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ABSTRACT 
There are different finite element models in place for predicting the bending behavior of shear 
deformable beams and plates. Mostly, the literature abounds with traditional equi-spaced 
Langrange based low order finite element approximations using displacement formulations. 
However, the finite element models of Timoshenko beams and Mindlin plates with linear 
interpolation of all generalized displacements have suffered from shear locking, which has been 
alleviated with the help of primarily reduced/selective integration techniques to obtain acceptable 
solutions [1-4]. These kinds of 'fixes' have come into existence because the element stiffness 
matrix becomes excessively stiff with low-order interpolation functions. In this study we propose 
an alternative spectrally accurate hp/spectral method to model the Timoshenko beam theory and 
first order shear deformation theory of plates (FSDT) to eliminate shear and membrane locking. 
Beams and isotropic and orthotropic plates with clamped and simply supported boundary 
conditions are analyzed to illustrate the accuracy and robustness of the developed elements. Full 
integration scheme is employed for all cases. The results are found to be in excellent agreement 
with those published in literature. 
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1    INTRODUCTION 

TUDYING the stress and deformation of beams and plates is of interest in many applications of engineering. 
Examples of applications are in geotechnical engineering, structural design of foundations, design of spread 

footings, soil-structure interaction studies, aerospace vehicles, automobiles, etc. Among theories used to analyze 
plates, classical, first-order, and third-order theories dominate the literature [1, 2].  While the displacement based 
models for the first-order shear deformation theory (FSDT) admit the use of C0 expansions, the use of classical and 
the Reddy third-order theories require the use of C1-continuous expansions [1,3-6]. The classical plate theory does 
not account for the transverse shear strains, and therefore the results are inadequate for the prediction of the global 
response of thick plates. When using the first-order shear deformation theory (FSDT) to model plates, shear 
correction factors are introduced to correct for the discrepancy between the actual parabolic transverse shear stress 
distribution and those predicted by the kinematic assumptions of the FSDT. Higher-order plate theories provide a 
slight increase in the accuracy relative to the FSDT solution, but at the expense of a significant increase in the 
computational effort. Based on the above arguments the FSDT provides the best compromise between economy, 
simplicity, and accuracy in prediction of the global response of thin to moderately thick plates [7].  

The displacement finite element models of the first-order shear deformation theory have met with locking 
problems when low- and equal-order interpolations of the generalized displacements are used. This is primarily due 
to the inconsistent and low order interpolation of different displacement variables. While studies have been carried 
out with equi-spaced, higher-order Langrange expansions for studying the bending response of plates using FSDT 
‒‒‒‒‒‒ 
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[8], the elements suffer from ill-conditioning and for high polynomial orders the equi-spaced Lagrange based 
expansion is not recommended [9].  It has been mentioned in literature that polynomial order (p) higher than 4 is not 
recommended.  At high p-levels the discrete problem suffers from a very high conditioning of the stiffness matrix, 
and strong pre-conditioners recommended to parse the discrete problem at such high p-levels but the convergence is 
problem dependent and also dependent on the regularity of the mesh. It was discovered in the 1980s that the choice 
of higher-order shape functions has a dramatic effect on the conditioning of the discrete problem. Since then, 
significant amount of work has been devoted to the improvement of higher-order shape functions on various types of 
finite elements. The search for optimality continues till today [10]. Thus, when higher-order shape functions are 
used in the finite element method, it is common to examine the condition numbers of the coefficient matrix 
generated. Condition numbers close to one represent a well-conditioned system where as a large condition number 
indicates a poorly conditioned system of equations which is likely to lead to numerical errors in the solution process. 
The usual definition of the condition number is being used in the present context, that is.  

