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 ABSTRACT 

 This paper deals with the propagation of magneto-thermo Rayleigh waves in a 

homogeneous viscoelastic half-space under initial stress. It has been observed that 

velocity of Rayleigh waves depends on viscosity, magnetic field, temperature and initial 

stress of the half-space. The frequency equation for Rayleigh waves under the effect of 

magnetic field, stress and temperature for both viscoelastic and elastic medium is first 

obtained by using classical theory of thermoelasticity and then computed numerically. 

The variation of phase velocity of Rayleigh waves with respect to initial hydrostatic 

stress in viscoelastic and elastic half-space is shown graphically. In the absence of 

various parameters of the medium, the obtained results are in agreement with classical 

results given by Caloi and Lockett.                                                    

       © 2015 IAU, Arak Branch.All rights reserved. 

 Keywords : Initial stress; Temperature; Magnetic field; Rayleigh waves; Voigt-type; 

Viscoelasticity. 

1    INTRODUCTION 

 HE study of the propagation of Rayleigh waves in the presence of earth’s magnetic field, temperature and 

initial stress is of some importance. On seismograms, there are two types of surface waves which are recognized 

during distant earthquakes. Both of these waves show dispersion and their speed depends on wavelength. The first 

wave which is transverse in nature is called Love wave and the second group of surface waves are called Rayleigh 

waves. Although several studies have been made of Rayleigh waves in homogeneous and non-homogeneous media 

in presence of temperature and stress but less literature is available to show the effect of magnetic field on Rayleigh 

waves. Many authors have studied propagation of Rayleigh waves in various media. Addy and Chakraborty [5] have 

studied a problem in which they have shown the effect of temperature and initial stress on Rayleigh waves in a 

viscoelastic medium but they did not showed the effect of magnetic field. Sethi et al. [6] has considered a 

homogeneous viscoelastic medium to study surface wave under surface stresses without taking temperature and 

magnetic field of earth. Singh and Bala [7] have discussed a problem on Rayleigh wave in temperature field using 

theory of thermoelasticity. Vinh [8] has given a complete solution of Rayleigh waves in elastic media under the 

effect of gravity and initial stress. Kakar and Kakar [9] and Abd-Alla et al. [10] have investigated magneto-thermo-

viscoelastic Rayleigh waves in granular medium under various parameters. In this work, we have investigated the 
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Rayleigh waves in a magneto-thermo-viscoelastic solid half-space under initial stress. The effect of magnetic field, 

thermal field and initial hydrostatic stress on Rayleigh waves in an elastic and viscoelastic solid is examined at 

different coupling coefficients of temperature and magnetic field. Biot’s equations are modified in context of 

classical dynamical theory of thermoelasticity with uniform magnetic field. The frequency equation is approximated 

and analyzed numerically to study the phase velocity of Rayleigh waves under the coupled parameters with the help 

of MATLAB. In the absence of magnetic field, temperature, viscosity and initial stress of the medium, the derived 

dispersion relation for Rayleigh waves in magneto-thermo-viscoelastic solid half-space under initial stress satisfies 

classical results given by the researchers Lockett [1] and Caloi [2].   

2    FORMULATION OF THE PROBLEM    

We consider Rayleigh wave is propagating along the direction of X-axis, Y-axis is taken vertically downward and  

0y   is the surface of the Voigt-type viscoelastic half space. The half space is under an initial stress P magnetic 

field   00,0, h    , where, h  is the perturbed magnetic field over 0  and initial temperature 
0

  . The 

boundary of the half -space is traction free and it allows heat exchange with the surroundings. 

 

  

 

 

 

 

 

 
Fig.1 

Pre-stressed viscoelastic half-space in presence of 

magnetic and temperature field. 

3    GOVERNING EQUATIONS   

We consider linearized equation of electromagnetism, valid for slowly moving media, therefore the governing 

equations of linear, isotropic and homogenous magneto-thermoelastic solid with initial stress are 
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where,  , J , e and e are electric field, current density, permeability and permittivity of the medium.   

