i

h f k
∞

=

= =∑  (74a) 

( )2
0

2 1 , 1,2,3.k ik
i

h i i i f kν
∞

=

 = + − = ∑  (74b) 

( )3
0

2 1 , 1, 2,3.k ik
i

h i g kν ν
∞

=

 = + − = ∑  (74c) 

 
These ikh  coefficients are functions of eigenvalues λ , and accordingly, the determinant of the coefficient matrix 

leads to a nonlinear characteristic equation. Using the Newton-Raphson iteration method [15], one can calculate 
eigenvalues and furthermore natural frequencies and mode shape functions of the nonlinear FG circular plate. 

7    NUMERICAL ANALYSIS 

 
To ensure the accuracy of the present analysis, an illustrative example is solved. The relevant material properties are 
listed in Table 1. Since there are no appropriate comparison results available for the problems being analyzed in this 
paper, we decided to verify the validity of obtained results by comparing to those of FEM results. Our FEM model 
for piezo-FG plate comprises: a 3D 8-noded solid element with 4 DOF per node (3 translation, temperature) in the 
host plate element and 6 DOF per node (3 translation, temperature, voltage and magnetic properties) in the 
piezoelectric element. Table 2 compares the present results of normalized dimensionless central deflections 

23(1 ) ( / )s s fW w hν= −  with finite element solutions in analyzing the effect of normalized dimensionless piezoelectric 

voltages 2 *
31 23(1 ) ( ) / (2 )f p fV e h h V D hν= − +  to the normalized dimensionless center deflections at various normalized 

temperatures 2
2( * ( / 4 ))tT a N D=  in which a nonlinear deflection-voltage relationship can be observed. As it is seen 

from Table 2 the maximum estimated difference of the proposed solution with finite element method is about 
0.079% and a close correlation between these results validates the proposed method of solution. 
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Table 1 
Material properties [5] 
Material Property     

 (GPa)E  3 (kg/m )ρ  ν   (1 / C)α    (W/mK)κ  31 32, (m/V)d d  

Aluminum 70 2707 0.3 23e-6 204 - 
Alumina 380 3800 0.3 7.4e-6 10.4 - 
PZT 63 7600 0.3 1.2e-4 0.17 1.79e-10 
 
 
Table 2 
Normalized dimensionless center deflections versus normalized applied voltages for various normalized temperatures computed 
by two methods (present series solution and FEM) (v=0.3, n=1000) 

(V) 
Normalized Temperature 

* 0T =   * 0.2T =  
Present FEM Diff. (%)  Present FEM Diff. (%) 

0 0 0 0  0 0 0 
0.4 0.3537 0.3538 0.041  0.4788 0.4790 0.042 
0.8 0.5982 0.5985 0.048  0.7550 0.7553 0.044 
1.2 0.7681 0.7685 0.055  0.9310 0.9315 0.057 
1.6 0.8925 0.8930 0.057  1.0596 1.0603 0.059 
2 0.9924 0.9930 0.065  1.1640 1.1648 0.067 
2.4 1.0777 1.0784 0.068  1.2517 1.2526 0.071 
2.8 1.1509 1.1517 0.071  1.3254 1.3264 0.072 
        

(V) 
* 0.5T =   * 0.8T =  

Present  FEM Diff. (%)  Present  FEM Diff. (%) 
0 0 0 0  0 0 0 
0.4 0.6633 0.6636 0.043  0.8659 0.8663 0.044 
0.8 0.9569 0.9573 0.045  1.1347 1.1352 0.046 
1.2 1.1380 1.1387 0.058  1.3118 1.3126 0.060 
1.6 1.2746 1.2754 0.060  1.4601 1.4610 0.062 
2.0 1.3776 1.3785 0.068  1.5581 1.5592 0.070 
2.4 1.4643 1.4653 0.072  1.6458 1.6470 0.074 
2.8 1.5510 1.5522 0.075  1.7653 1.7666 0.076 

 
 