The hp-spectral based nodal expansions which is based on Legendre polynomials provide discrete orthogonality 
and it has been mentioned that the condition number for the mass matrix of the Langrange based expansions grows 
as 10p for higher values of p where as the condition number for the Legendre based expansions grows as O(p). The 
superior conditioning of both the mass and stiffness matrices produced with the Gauss-Lobatto-Legendre based 
shape functions has been demonstrated in the following references [10, 11]. The paper by Maitre et al. [11] provides 
the condition number of the Legendre based expansions to a polynomial order of 30 in 2-dimensions and 9 in three 
dimensions. The above arguments exhibit the fact that Langrage based higher-order elements suffer from strong 
linear dependence of the solution and special solution techniques have to be used to address the problem unless one 
contends with spurious results from the discrete model, reasonable solutions to certain problems only under very 
special circumstances, or ad-hoc approaches that ameliorate solver breakdowns. In the case of shear deformable 
beams, so-called consistent interpolation has been used to recover the correct constraints (i.e., vanishing of 
transverse shear strain) in the thick beam limit [12]. Although such elements do not experience locking, they did not 
lead to the two-node super-convergent element developed by Reddy et al. [13], who used the Hermite cubic 
interpolation of the transverse deflection w and interdependent quadratic interpolation of the rotation φ in 
developing the element. The conventional reduced integration Timoshenko elements as well as consistent 
interpolated quadratic elements fail to capture the true behavior of such members unless two or more elements per a 
structural member are used. Shear locking is more pre-dominant when the side-to-thickness ratio of the plate is 
large. Higher-order elements have been explored in literature to alleviate shear locking but they have employed 
equi-spaced Langrange functions so far. The use of hp-spectral nodal expansion was explored by Pontaza and Reddy 
[6] while analyzing plates with both the classical plate theory and the FSDT with the least squares finite element 
formulation; however, only a linear analysis was performed. The aforementioned reasons compel the use of hp-
element refinements as a viable alternative in studying the bending behavior of plates that provides spectrally 
accurate results while alleviating locking associated with lower order finite elements. This study proposes to 
advance the use of appropriate hp-refinements for studying the plate bending behavior and cures the problem of 
locking for all cases that are studied.  

The motivation for this study comes from the many advantages that are associated with hp-higher order 
elements; spectral convergence (accuracy) of the solutions, the removal of shear as well as membrane locking, and 
the orthogonality property of nodal expansions, which provide excellent results with standard solvers like the 
preconditioned bi-orthogonal conjugate gradient (BPCG) methods. The convergence history of the bi-orthogonal 
conjugate gradient solver with preconditioning is also reported to give further insight into the problem formulation 
and convergence behavior with hp-spectral methods. Different a/h ratios are explored and with appropriate hp-
refinements, and full integration is found to provide consistently good agreement with published results. Both 
straight and skewed hp-spectral meshes are explored in this study of plates and it is found that there is no drastic 
deterioration in the results when using skewed meshes.  

2    FINITE ELEMENT MODELS BEAMS 
2.1 Governing equations 

The equations governing the bending of beams according to the Timoshenko beam theory (TBT) are can be 
expressed in terms of the axial displacement 0u , transverse displacement 0w , rotation ϕx , and stress resultants 
( , , )xx xx xN M Q  as [3] 
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where the stress resultants ( , , )xx xx xN M Q  can be expressed in terms of the displacement gradients as 
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Here ( , , )xx xx xxA D S  denote the axial, bending, and shear stiffnesses, respectively, 
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E being the modulus of elasticity, A the area of cross section, and I the second moment of area of the beam; 
( , )xf q denote the axial and transverse distributed loads. The boundary conditions involve specification of one 
element of the following pairs of displacements and forces [3, 14]: 
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The non-linearity in the TBT comes from the von Karman non-linear strains as a form of geometric non-

linearity.  