The basic equation for electro-magneto-thermoelastic in a homogeneous isotropic solid in the context of coupled 

dynamical theory may be taken in a unified form in the absence of body force and heat source 

a. The stress-strain-temperature relation: 
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where, 
ij

s  are the components of stress tensor, P  is initial pressure, 
ij

  is the Kronecker delta, 
ij

  are the 

components of small rotation tensor,  ,   are the counterparts of Lame parameters, 
ij

e  are the components of the 

strain tensor,   is the volume coefficient of thermal expansion, 
T

k  is the isothermal compressibility, 
0a

     is 

small temperature increment, 
a

  is the absolute temperature of the medium, 
0
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temperature of the body chosen such that 
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b. The displacement-strain relation: 
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where, 
i

u  are the components of the displacement vector. 

c. Maxwell stress components: 
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where, 
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H ,
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H  are the components of primary magnetic field, 
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e , 
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e , 
k

e  are the stress components acting along 

X-axis, Y-axis, Z-axis respectively and 
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  is the Kronecker delta. With the help of Eq. (7), we have the components 

of Maxwell stress components 
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The dynamical equations of motion for the propagation of wave have been derived by Biot [3] and in two 

dimensions. These are given by 
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where, 
11 22

,s s  and 
12

s are incremental thermal stress components. The first two are principal stress components 

along x- and y-axes, respectively and the last one is shear stress component in the X-Y plane,   is the density of the 

medium and , .u v are the displacement components along X and Y directions respectively, B is body force and its 

components along X and Y axis are
x

B and
y

B respectively .   is the rotational component i.e.  
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We consider a homogeneous solid incompressible half space under constant primary magnetic field 
0

H  parallel 

to Z-axis. Therefore, the body forces along X and Y axis are given by 
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where, e is permittivity of the medium. 

Following Biot [3], the stress-strain relations with Voigt-type viscoelastic half-space under thermal condition are 

given by 
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where, 
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where, 
xx

e  and 
yy

e are the principle strain components and 
xy

e is the shear strain component, (3 2 ) ,
t

      t  is 

the coefficient of linear expansion of the material,    are Lame’s constants, / /  are viscoelastic parameters,  

is the incremental change of temperature from the initial state and   is second relaxation time.  

4    SOLUTION OF THE PROBLEM 

From Eq. (12), Eq. (13), Eq. (14), Eq. (15), Eq. (16) and Eq. (17), we get 
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Eq. (18) can be solved by choosing potential functions  and  as: 
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From Eqs. (18) and (19), we get 
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Now, from Eqs. (5) and (19), using Classical Dynamical theory:     0 0, 0,ij  we get 
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The solution of ,  and T can be obtained in the following form 
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where, k  is wave number,   is angular frequency and c
k
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  phase velocity. 

Using Eq. (23) and Eq. (25), T is eliminated from Eq. (20) and Eq. (22), and we get 

 

 

22
2 2 20

2 / 2 2 2 / /
1 1 0

1
0

( 2 ) 2

p

e

c

t tc i c t H i

  


      

      
          

                

 
 

  (26) 

 

Eq. (21) with the help of Eq. (24) can be written as: 
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Substituting Eq. (23) into Eq. (26) and Eq. (24) into Eq.  (27), we obtain the following differential equations: 
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Here, 2 and 2 are the roots of the following biquadratic equation 
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The requirement that the stresses and hence the functions   and   vanish as 
2 2(x y )   leads to the 

following solutions of Eq. (28) and Eq. (29)  
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Introducing Eq. (33) and Eq. (34) in Eq. (23) and Eq. (24), we get 
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5    BOUNDARY CONDITIONS AND FREQUENCY EQUATION    

The initial conditions are supplemented by the following boundary conditions: 

1. Continuity condition for normal initial stress at 0Y   
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2. Continuity condition for tangential initial stress at 0Y   
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From Eq. (37) and 0   (thermal insulation), the third boundary condition (39c) becomes 
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  (43) 

Case.1 

If we neglect  initial stress, magnetic field and temperature in the half-space, then P and  q both will be zero, 0   

and 
1

k   and Eq. (43) reduces to 
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Expanding Eq. (44) and after simplification we get 
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Eq. (46) matches with the classical equation given by Caloi.   

Case.2 

If we consider initial stress, magnetic field and temperature in the half-space and by assuming    and 
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Then, Eq. (43) reduces to 
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where 
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Solving  Eq. (48), we get 

 

    
2 2

/ 2 /

1 2 1 2 1 2 2 1

3/ 2 /

1 2 1 1 2 2

( ) ( )2( ) ( )
4

( ) ( )( ) ( )

ki i

ki k i

           


        

        
      

         
                                  

 

  (50) 

 

For 0  , it is the case of convection i.e. no heat transfer (thermal isolation), Eq. (50) reduces to 
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For   , heat transfer is large, Eq. (50) reduces to 
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The values of 
1 2 1
, , ,    and 

2
  can be reduced in terms of 
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,   and 

3
 , therefore from Eq. (50), we get 
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where, 



2
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 is the phase velocity of Rayleigh waves. 