In general, a higher temperature induces higher deflections of the plate, and the deflection at each temperature is 
attenuated when the control voltage increase sand the effect of imposed voltage to the center deflection is nonlinear 
and this effect is predominant in fewer voltage amounts. This effect can also be seen in the case of considering the 
temperature environment effect. For example, when * 0.2T = by increasing the imposed voltage from 0.6 to 1.2 
(100%) the normalized dimensionless center deflections increases about 46.8% while it increases about 34.5%  
when the imposed voltage increases from 1.2 to 2.4 (100%) and in the case of * 0.5T = by increasing the imposed 
voltage from 0.6 to 1.2 (100%) the normalized dimensionless center deflections increases about 36.5% while it 
increases about 28.7% when the imposed voltage increases from 1.2 to 2.4 (100%) . Having validated the foregoing 
formulations, we begin to study the large amplitude vibration behavior of FG laminated circular plate subjected to 
thermo-electro-mechanical loading. The results for laminated plates with isotropic substrate layers (that is, the 
substrate is purely metallic or purely ceramic) and with graded substrate layers (various n) are given in both tabular 
and graphical forms. To investigate the effect of the applied actuator voltage on the non-linear thermo-
electromechanical vibration, nonlinear normalized center deflection of various graded plates (n=0.0.1, 0.5, 1, 10, 
1000) under various applied normalized voltages (V=0, 0.2, 0.3, 0.5, and 1) are tabulated in Table 3. Also the Figs 1- 
4 shows the effects of the applied actuator voltage, FGM gradient index and normalized temperature on nonlinear 
normalized center deflection of piezoelectric coupled circular FGM plate in detail. It can be noted from the figures 
that by adjusting the actuator voltage, one can control the shape as well as the deflection of the FGM plate. Also it is 
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obvious that by increasing the FGM gradient index the normalized center deflection will increase in a nonlinear 
manner. For instance, Figs. 1 and 2 depict the normalized temperature and voltage effects to the center deflection of 
two graded plates (n=0.5 and 10). It shows that increasing the normalized temperature makes the center deflection 
increase in various voltages but this effect is predominant in higher voltages. Also in Fig. 3 and 4 we examine the 
effect of the temperature gradient on the non-linear thermo-electro-mechanical behavior (center deflection) of FGM 
plates under two imposed normalized voltages (V= 0, 0.2). As demonstrated by the figures, the temperature field 
with the larger gradient will lead to greater deflections. It is also obvious from these figures that, by increasing the 
material gradients, the normalized center deflection would be increased in various temperature fields and larger 
thermal gradients will lead to greater deflections. This trend can be seen in various material gradients. This means 
that the non-linear deflection can be controlled by applying the appropriate voltage in the piezoelectric actuator 
layers.  
 
 
Table 3 
FGM index and normalized voltage effects to the nonlinear center deflection 
Normalized Temp. ( *)T  FGM index (n) / Normalized Voltage (V) 

Metal  n=10 

V=0 V=0.2 V=0.3 V=0.5 V=1  V=0 V=0.2 V=0.3 V=0.5 V=1 

0.0 0.0000 0.1820 0.2724 0.3924 0.6925  0.0000 0.1206 0.1805 0.2601 0.4590 
0.2 0.0060 0.2738 0.3869 0.5213 0.8573  0.0040 0.1815 0.2564 0.3455 0.5681 
0.4 0.0162 0.3654 0.5010 0.6421 0.9949  0.0108 0.2422 0.3320 0.4255 0.6593 
0.6 0.0332 0.4706 0.6169 0.7596 1.1164  0.0220 0.3119 0.4089 0.5034 0.7399 
0.8 0.0516 0.6071 0.7400 0.8808 1.2329  0.0342 0.4024 0.4905 0.5838 0.8171 
            

 
n=1  n=0.5 

V=0 V=0.2 V=0.3 V=0.5 V=1  V=0 V=0.2 V=0.3 V=0.5 V=1 

0.0 0.0000 0.0992 0.1484 0.2138 0.3773  0.0000 0.0939 0.1405 0.2024 0.3572 
0.2 0.0033 0.1492 0.2108 0.2840 0.4670  0.0031 0.1413 0.1996 0.2689 0.4422 
0.4 0.0088 0.1991 0.2729 0.3498 0.5420  0.0084 0.1885 0.2584 0.3312 0.5132 
0.6 0.0181 0.2564 0.3361 0.4138 0.6082  0.0171 0.2428 0.3183 0.3919 0.5759 
0.8 0.0281 0.3308 0.4032 0.4799 0.6716  0.0266 0.3132 0.3818 0.4544 0.6360 
            

 
n=0.1  Ceramic (n=0) 