2.2 Finite element model 

The displacement finite element model of the TBT has been outlined in [3] and therefore omitted here in the interest 
of brevity. A mixed finite element model of the TBT is presented here. The mixed finite element model of TBT is 
based on Eqs. (1) through (6). The weak form statements of Eqs. (1)-(6) are [14] 
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To obtain the finite element model, equal interpolation of all six variables ϕ0 0( , , , , , )x xx x xxu w N Q M is used: 
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The finite element equations are of the form 
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where the nonzero stiffness coefficients ( )αβ α,ij iK F  are given by 
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Note that the coefficient matrix K is nonlinear on account of the geometric nonlinearity. 
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2.3 Spectral/hp Element Formulation 

The mixed finite element model of the TBT involves the solution of six degrees of freedom per node 
0 0( , , , , , ).x xx x xxu w N Q Mϕ  In the spectral approximation, the approximation functions ψi are given by [9] 
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where Lp=Pp

(0,0) is the Legendre polynomial of order p, and ζi denotes the roots of the equation (ζ-1)(ζ+1)Lp’ (ζ)= 0 
in the interval [-1, +1]. All Legendre polynomials, Pn
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where, aα,β only depends on α, β, and n. The derivatives of the Legendre polynomials satisfy a three-term recurrence 
relation of the form [15, 16] 
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All Legendre polynomials satisfy the three terms recurrence relationship of the form  
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Seeking the recurrance relation for the derivative, we rewrite the above equation by dropping α, and β, for the 

special case of α, β=1; 
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For an illustration of the proofs of these equalities see Osilenker [16]. 

3    FINITE ELEMENT MODELS OF PLATES 
3.1 Governing equations 
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The first order shear deformation theory extends the kinematics of the classical plate theory by relaxing the 
normality restriction on the plate and allows for arbitrary but constant rotations on the transverse normal. The 
displacement field of the first order shear deformation theory is given by [1-3, 14] 
 

ϕ= +0( , , ) ( , ) ( , )xu x y z u x y z x y  
ϕ= +0( , , ) ( , ) ( , )yv x y z v x y z x y                (27) 
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where u0, v0, and w0 denote the mid-plate displacements and φx and, φy are the rotations of the transverse normals 
about the y and x-axes, respectively. The displacement field in Eq. (27) results in the following strain field:  
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The virtual work statement for the FSDT is equivalent to the weak form of the governing differential equations. 

For details on the virtual work principle, the reader is referred to [1-3, 17]. The principle of virtual displacements 
leads to the following equilibrium (Euler-Lagrange) equations for the FSDT: 
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where ( , , )N M Q  denote the stress resultants 
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The boundary conditions for the FSDT involve specification of one element of the following pairs [1-3]: 
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where quantities with subscript `n’ denote those acting along the normal on an edge whose normal is n̂ , and 
quantities with subscripts `ns’ are those tangential to the edge. Again, the non-linearity in the FSDT comes from the 
von Karman non-linear strains given in Eq. (28). The plate constitutive equations relate the stress resultants to the 
strains in Eq. (28). For orthotropic plates with material axes coinciding with the (x, y, z) coordinates, we have [1-3] 
 

 

ε ε
ε ε
γ γ

0 1
11 12 11 12

0 1
12 22 12 22

0 1
66 66

0 0
0 , 0

0 0 0 0

xx xx xx xx

yy yy yy yy

xy xy xy xy

y

x

N A A M D D

N A A M D D

N A M D

Q

Q

⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭

⎧ γ
γ

d
0 /244 2
0 /2

55

0
, ( , ) (1, )

0
h

xz
s ij ij ij

h
yz

A
K A D Q z z

A −

⎧ ⎫⎡ ⎤⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎢ ⎥= =⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭
∫

           (36) 

 
where ijQ are the plane stress-reduced elastic coefficients, which can be expressed in terms of the engineering 
constants E1, E2, G12, G13, G23, and G13 as  
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3.2 Finite element model 

The displacement finite element model of FSDT consists of five degrees of freedom per node ϕ ϕ0 0 0( , , , , )x yu v w . 
The details of this development can be found in [3]. All variables are interpolated using equal interpolation, with the 
approximation functions being the tensor products of the one-dimensional spectral functions discussed in Section 
2.3. 

