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 ABSTRACT 

 Using harmonic differential quadrature (HDQ) method, nonlinear vibrations and instability of a 
smart composite cylindrical shell made from piezoelectric polymer of polyvinylidene fluoride 
(PVDF) reinforced with boron nitride nanotubes (BNNTs) are investigated while clamped at both 
ends and subjected to combined electro-thermo-mechanical loads and conveying a viscous-fluid. 
The mathematical modeling of the cylindrical shell and the resulting nonlinear coupling governing 
equations between mechanical and electrical fields are derived using Hamilton’s principle based 
on the first-order shear deformation theory (FSDT) in conjunction with the Donnell's non-linear 
shallow shell theory. The governing equations are discretized via HDQ method, and solved to 
obtain the resonant frequencies and critical flow velocities associated with divergence and flutter 
instabilities as well as re-stabilization of the system. Results indicate that the internal moving fluid 
plays an important role in the instability of the cylindrical shell. Application of a smart material 
such as PVDF improves significantly the stability and vibration of the system. 
                                                                                  © 2012 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 IRCULAR cylindrical shells are used in a great variety of engineering applications in mechanical, and 
process industries, ranging from storage and transport of high-pressure gases and liquids, to much smaller nano-

scale applications in smart structures such as sensors and actuators. Hence, cylindrical shells are required to be 
modeled mathematically. A good understanding of their mechanical behavior, including vibration, bending and 
wave propagation response, is therefore required for successful design practices. Improving mechanical behaviors 
(e.g. increasing stability and reduction of weight) of such structures in composite applications have also received 
considerable attention amongst researchers in the last two decades. Most studies to-date are limited to linear 
vibration, despite the fact that deformations of cylindrical shell are nonlinear in nature. Having considered the 
geometrical nonlinearities, more precise dynamic properties of cylindrical shell could be obtained to extend the 
engineering applications, especially in nano-composites.  

Effects of internal flow on the vibration of a cylindrical shell were investigated by many authors [1-3]. None of 
these studies considered smart structures such as PVDF, a new polymeric piezoelectric material offering advantages 
including flexibility in thermoplastic conversion techniques, excellent dimensional stability, abrasion and corrosion 
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resistance, high strength, ability to maintain the superior mechanical properties at elevated temperature [4-6]. In 
previous works , Ghorbanpour Arani et al. [7, 8] carried out a stress analysis in cylinder and spheres made from 
piezoelectric materials using analytical method and ANSYS software. In another study, the embedding of 
piezoelectric materials in the form of fibers into a polymer matrix was implemented by Bent et al. [9]. Free vibration 
of composite plates and cylindrical shell panels were studied by Matsuna [10] using a higher-order theory. Free 
vibration and buckling analysis of composite cylindrical shells conveying hot fluid was proposed by Kadoli and 
Ganesan [11]. Vibration and buckling of cross-ply laminated composite circular cylindrical shells were studied by 
Messina and Soldatos  [12] based on a global higher-order theory. Lately, the authors extended the work of 
Mosallaie Barzoki [13] to include electro-thermo-mechanical buckling analysis of a smart composite cylindrical 
shell made by PVDF reinforced with BNNTs equipped with an elastic core. When nonlinearities are taken into 
account, no analytical solution could be employed to obtain the vibration frequency. Hence, a numerical solution 
should be tried, and DQM introduced by Belman et al. [14, 15] is one such method with the advantage of offering 
good accuracy with limited number of grid points. Successful DQM applications in engineering problems such as 
vibration analysis and buckling have been developed and verified by several authors [16-18]. HDQM was later 
developed by Sterize et al. [19] and Liew et al. [20], presenting even more improved accuracy with respect to DQM, 
less computation time and consequently less memory space from the computer [21]. 

A number of studies have used HDQM for linear and nonlinear vibration of one dimensional beam and two 
dimensional plates. In this article, HDQM is used for the first time in the nonlinear vibration of two dimensional 
cylindrical shells, with a view to apply this to a smart composite structure, such as PVDF as the matrix and BNNT 
as the reinforce, conveying a viscous fluid. Due to the specific application in mind as sensor or actuator, both in 
nanoscale and even larger gas and oil transmission pipes, the influences of fluid velocity, the shell geometrical 
characteristics and material of construction are investigated here. 

2    THEORETICAL BASES 

A schematic diagram, of a piezoelectric polymeric cylindrical shell with two fixed ends for conveying viscous fluid 
with density f  and dynamic viscosity   is shown in Fig. 1 in which geometrical parameters of length, L , radius, 

R , thickness h  and density   are also indicated. Using  FSDT in conjunction with the Donnell's non-linear 
shallow shell theory [22], the constitutive equation may be arbitrarily combined as follows [7, 8] 
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(1) 

 
where  ,, xjiσij   and xxD are stresses and axial electric displacement (axially polarized) as well as wv,u,  are 

the displacements of a arbitrary point of the shell in the axial, circumferential and radial directions, respectively. 