V=0 V=0.2 V=0.3 V=0.5 V=1  V=0 V=0.2 V=0.3 V=0.5 V=1 

0.0 0.0000 0.0838 0.1255 0.1807 0.3190  0.0000 0.0716 0.1072 0.1544 0.2725 
0.2 0.0028 0.1261 0.1782 0.2401 0.3948  0.0024 0.1078 0.1522 0.2051 0.3373 
0.4 0.0075 0.1683 0.2307 0.2957 0.4582  0.0064 0.1438 0.1971 0.2527 0.3915 
0.6 0.0153 0.2168 0.2841 0.3499 0.5142  0.0131 0.1852 0.2428 0.2989 0.4393 
0.8 0.0238 0.2796 0.3409 0.4057 0.5678  0.0203 0.2389 0.2912 0.3466 0.4851 
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Fig. 1 
Normalized Temperature effects to the center deflection for 
various values of Voltages (n=0.5). 
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Fig. 2 
Normalized Temperature effects to the center deflection for 
various values of Voltages (n=10). 
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Fig. 3 
Normalized temperature effects on nonlinear center deflection for 
various FGM indexes (V=0). 
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Fig. 4 
Normalized temperature effects on nonlinear center deflection for 
various FGM indexes (V=0.2). 

 
 
 

We examine in this section the effect of control voltages and thermal environment to the vibration characteristics 
of the piezoelectric laminated circular FG plate for various FGM indexes. To this end, Tables 4 and Figs. 5-8 show 
the nonlinear relationships between first natural frequencies 2

1 2/ia I Dω versus the normalized temperature in 
various normalized control voltages V . These free vibrations are assumed to be in the vicinity of the nonlinearly 
deformed static equilibrium position. Also, the effect of normalized temperature to the first natural frequency of the 
FG circular plate for various FGM indexes under various normalized control voltage are investigated and tabulated 
in Table 4 while the voltage dependent first natural frequency changes are plotted in Figs. 5-8 for various 
temperatures. It is seen that, imposed voltage has a significant effect on the first natural frequency of the structure 
and by increasing imposed voltage, the first natural frequency increases in a nonlinear manner. For instance, for 
FGM plate with n=10 by increasing the imposed voltage from 0 to 0.2 first natural frequency increases about 4.84% 
while by increasing the voltage from 0.2 to 0.3 first natural frequency increases about 15.12%. It is seen that, 
imposed thermal environment has a significant effect on the first natural frequency of the structure and by increasing 
imposed temperature, the first natural frequency decreases in a nonlinear manner. However, this thermal tendency of 
decreasing the natural frequency can be compensated and corrected with the control voltages V, as shown in Figs. 5-
7. 
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Table 4 
FGM index and normalized temperature effects to the first natural frequency for various normalized voltages 
Normalized Voltage (V) FGM index (n) / Normalized Temp. (T*) 

Metal n=10 
Normalized Temperature (T*) Normalized Temperature (T*) 
0 0.2 0.5 0.8 0 0.2 0.5 0.8 

0.0 4.8891 4.4249 3.5293 2.3669 5.5359 5.0103 3.9962 2.6800 
0.4 5.5796 5.67452 5.92735 6.49712 6.3178 6.4253 6.7116 7.3567 
0.8 6.7141 7.26308 8.00595 8.71889 7.6024 8.2240 9.0652 9.8724 
1.2 7.7799 8.452 9.37002 10.1564 8.8092 9.5702 10.6097 11.5001 
1.6 8.6394 9.33903 10.3511 11.2809 9.7824 10.5746 11.7206 12.7734 
2.0 9.3329 10.1399 11.2449 12.2285 10.5677 11.4814 12.7326 13.8464 
2.4 9.9414 10.8734 12.0351 13.0241 11.2567 12.3120 13.6274 14.7472 
2.8 10.5104 11.4499 12.6036 13.7116 11.9010 12.9647 14.2711 15.5257 
3.0 10.7796 11.7344 12.9013 14.0447 12.2058 13.2869 14.6082 15.9028 
         