4    LINEARIZATION OF THE EQUATIONS 

The linearization process can be accomplished with either of two techniques, namely the Picard (direct iteration 
procedure) or the Newton-Raphson’s method. For checking the convergence behavior of both the methods of 
linearization with hp-spectral methods both of these were implemented. There was however, no difference found 
between the results of either of the methods for most cases and thus only results based on the Newton-Raphson’s 
method will be presented. For all structural problems the Newton’s method yields a symmetric positive definite 
matrix system which can be solved by conjugate gradient (Krylov subspace methods) solvers; the solver 
implemented for the solution of the above discrete problem is BPCG which can handle non-symmetric matrix 
systems with relative ease for the displacement based models. The mixed models were better handled with Gaussian 
elimination with scaled partial pivoting. Some of the advantages of the Newton-Raphson method are a faster 
convergence rate, since we are using incremental load steps for the runs, Newton's method does not noticeably 
outperform the Picard method of linearization in most cases. The Picard method faced some convergence issues for 
the pinned-pinned case for the mixed formulation and failed to converge even with an acceleration parameter. 
However the pinned-pinned problem with the displacement based FEM converged with the use of an appropriate 
acceleration parameter between the two successive iteration steps. The linearized problem with the Newton's method 
can be written as [3] 
 

δ =− ≡ −T ( ) ( )r r r rK Δ Δ R F K Δ Δ                (38) 
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where TK denotes the tangent matrix, δΔ is the increment of the solution, and R  is the residual (or error) vector. 
The convergence criterion was set at a reduction in the L2 norm of the residuals to a tolerance value of 10-06, where 
as the convergence is declared when L2 norm of the incremental vector normalized with the norm of the solution 
vector was less than 10-03 for the displacement based FEM models. The mixed FEM models were solved with 
Gaussian elimination with scaled partial pivoting, the non-linear residual convergence criterion was kept at the same 
values as reported for the displacement based hp-FEM model. In the forthcoming sections we present the results that 
we obtained for the linear and non-linear problems that were studied with different types of boundary conditions and 
also verify the spectral convergence of the solutions in the L2 norm. 

5    NUMERICAL RESULTS 
5.1 Boundary conditions 

Beams and plates with different boundary conditions are analyzed and results are obtained for linear and nonlinear 
bending. Various types of boundary conditions are summarized below. 
  

Simply Supported Type SS1: ϕ= = =0 0s su w  
Simply Supported Type SS3: = = =0 0 0 0u v w               (39) 
Clamped edge: ϕ ϕ= = = = =0 0 0 0x yu v w  

 
The following load parameter is used to report the results: 

 

=
4

0
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2

q a
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E h
                  (40) 

5.2 Discussion of results for beams 

There are some advantages of the displacement based model over the mixed model that was discussed in Section 
2.2. The displacement based finite element model [3] leads to a simpler system of equations from the matrix 
inversion point of view as the terms are all equal order. However, the mixed model, with stress resultants as the 
nodal variables, has disparate order terms which cause the model to experience convergence problems with the 
standard iterative solvers. Direct solvers were found to be able to parse the matrix system with relative ease. As for 
the solutions are concerned, the mixed model yields nodal values of the stress resultants whereas in the displacement 
model they are computed in the post-computation at the Gauss points. The mixed model tends to give better 
accuracy for the stress resultants. Fig. 1 shows the agreement between the hp/spectral results with the analytical 
solutions to the TBT beam. As is evident from the figure there is excellent agreement between both the slopes and 
deflections along the length of the beam with the analytical solutions. The non-dimensional deflections of the TBT 
beam subject to different loadings and increasing slenderness ratios have been presented in Fig. 2 for the pinned-
pinned boundary condition, while Fig. 3 presents the non-dimensional deflections of the TBT beam subject to 
clamped-clamped boundary condition and increasing slenderness ratios.  

5.3 Results for plates 

In this section we present the results for a set of boundary conditions and for both isotropic and orthotropic plates. 
Both uniform and skewed meshes are used to determine their effect on the solutions. Exploiting the symmetry of the 
plate, only a quarter of the plate is modeled in most cases. The simply supported boundary condition of the SS1 type 
is used to obtain solutions to the problem and compared with analytical solutions. A uniform 2×2 hp-spectral 
discretization with p = 8 is used for side-to-thickness ratio, a/h, of 10, and a non-uniform 8×8 mesh with p = 4 is 
used for an a/h =100. The finite element solutions for deflections and stresses (not presented here) are found to be in 
excellent agreement with the analytical solutions [2]. No shear locking is apparent in the results obtained. 
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Fig 1 
Agreement between the hp-FEM results and series 
solutions for the TBT. 