Using the assumption    and 
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From Eq. (49) and Eq. (54), we get 
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From Eq. (55) and Eq. (53), expending the quantities
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,   in series of   and neglecting the terms of the order 
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For liquid medium 0   , Eq. (56) reduces to 
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Rationalizing and squaring Eq. (58), we get 
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Expanding Eq. (58) and taking real parts only 
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Case.3 

If we ignore the viscous properties of the half-space, then / 0   and Eq. (56) reduces to 
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If we ignore the initial stress of the half-space, then 0S   and Eq. (60) reduces to 
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Eq. (61) is the dispersion relation for Rayleigh waves in elastic medium and it is in agreement of the classical 

result given by Lockett. 

6    NUMERICAL ANALYSIS AND DISCUSSION    

The graphs are plotted separately for real parts for phase velocity against initial stress for magneto-thermo-

viscoelastic half-space (Fig. 2) and magneto-thermo-elastic half-space (Fig. 3). In order to show the effect of 



                                                    Rayleigh Waves in a Homogeneous Magneto-Thermo Viscoelastic Half-Space …                   265                 

 

© 2015 IAU, Arak Branch 

thermo-magneto coupling parameter on wave number, we have taken following data for elastic and viscoelastic 

medium in Table 1. 

 

Table 1 

Data for elastic and viscoelastic medium. 

Parameter Numerical Value 

t
   6 116.6 10 K  

   3 37.14 10 ,/kg m  

 2

0e H   291.24 10 /N m  

   10 29.5 10 /N m  
   10 2 4.5 10 /N m  

 /   0 211.25 10 /N m  

 /   10 27.15 0  1 /N m  

pc  0.39 /  KJ Kg K  

K  401 /( . )W m K  

 

Above theory clearly indicates that the phase velocity of Rayleigh waves depend on the initial hydrostatic stress, 

magnetic field, temperature and viscoelastic parameters of the medium. In order to study in greater detail, the 

dependence of phase velocity of Rayleigh wave on temperature, stress and magnetic parameter together, the various 

graphs are plotted. Fig. 2 shows the variation of magneto-thermo-viscoelastic Rayleigh waves in half-space. 

Variation of phase velocity of Rayleigh waves with initial stress at constant values of coupling coefficients in the 

presence of viscoelastic parameter is shown in Fig. 2. It is observed that the phase velocity of Rayleigh waves 

depend upon magnetic field parameter, temperature parameter, viscoelastic parameter and initial stress parameter of 

the medium. On observing the various curves in Fig. 2, we find that at different real values of 
c

c i.e. 

 
2

0

2

0

c real

e

T
c

K H




 , the thermo-magneto coupling 

c
c  is 0, 0.2, 0.4, 0.6, 0.8, higher the value of 

c
c  lesser will be the 

phase velocity of Rayleigh waves in viscoelastic medium. The Fig. 2 reflects that as we increase 
cc , the phase 

velocity increases for all p
S  but the nature of curve remains same. Rayleigh waves in viscoelastic liquid decreases 

as thermo-magneto coupling 
c

c  inceases. 

Variation of phase velocity of Rayleigh waves with initial stress at constant values of coupling coefficients in the 

absence of viscoelastic parameter is shown in Fig. 3. It is observed that the phase velocity of Rayleigh waves depend 

upon magnetic field parameter, temperature parameter and initial stress parameter of the medium. On observing the 

various curves in Fig. 3, we find that at different values of
2

2

2

1
(1 )

c

c

c
 


, the thermo-magneto coupling 

c
 is 0.1, 

0.2, 0.3, 0.4, there is slight variation in the phase velocity of Rayleigh waves; it means that Rayleigh waves are less 

dependent on coupling coefficient 
c

  between magnetic field, temperature field and strain field in elastic medium 

and more dependent on initial stress of the elastic medium. The Fig. 3 reflects that as we increase 
c

 , the phase 

velocity increases for all S  but the nature of curve remains same. We conclude that in an elastic solid medium, 

Rayleigh waves are more dependants on the initial stress and magnetic field of the medium than the coupling 

coefficient 
c

  between temperature and strain fields. 
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Fig.2 

Variation of magneto-thermo-viscoelastic Rayleigh waves 

in half-space. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Variation of magneto-thermo-elastic Rayleigh waves in 

half-space. 

7    CONCLUSION 

It can be concluded that initial stress plays a remarkable role for both elastic and viscoelastic Rayleigh waves. The 

variation of magneto-thermo-viscoelastic Rayleigh waves in half-space is contrary with the variation of magneto-

thermo-elastic Rayleigh waves in half-space. Various parameter of earth such as magnetic field, temperature field 

and initial hydrostatic stress influences Rayleigh waves. This problem attracts the attention of geologists and 

seismologists. 
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