Normalized Voltage (V) 

FGM index (n) / Normalized Temp. (T*) 
n=1 n=0.5 
Normalized Temperature  Normalized Temperature 
0 0.2 0.5 0.8 0 0.2 0.5 0.8 

0.0 7.4121 6.7083 5.3506 3.5883 8.2786 7.4926 5.9761 4.0078 
0.4 8.4589 8.6028 8.9861 9.8499 9.4478 9.6085 10.0366 11.0014 
0.8 10.1789 11.0111 12.1374 13.2182 11.3689 12.2984 13.5563 14.7635 
1.2 11.7947 12.8136 14.2054 15.3975 13.1735 14.3116 15.8660 17.1976 
1.6 13.0977 14.1584 15.6927 17.1023 14.6289 15.8136 17.5273 19.1017 
2.0 14.1491 15.3725 17.0478 18.5389 15.8032 17.1696 19.0407 20.7062 
2.4 15.0716 16.4845 18.2458 19.7451 16.8335 18.4117 20.3788 22.0534 
2.8 15.9342 17.3585 19.1076 20.7874 17.7970 19.3878 21.3413 23.2176 
3.0 16.3423 17.7899 19.5589 21.2924 18.2528 19.8696 21.8455 23.7815 
         

Normalized Voltage (V) 

FGM index (n) / Normalized Temp. (T*) 
n=0.1 Ceramic 
Normalized Temperature  Normalized Temperature 
0 0.2 0.5 0.8 0 0.2 0.5 0.8 

0.0 10.1803 9.2138 7.3489 4.9285 11.2882 10.2165 8.1487 5.4648 
0.4 11.6181 11.8158 12.3422 13.5287 12.8825 13.1017 13.6854 15.0009 
0.8 13.9805 15.1236 16.6704 18.1549 15.5020 16.7694 18.4846 20.1307 
1.2 16.1997 17.5992 19.5108 21.1482 17.9627 19.5145 21.6340 23.4497 
1.6 17.9894 19.4462 21.5536 23.4897 19.9472 21.5625 23.8992 26.0460 
2.0 19.4335 21.1138 23.4147 25.4628 21.5483 23.4116 25.9629 28.2339 
2.4 20.7005 22.6412 25.0602 27.1195 22.9533 25.1051 27.7874 30.0708 
2.8 21.8853 23.8416 26.2438 28.5511 24.2670 26.4362 29.0999 31.6582 
3.0 22.4459 24.4340 26.8638 29.2446 24.8886 27.0931 29.7873 32.4272 
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Fig. 5 
Effect of normalized voltage to first natural frequency for various 
FGM indexes (T*=0) 
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Fig. 6 
Effect of normalized voltage to first natural frequency for various 
FGM indexes (T*=0.2). 
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Fig. 7 
Effect of normalized voltage to first natural frequency for various 
FGM indexes (T*=0.8). 
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Fig. 8 
Temperature effects on normalized first natural frequency for 
various normalized voltages (n=10 and n=0.5). 

8    CONCLUSIONS 

A circular FG plate coupled with piezoelectric layers subjected to temperature changes and control voltages are 
investigated based on classical plate theory. Voltage controlled natural frequencies of the first mode at various 
temperatures is studied. It is observed that a higher temperature induces higher deflections of the plate, and the 
deflection at each temperature is attenuated when the control voltage increases but this effect is predominant in 
higher voltages. Also by increasing the FGM gradient index, the normalized center deflection will increase in a 
nonlinear manner in various temperature fields. It is seen that, imposed thermal environment has a significant effect 
on the natural frequency of the structure and by increasing imposed temperature, the natural frequency decreases in 
a nonlinear manner for various FGM indexes and this effect is predominant in higher temperatures. Both the 
nonlinear static deflections and natural frequencies are influenced by the temperatures and control voltages and the 
static control voltages can be used to compensate nonlinear deflections. 
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9    APPENDIX A 
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