 

   

 
 
 
 
 
 
 
 
 
 
 
 
Fig 2 
Load vs. non-dimensional deflection curves for 
Pinned-Pinned TBT beam for different slenderness 
ratios. 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3 
Load vs. non-dimensional deflection curves for CC 
TBT beam for different slenderness ratios. 



254                   Rakesh Ranjan and J.N. Reddy 
 

 

© 2009 IAU, Arak Branch  

It should be noted that the use of spectral functions with the Guass-Lobotto integration points allow the 
determination of stresses at the nodes because integration points coincide with the nodes of the plate. Thus, the 
displacements and stresses are computed at the geometric center of the plate. An orthotropic square plate subjected 
to uniformly distributed load of intensity q0 is considered under SS1 and SS3 boundary conditions. The geometric 
and material parameter values that characterize the plate are; 
 

a = b = 10 in., h = 0.138 in., E1= 3.0 × 106 psi, E2= 1.28 × 106 psi, G12= G13= G23= 0.37 × 106 psi, ν12= 0.32     
(41) 

 
An 8×8 spectral mesh with 1,089 nodes and 5,445 degrees of freedom was used in the analysis. Fig. 4 shows 

both 6×6 and 8×8 meshes. Convergence of the nonlinear solution was declared when the L2 norm was less than 10-03 
and the matrix solution convergence was declared when the L2 norm of the residuals was less than 10-06. For this 
analysis the Newton-Raphson iterative method [3] was used to solve the nonlinear equations. The problem typically 
required between 3 to 6 iterations for convergence.  The results obtained with spectral approximations as well as 
those obtained with the conventional finite element (i.e., with low-order expansions and reduced integration) are 
included in Table 1. Next, the effect of skewed spectral mesh on the plate response is investigated. An orthotropic 
plate with material properties given in Eq. (41) and SS1 boundary conditions was analyzed with the 8×8 mesh 
shown in Fig. 4.  Table 2 contains the results of the analysis. As can be seen from the results, distorted mesh does 
not have significant effect on the accuracy of the computed results. Fig. 5 contains plots of the center deflection as a 
function of the load parameter P for an isotropic plate. The SS3 and CC boundary conditions were used. Fig. 6 
presents the stress vs. load parameter for the same problem. The 6×6 mesh shown in Fig. 4 is used to obtain the 
results.  
 
Table 1 
Orthotropic plate results 
Results  SS3  SS1 
P  w0 σxx  w0 σxx 
0.05  0.0030 0.4544  0.0030 0.4494 
0.10  0.0060 0.9141  0.0060 0.9041 
0.20  0.0119 1.8456  0.0120 1.8257 
0.40  0.0236 3.7307  0.0237 3.6904 
0.60  0.0348 5.5984  0.0348 5.5403 
0.80  0.0453 7.4096  0.0454 7.3341 
1.00  0.0552 9.1383  0.0552 9.0470 
1.20  0.0643 10.7718  0.0643 10.6682 
1.40  0.0727 12.3153  0.0727 12.1972 
1.60  0.0805 13.7586  0.0806 13.6295 
1.80  0.0881 15.1615  0.0879 14.9855 
2.00  0.0949 16.4386  0.0947 16.2583 
4.00  0.1466 26.3920  0.1455 26.0928 
6.00  0.1795 33.1351  0.1796 32.9667 
8.00  0.2054 38.6526  0.2054 38.3693 
10.00  0.2267 43.3659  0.2265 42.9539 
12.00  0.2462 47.7959  0.2448 47.1947 
14.00  0.2618 51.5432  0.2608 51.1019 
16.00  0.2760 55.1212  0.2752 54.7676 
18.00  0.2891 58.5741  0.2884 58.1842 
20.00  0.3011 61.8126  0.3005 61.4079 
22.00  0.3123 64.9234  0.3117 64.4918 
24.00  0.3227 67.8604  0.3223 67.4446 
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Fig 4 
6×6 and 8×8 hp/spectral meshes used for solving 
non-linear isotropic and orthotropic plate problems. 