Also, ijC , ije , ii  ( 6,...1, ji ), correspond respectively to composite equivalent elastic constants, piezoelectric 

constants, and dielectric (determined using the micromechanical model [13], and ),(  xiii  , T  and   are 
thermal expansion coefficient, temperature difference and electric potential, respectively. 
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Fig. 1 
Hollow smart composite circular cylindrical shell conveying 
fluid. 

2.1 Energy method 

The total potential energy of the PVDF pipe is the sum of strain energy, kinetic energy and work down by flowing 
fluid is expressed below where the strain energy is [13, 22] 
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and the kinetic energy is [22] 
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(3) 

 
and the work down by internal viscose fluid is [23] 
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Now replacing these in the following expression based on the Hamilton's principal [22, 23] 
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and defining the following non-dimensional quantities: 
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The four electro-thermo mechanical coupling governing equations of PVDF cylindrical shell conveying viscose 

fluid, can therefore be written as:
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2.2 HDQM 

These four governing equations Eqs. (7)–(10) are discetized using HDQM, so that they are solved considering the 
associated boundary conditions to obtain vibration and instability of the viscose-fluid-conveying cylindrical shell 
made from PVDF. The HDQM approximates the partial derivative of a function F (representing u , v , w  and  ), 
with respect to two spatial variables (  and  ) at a given discrete point ),( ii  , as a weighted linear sum of the 

function values at all discrete points chosen in the solution domain ( L 0 ,  20  ) with  NN  grid 

points along   and   axes, respectively. Then, the nth-order partial derivative of ),( F with respect to  , the 

mth-order partial derivative of ),( F  with respect to   and the (n + m)th-order partial derivative of ),( F with 
respect to both   and   is expressed discretely at the point ),( ii  as [24] 
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where )(n
ikA  and )(m

jlB  are the weighting coefficients associated with nth-order partial derivative of ),( F  with 

respect to   at the discrete point i  and mth-order derivative with respect to   at i , respectively, whose recursive 
formula are described in [21]. Chebyshev polynomials [25] was used to determine the positions of the grid points. 
As for the displacement components, the following solutions may be assumed [26] in the free vibration analysis 
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where   is the(Fundamental) natural frequency. Applying HDQM and using Eqs. (14)-(16) to Eqs. (7)–(10) results 
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where 11( ) fh C    is the dimensionless natural frequency, symbols   and   indicate Kronecker and 

Hadamard products, respectively [27], I  and I  are the unit matrices. The associated mechanical clamped and free 

electrical boundary conditions at both ends of the shell, in HDQM form, may be written in dimensionless form as: 
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(21) 

 
Applying these boundary conditions into the above four governing equations, Eqs. (17-20), the following 

constitutive matrix equation is obtained 
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                  
    (22) 

 
where the subscript b  denotes the elements associated with the boundary points while subscript d  is the remainder 
elements. Eq. (22), however, is a generalized eigenvalue equation, and to reduce it to the standard form, assume 

 Tdddddd wwvvuuZ ,,,,,  , then 
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(24) 

 
where  I and  0  are the unit and zeroes matrixes. However, the frequencies obtained from the solution of Eq. (24) 
are complex due to the damping caused by the presence of the viscous fluid. Hence, the results would comprise of 
two parts, the real part corresponding to the system damping, and the imaginary part representing the system natural 
frequencies. These are discussed in the next section. 

3    RESULTS AND DISCUSSION 

A code was written for the HDQM mathematical model expressed above ,using MATLAB software, where the 
effect of parameters such as fluid velocity and geometry and material type of the shell, on the nonlinear resonance 
frequencies and instability of the PVDF cylindrical shell reinforced with BNNTs and conveying viscose fluid, are 
investigated. The material properties PVDF as a matrix were found to be as follows [13]: 
 

2 2
11 22 12 66 11 12238.24( ), 23.6( ), 3.98( ), 6.43( ), 0.135( / ), 0.145( /
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and employing DWBNNTs as the matrix reinforcer provides the following material properties [13] 
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2
111.8( ), 0.34, 0.95( / ), 1.2 6(1/ ), 0.6 6(1 / ).      xE Tpa e C m e K e K     

 
In the absence of similar publications in the literature covering the same scope of the problem, one can not 

directly validate the results found here. However, the present work could be partially validated based on a simplified 
analysis suggested by Amabili [22] and Zhou [28]. 