 
Table 2 
Skewed mesh results vs. straight mesh 

  Skewed mesh Regular mesh 
P w0 σxx w0 σxx 
0.05 0.0112 1.0715 0.0112 1.0724 
0.10 0.0224 2.1467 0.0224 2.1495 
0.20 0.0438 4.2545 0.0438 4.2604 
0.30 0.0636 6.2393 0.0636 6.2330 
0.40 0.0815 8.0440 0.0815 8.0472 
0.50 0.0976 9.6782 0.0976 9.6739 
0.60 0.1122 11.1739 0.1122 11.1570 
0.70 0.1255 12.4775 0.1255 12.4430 
0.80 0.1382 13.7507 0.1382 13.6495 
0.90 0.1492 14.7966 0.1492 14.8382 
1.00 0.1596 15.8112 0.1596 15.8089 
1.10 0.1693 16.7230 0.1693 16.7185 
1.20 0.1785 17.6126 0.1785 17.6151 
1.30 0.1871 18.4448 0.1871 18.3689 
1.40 0.1952 19.1858 0.1952 19.0488 
1.50 0.2030 19.9645 0.2030 19.9596 
1.60 0.2104 20.7010 0.2104 20.7772 
1.70 0.2175 21.3376 0.2175 21.2264 
1.80 0.2243 22.0986 0.2242 21.8133 
1.90 0.2308 22.7217 0.2308 22.7114 
2.00 0.2371 23.4157 0.2371 23.0114 
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Fig 5 
Load parameter vs. deflection curves for isotropic 
plate with CC and SS3 boundary conditions. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 6 
Load parameter vs. σxx for isotropic plate with CC 
and SS3 boundary conditions. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 7 
Load parameter vs. deflection and stresses for SS1 
and SS3 boundary conditions for an orthotropic 
plate. 
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Fig. 7 presents nondimensionalized center deflection =0 0 /w w h and stress σ σ= 2 2( / )xx xx a Eh  as a function 
of the load parameter for orthotropic plates with SS1 and SS3 boundary conditions. The material properties used for 
this analysis are the same as those in Eq. (41). Fig. 8 presents the nondimensional deflections and stresses at the 
center of a clamped orthotropic plate as a function of the load parameter. Fig. 9 presents contains contour plots of 
the fields ϕ σ σ( , , )x xx yy  for an isotropic plate under uniform load and SS1 boundary conditions. Only quarter plate 
model is used. The plots correspond to the parameter of 250. The stresses σxx and σyy were calculated at the top of the 
plate (z = h/2), where as the stress σxy was calculated at the bottom of the plate (z = -h/2). Fig. 10 presents the same 
variables as Fig. 9 but for an orthotropic plate under uniform load (load parameter P = 2.0) and SS1 boundary 
conditions. As can be seen from Figs. 9 and 10, these fields develop differently for isotropic and orthotropic plates. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 8 
Load parameter vs. deflection and stresses for 
clamped (on all edges) orthotropic plate. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 9 
Contour plots of ( , , )x xx yyϕ σ σ  fields for an 
isotropic plate subject to SS1 boundary conditions. 
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Fig 10 
Contour plots of ( , , )x xx yyϕ σ σ  fields for an 
orthotropic plate subject to SS1 boundary conditions. 

6    CONCLUSIONS 

Through this work we have demonstrated the usage of spectral finite element approximations as a viable tool for 
predicting the bending response of shear deformable beams and plates using the Timoshenko beam theory and the 
first-order shear deformation plate theory. Both linear and non-linear problems were solved on straight and skewed 
meshes. We also advocate the usage of higher order spectral basis with full integration for predicting the bending 
response without the use of ad-hoc procedures of reduced and selective integration to obtain reliable results for both 
linear and non-linear problems. Possible extensions of this work are in using hp-spectral methods for modeling 
composite laminated plates and shells.  
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