Second, vibration and instability of simply supported classical cylindrical shells conveying water are investigated 
where the nonlocal parameter, electric field , and vdW force are ignored. The structure parameters of the classical 
shell assumed are 3/ 0.01 , / 2 , 206 , 0.3 , 7850 /h R L R E GPa Kg m        and the water density   

31000 /f Kg m  . A non-dimensional fluid velocity is defined as   0.52/ / /fu V L D h   , with 3 2/ 12(1 )D Eh      , 

and a non-dimensional eigenvalue is also defined as   0.52 2/ / /L D h     , where    is the eigenvalue. Figs. 2a 

and 2b illustrate the imaginary and real parts of frequency versus dimensionless flow velocity, respectively. As can 
be seen, the obtained results are the same as those expressed in [22, 28], indicating validation of our work. In this 
study the internal fluid is modeled by Nervier-stocks relation and the effect of viscosity is considered which makes 
a little difference between the results of Zhou [28], Amabili [22] and the present work . 

 

 

 
 
 
 
 
 
Fig. 2a 
The imaginary part of frequency versus dimensionless flow 
velocity for simply supported classical cylindrical shells 
conveying water. 

 

 
 
 
 
 
 
 
 
Fig. 2b 
The real part of frequency versus dimensionless flow 
velocity for simply supported classical cylindrical shells 
conveying water. 

Figs. 3 and 4 demonstrate in dimensionless forms, the natural frequency ( )Im( ) and damping ratio ( )Re( ) 
versus fluid velocity (V) for the first four vibration modes of the system. As can be seen, in general, )Im( is 

directly related to the vibration modes. )Im(  also reduces with increased V, and in the first mode this approaches 
zero at the critical velocity of V=2.92, where divergence instability occurs due to pitchfork bifurcation of )Re( . (It 

is interesting to note that at this speed, the 2nd, 3rd and 4th modes still remain stable.) At 2.92<V<5.54, shell absorbs 
energy from the fluid and converts it to higher frequency vibration. For V >5.54, the system tends to regain its 
stability. 

Increasing V beyond 5.54 for the 2nd mode, tends )Im(  from zero to positive values, so that at V=5.56, 1st and 
2nd modes combine while )Re(  remains non-zero. At this state, the shell becomes unstable with a flutter 

instability.  Figs. 5 and 6 illustrate in dimensionless forms, changes in )Re(  and )Im( versus the V, for 
different  's (defined as ratio of thickness to radius of the shell) and material types. Clearly, increase in   
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increased natural frequency and enhanced stability. Higher values of   corresponds to the increased stiffness of the 
shell on the one hand, while from another point of view it leads to increased smartness (or electric potential), making 
the system more suitable for sensors and actuator applications. Comparing different material types investigated here 
(i.e. smart PVDF and non-smart polyethylene (PE)), it is clear that PVDF improves significantly the stability and 
vibration of the system. This suggests that in gas transmission lines, where safety and stability of the lines are of 
paramount importance, application of PVDF pipes is preferred to those of the conventional PE. 

 
 

 

 
 
 
 
 
 
 
Fig. 3 
The imaginary component of the dimensionless frequency, 
as a function of fluid velocity, for the lowest four modes of 
a clamped-clamped smart composite cylindrical shell 
conveying viscose fluid. 

 

 

 
 
 
 
 
 
 
 
Fig. 4 
The real component of the dimensionless frequency, as a 
function of fluid velocity, for the lowest four modes of a 
clamped-clamped smart composite cylindrical shell 
conveying viscose fluid. 

 

 

 
 
 
 
 
 
 
 
 
 
Fig. 5 
Effect of   and

 
material types of the smart composite 

cylindrical shell on the imaginary component of the 
dimensionless frequency for the first mode. 
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Fig. 6 
Effect of   and material types of the smart composite 
cylindrical shell on the real component of the 
dimensionless frequency for the first mode.    

4    CONCLUSIONS 

This paper investigates the electro-thermo-mechanical nonlinear vibration and instability of a cylindrical shell made 
with PVDF and reinforced by BNNTs, carrying a viscose fluid. The HDQ method is employed to discretize the 
governing equations, which are then solved to obtain the resonant frequencies and critical fluid velocity with 
clamped boundary conditions. The influences of fluid velocity, geometrical parameter and material types of shell on 
the nonlinear vibration and flow-induced instability of the shell are discussed. The results indicate that in the 1st 
mode, divergence instability occurs in the system at the speed V=2.92, while 2nd, 3rd and 4th modes still remain 
stable, reaching flutter instability at V=5.56. Also, increase in  (the ratio of thickness to radius of the shell) leads to 

increased in natural frequency and enhanced stability of the system. Application of a smart material such as PVDF 
improves significantly the stability and vibration of the system. 
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